=he| Fanflctein

o7 Sixth International

High Performance
Transaction Workshop (HPTS)

Asilomar, California
17-20 September 1995

General & Program Chair: Don Haderle

Program Committee:

Ed Cobb Jim Gray

George Copeland Pat Helland

Sam DeFazio Randall MacBlane
Jeff Eppinger Susan Malaika
Hector Garcia-Molina Andreas Reuter
Dieter Gawlick David Vaskevitch

Organization: Nancy Owens
Diana Miller

Draft: Limited Distribution

SIXTH INTERNATIONAL
HIGH PERFORMANCE TRANSACTION
WORKSHOP (HPTS)

ASILOMAR, CALIFORNIA
17-20th SEPTEMBER 1995

Contents

11. "Shared Air" - Exploiting Broadcast in Large-Scale

Information Systems
Michael J. Franklm, Umversxty of Maryland

12. THESIS: Queues are Databases
Jim Gray, Mlcrosoft Corp.

13. Drawing the Line between Consumers and Suppliers of
Transactions in Object Oriented Application Development
Geoff Hambrick, IBM .

14. Transaction Processing on the Internet--Revolution or Evolutlon"_ e

James R, Hamilton, Susan Malalka, Patncna Sehnger,
Eugene Shekita, IBM ..

15. Netscape Secure Courier
Michael Higgins, Netscape Commumcatlons Corp

16. Enterprise Transaction Processing on Windows NT | |
Greg Hope, Paul Oeuvray, Paul Miniato; Prologlc Corpeccceeenens S—

17. Charting the Seas of Information Technology

Jim Johnson, The Standish Group....

18. DBMS Bookmarks
Ian Jose, Microsoft

19. Position Paper
Johannes Klein, Tandem Computers, Inc....

20. Transactional Objects with OpenStep
Charly Kleissner, NeXT Computer Inc..

11-1

. 12-1

. 131

14-1

. 15-1

16-1

17-1

“18-1

19-1

20-1

21.

22.

23.

24,

25.

26.

27.

28.

29,

30.

Contents

Memory-Resident Database Systems: A Look Back to 1985
Tobin Lehman, IBM

Workflows Make Objects Really Useful
Frank Leymann, IBM

Shared-Everything versus Shared-Nothing: Why Hybrids
Will Win in the Marketplace

Charles Levine, Tandem Computers, Inc

The Case for Log Structuring in Database Systems
David B. Lomet, Microsoft Research

Enterprise Client/Server Computing: At the Center

of Merging Technologies
M. Randall MacBlane, Juan M. Andrade, Novell, Inc

Large-Scale SMPs: No End to the Parallelism Debates
John McPherson, IBM

An Overview of the Exotica Research Project on Workflow

Management Systems
C. Mohan, G. Alonso, R. Gunthor, M. Kamath,
B. Reinwald, IBM

DataLinks - Linkage of Database and FileSystems
Inderpal Narang, Bob Rees, IBM

Temporal Data Manager

Paul Oeuvray, Greg Hope, Paul Miniato, Prologic Corp......cccceeeeseres

DSS Performance is Now More Significant than

OLTP Performance
Pat O'Neil, University of Massachusetts

21-1

22-1

23-1

24-1

25-1

26-1

27-1

28-1

29-1

30-1

31.

32.

33.

34.

35.

36.

37.

38.

39.

Contents

Towards Implementing Extended Transaction Modelson . -

Conventional Transaction Processing Monitors
Calton Pu, Roger Barga, Oregon Graduate Institute

13 Million TP HA!
T. K. Rengarajan, Rabah Mediouni, Sybase, Inc

Indexing for Aggregatxon
Andreas Reuter, Betty Salzberg, IPVR, Umversxty of Stuttgart.

Decision Support Services for Decision Support Systems
Christiane Reuter, Tandem Computers, Inc

Performance Prediction and Optimizationin = -
Workflow-based Applications
Dieter H. Roller, IBM

On-Line Reorganization: A Position Paper.

Betty Salzberg, Chendog Zou, Rivka Ladin, Northeastern Umv |

APRICOTS - a workflow programming environment . o
Friedemann Schwenkreis, IPVR, University of Stuttgart......,,...._

Transaction Processing for the Masses
Eugene J. Shekita, IBM

The Market Perspective - Ease-of-use and Heterogénéity
Alfred Z. Spector, Transarc Corp

31-1

32-1

331

34-1

35-1

36-1

371

38-1

391

40
41
42

43

44

45.

46.

Contents

. Why PC Databases are Important for High Performance

Transaction Systems
Peter Spiro, Microsoft

. Coping with Lock Contention in HPTS
Alexander Thomasian, IBM

. Using Unix Workstations for a Low Latency, High

Availability DBMS
Oystein Torbjornsen, Svein-Olaf Hvasshovd, Telenor Research.......

. Flexible Business Processing with SAP Business Workflow 3.0
Helmut Wachter, SAP AG

. Workflow Monitoring: Queries on Logs or Temporal Databases?
Gerhard Weikum, University of Saarland

HPTS Agenda

HPTS Invitees.

40-1

41-1

42-1

43-1

45-1

46-1

The Rise and Fall of TP LiteLight
The Fall and Rise of TP Heavy

Mohsen Al-Ghosein
(mohsena@microsoft.com)

TP-lite won the battle

We thought the debate was settled. TP-lite won! Transaction
processing was declared a database function, and the database
was declared to be the new operating system. Custorners
chose hardware vendors based on how well the RDMBs
worked on their platform. Oracle grew to a multi-billion
dollar software giant and Microsoft started heavy
investmen}s in the database area.

Well, all of that is about to change. The attributes that made
TP-Iite_soiprofoundly dominant, are about to become the
samme attributes that cause it to take a second seat to a rebirth
of TP heaty, disguised in object systems.

The reign of TP-lite _
TP-lite was established around the idea that the database with
its built in stored procedures, triggers, defaults, and rules, can
simply be extended 10 efficiently manage and execute a Jarge
number of transactions supporting large numbers of online
users.

The level of integration between the built-in TP monitor and
the storage engine, allowed for many optimizations that -
would have otherwise been difficult (e.g. sharing of logs).

Indeed, TP-lite became the dominant paradigm for
transaction processing in the late eighties and early nineties.
The success of TP-lite was attributed to the following:

1. Simple programming of transactional applications based
on procedural extensions to SQL.

2. Advanced capabilities in the database front-end to manage
a large number of connected users. Thread, process, and
network session pooling were all techniques implemented
by the databases to accomplish this objective.

3. Integration of the database programnming language with a
subset of the system infrastructure for common tasks.
Trigger integration with electronic mail is an exampie of
this,

4. The emergence of a plethora of tools (Visual Basic,

PowerBuilder, Oracle Objects,..) that allow ease of
developmernt of database oriented applications further
accelerated the acceptance of such approach.

Blind spots
While wildly successful, TP-lite is fundamentally limited by
the following:

1. TP-lite offers little choice of a storage engine. To make
TP-lite work, one must put all transaction related data in
the database, Recent adoption of workflow and the

associated requirements for document management, has
led most to use the relational database as a storage engine
for a medium number of unstructured objects, something
rélational databases were not designed to accommodate.

2. TP-lite offers little choice of a programming language.
One must use a specific vendor’s implementation of the
procedural extensions to SQL for transaction logic. While
atternpts are being made in ANSI to establish certain
procedural extensions as industry standards, proprietary
languages continue to be the norm. Furthermore, these
language extensions while being Turing-Complete, cannot
compete with the large number of other well established
languages such as BASIC, COBOL, C, C++, or Smallalk.
Indeed, it is often the case that the language used to
develop business logic on the client (¢.g. Visual Basic) is
different {and largely incompatible) with the language used
to build server resident business logic (e.g. Transact SQL).

3. The TP-lite model doesn’t scale down. There are no
provisions to have transaction programs developed to
execute on a client machine and then migrated to run on a
server with concurrent access.

4. The TP-lite model doesn’t scale up. Those who have tried,
know that TP-lite is not the right model for supporting
thousands of online users.

5. While it wants to be, the database not really an operating
system. Databases continue to be generally closed systems
not specifically designed for other vendors to plug binary
extensions (applications) on top of.

6. Databases and TP-lite are very vendor biased. Vendors
view their databases as strategic centers of the known
universe. As a result, inter-operability between » vendor
databases ends up being an »° problem. As an example two
phase commit coordination between two database requires
the complex integration of their client libraries with a
transaction manager, and the purchase and installation of
the TM on both databases.

7. Databases continue to optimized for output over input.
Transactions in the database are not first order constructs.
As a result, database client libraries do not take use
ransactions as boundaries to queue work on the client and
reduce the number of network round trips required. The
overall throughput of TP-heavy systems {(which use
transactions as fundamental scope constructs) is generally
superior.

New databases -

We are witnessing increasing adoplion and investment in a
number of database and storage systerns. Increased use of
obiect oriented databases, the enormous success of Lotus

Notes, and Microsoft’s investment in object file systems, are.

all indications that relational databases can’t do it all:

Having the ransaction processing system be so tightly
coupled with the database implementation in a proprietary
manner makes it very difficult for customers to build
transaction processing applications which utilize a number of
such databases simmultaneously. It also makes it harder for

" smaller vendors (e.g. Illustra) to be viable competitors to
commercial databases (e.g. Oracle) since they are expected to
implement ali of the TP-lite functionality into their products,
a very expensive proposition. _

The rise of distributed object systems

An even more profound trend, is the rise of distributed object
systems (DOBS) such as Microsoft’s OLE / COM and
OMG’s CORBA.

DOBS introduce an object paradigm that is language neutral,
allows for binary plug and play binding, and very advanced
distribution, security, and management facilities.

The return of TP monitors

While distributed object systems offer developers a choice of
storage engines, programming languages, computing
platforms, and excellent levels of vendor intf:roperaibiiity1 .
they can’t compete with TP-lite’s-ease of programming, tight
integration with the database, and overall performance.

Historically, TP monitors have offered application developers
tight integration with databases, massive scalability, and
robustness while maintaining database and programming
language neutrality.

TP monitors dominated and continue to dominate
mainframes, but have failed to materialize as serious players
in the open server industry (UNIX, Windows NT, 08/2,..etc).

The failure of the open TP monitor industry is probably a
result of the following factors:

1. TP monitors are expensive, hard to install, and hard to
administer.

2. TP monitors restrict application developers from
accessing many of the native operating systemn services.

3. TP monitors did not facilitate levels of integration
between the programming language and the database
similar to those of TP light.

4, Perhaps the most important reason for the failure of TP
monitors is that they introduced a programming model
that was different from the native programming model of
the operating system and programming languages.
Certain TP constructs such as queues do not fit well with
most object oriented or procedural languages.

The new world order

! Object systems offer excellent interoperability between componentd
developed by different vendors on a single object runtime environment. The
industry has failed to establish a cross-vendor runtime environment
standard.

¢ So, who will win the next round for the position as the

dominant model of infrastructure for OLTP applications ?

* Will it be TP-lite with a very simple programming
model, moderate scalability, and database centricity ?

e Will it be distributed object systems with strong vendor
support, language and database neutrahty, and modern
. manageability ? .

» Orwill it be TP monitors reincarnated to prowde superb
scalability and robustness 7

The answer is all of the above.
We envision a world where the following trends:

1. Databases become objects, and get distributed and .

accessed as objects under the control of the object
. Tuntme system.

2. Languages mature to provide tighter iniegration with
both databases and objects.

3. Object runiime systems merge with TP monitors and
introduce transactional constructs as fundamantal object
properties, to become the next wave of TP systems

4. Databases shrink again to being storage, query, and
access method focused.

5. Stored procedures and triggers become objects that can
be written in ary language while providing the
performance, scalability, and simplicity of data access of
TP-heavy and TP-lite,

6. Aneven larger plethora of development tools show up
focused on allowing the development of data models, tie
to object models, and dynamic selection of execution
context {(client or server).

The transition from the current world of three incomiaazib]e
approaches to the new approach will not be easy. Indeed, use
of all three flavors will continue for the next few years,

Ultimately, true downsizing of mainframe applications, the
emergence of a new breed of transaction processing
applications on the information superhighway, will all dictate
and drive the move to the unified approach.

Conclusion

In this paper, we argued that the wild success of database
centered transaction processing will be limited by its
proprietary nature. We predicted that transaction processing
monitors will be integrated with object runtime systems and
extended to better support databases. We predicted that the
unification will become the new imperative in transaction
processing.

The Use of Production Quality Component Technology in Database and

Transaction Systems

Robert Atkinson, Microsoft Corporation, BobAtk@Microsoft. Com, 10 April 1995

For many years, the software industry has sought to
discover the paradigms and mechanisms that would allow it
to deploy the artifacts of its craft as reusable building
blocks for larger software assemblies, while at the same
time allowing for the incremental and independent
redeployment and evolution of these building blocks by
their suppliers.

There are, of course, many benefits at many levels to be had
from such technology, but a significant and important one is
that of the creation of marketplaces of third party
components that allow a customer to buy from an outside
supplier specialized functionality that his main software
vendors cannot or will not supply and which he thus would
otherwise have to build himself, if indeed such extensibility
is possible at all. Conversely, the opportunity for traditional
software suppliers is that by architecting the integration of
such components into their products, their products become
significantly more flexible, extensible, and thus useful and
valuable to their customers. However, such in-the-fleld
integration of third .party..components into large and
complex software systems necessitates carefu] attention in
the component infrastructure to the issues of independent
evolution, extensibility, and deployment.

Recently, significant progress has been made on these
issues. In the past several years, we have gained much
experience in designing, building, and deploying successful
architectures involving component design and integration
problems. While initially applied to the desktop application
market, present and upcoming systems use the same
underlying component technology to provide extensibility
in high performance areas of, for example, the operating
systern which were traditionally thought of technical
necessity to be the purview of closed, fixed designs. The
guestion naturally arises as to the ways in which such
technology can be applied to database and transaction
processing systems. We believe this to be an area ripe for
exploration and innovation.

For example, the problem of the integration of the resources
involved in a distributed transaction together with a

The author has been with Microsoft for more than five years,
during which time he has focused almost entirely on the design
and deployment of component systems. As one of two principal
architects of OLE2, he made significant contributions to the
underlying component technology infrastructure (the Component
Object Model, COM) and to other areas such as the storage
architecture and the persistent, extensible naming design. In
particular, he is directly responsible for the introduction of the use
of transacted storage access in the mainstreamn desktop application
market. At present, he works in Microsoft’s transaction processing
group, focused on marrying the worlds of traditional transaction
processing and component software.

transaction coordinatoi-is best thought of as a component
problem: one wishes to mix and match resources of many
different sorts (one or more databases built by different
vendors, files in the file system, information in desktop
applications, etc.) with one or more coordinator
implementations with varying performance and robustness
characteristics. Traditional approaches 1o this problem have
on the whole not accounted for the issues of extensibility
and evolution. Further, by using a special purpose solution
to the problem in terms of their programming model,
binding and linkage architecture, and so on, they have made
it difficult to integrate distributed transaction management
with other component and application integration domains.

Another good example of a database problem in search of a
component solution is the architecture by which application
logic (as opposed to system or database logic) is
constructed and deployed in high-volume high-availability
server applications. By modeling this application logic as
installable components inside the server / database system
and by applying to the problem a generic and
comprehensive production quality component architecture,
one can decouple the construction of such applications from
particular languages, from particular suites of tools, and
even from particular databases. In this decoupling,
customers benefit from being able 1o use their investment in
training in the component architecture across a wide range
of products, tools vendors benefit from being able to sell
more easily into the breadth of the software industry, further
benefiting customers, and mainstream vendors benefit from
the growth of the overall marketplace that results from the
flexibility of their products.

As a final motivating but perhaps less well developed
example, consider the design of field calls and escrow
locking. Existing schemes are designed to deal with
arithmetic operations on fields. However, it is not the
arithrnetic operations per se which make these schemes
work, but rather the properties of these operations {such as
commutativity) and the properties of the underlying data
types (such as total ordering of the real numbers). If the
precise important properties of the underlying data and the
transformations thereof can be abstracted, then it is
plausible to consider that the architecture can be
componentized, allowing for more flexible isolation designs
that make use of higher level application semantics.

The use of componentization as an integral part of the
design of software systems without compromise of
performance is today becoming feasible, if not
commonplace. In this light we believe it fruitful to
reexamine many accepted architectural principles to assess
the possible impact of this new capability.

- OrRACLE" RIITICREIE

Oracle Mobile Agents

Technical Product Summary

AUGUST 1995

Part A22547

= 7 XaF=1 White Paper

Contents

AUGUST 1995
Automating the Rest of the Corporation......c.ccceeeveersensvnns - |
What is Oracle Mobile AZentscccoceeseresssranreranarasssssssssseeses RRTRR |
The Mobile Setting......c.cccovssasssresnsrersrranasscnsorsasonsissss 2
System Architectire. .. i aicsioenacrenisiisiaiiniiosiosssrses 3
New Capabilities in Oracle Mobile Agents............. 7
SUIMATY .covverirrenneresmicssrnossssnsessssasesssrnnasasansssasonsassssarssssssssssssasssssass 9

Oracle Mobile A

August 1995 g i

Part A22547

10

ORACLE"

AUGUST 1995

| White Paper B

"~ Oracle Mobile Agents

Technical Product Summary

Purpose .~ S :
This paper introduces the Oracle Mobile Agents Version 1.1 product in

-terms of the customer and business problems it solves and its system
- -architecture. The product implements a new computing paradigm for
-~ mobile workers: client-agent-server computing.

- Automating the Rest of the Corporation

The recent client-server revolution has enabled users to access critical

_business information from their desktop computers such as those running

- Microsoft Windows. This gives corporate users interactive, high-speed

access to the data that keeps the corporation ticking. Data entry clerks

_ . have more efficient and reactive systems, support engineers can find

customer solutions more quickly, financial analysts can evaluate data in
new and exciting ways, managers have access to better, more current

'+ operations reports, etc. -

" To date, however, client-server has rarely extended beyond the walls of

the corporation. Chent-server applications are dependent on the reliable,

. high-speed networks found within the corporation. As a result most

.+ ‘information tools for mobile workers are stand-alone, if they exist at all,
-and rarely connect the mobile worker with the information often most

critical to his job.

- Oracle Mobile Agents provides the power of the client-server paradigm
designed and optimized for the mobile environment.

 What is Oracle Mobile Agents?

* Oracle 'Mobile Agents™ is Oracle's application development
-environment for extending the client-server architecture into mobile

systems. Oracle Mobile Agents introduces client-agent-server - an
extension of client-server that provides the mobile worker with efficient,
transparent access to corporate data sources.

Oracle Mobile A'g"ents combines two key technologies:

* an application messaging infrastructure for a variety of low-speed
networks commonly available to mobile workers, and

.+ an application development interface allowing many of today's most

U UServICES.

- popular Windows tools to easily access mission-critical corporate data

Together, these technologies allow applications that automate mobile
workers to be built in a matter of days, not weeks or months, with
efficient and flexible support for wireless networks, phone lines, and
corporate LANs.

‘Oracle Mobile Agents
Angust 1995
Part A22547

11

The Mobile Setting

To understand the significance of the Oracle Moblle Agents product, you
first must understand the demands of the mobile environment.

Mobile workers work outside the boundaries of high-speed corporate
networks. The communications channels available to these workers
today are a wireless network or 2 phone line while in the field and a LAN

while in the office:

Mobile
User

Mobile Link

“Network Capacity -
" Both wireless networks and phone lines are orders of magnitude more

constrained than traditional high-speed Local Area Networks (LANS).
" The following table shows the dramatic discrepancies between
-bandwidth (kilobytes per second) and network round trip times (latency)

ofthe medla e

Networks

“TBandwidih

kLpS-

Modem

74K - 288 Kbps

.2 - .5 seconds

Wireless WAN | 2K - 9 kbps

4 - 10 seconds

The Need for Client-Agent-Server
An example clarifies the impact of the different networks. A client-server
order status application might exchange fifty criteria and the retrieval of
. multiple rows of data. The figures show how that application performs
over a LAN, a phone line, and a wireless network.

-~ 50 Round Trips

/\: '

Network 0

Assumed Latency

Minimum Response Time
.1 seconds

Modem

.3 seconds

15 seconds

‘Wireless WAN _

4 seconds

200 seconds
(3 mins 20 secs)

12

Compounding the difficulty, mobile networks disconnect or fade in and

out of coverage regularly, neither of which is tolerated by the
‘ connection-oriented nature of client-server applications.

-~ The simple truth is that today’s client-server applications do not work
‘well when applied to'mobile communications. These demanding network

characteristics were the inspiration for the Oracle Mobile Agents

.. product. oo o o
-+ System Architecture
. Clli.elit-Agent'-'SerVe'f.-' o

In a client-agent-server architecture, the client and agent combine to
perform the work of today’s “client” applications. Applications focus on
user-interface and navigation, and agents implement data transactions
and business logic. Clients communicate with agents via Oracle Mobile

Agents messages causing the agent to execute work on behalf of the

-client. Similarly, results -of the agent's work are bundled into a single
" “‘message which is sent back to the client application where they can be
- displayed. S

- “"Mobile-
-Link ...

Server

Application

‘With client-agent:server, overall transaction performance is maximized

by minimizing the use of the mobile client's communications link and
taking advantage of the high-speed link between the agent and the server.
The result is the fastest possible performance to the mobile client
regardless of the complexity of the task.

Oracle Mobile Agents System Components

Oracle Mobile Agents takes the client-agent-server architecture and
delivers it as a systern-level product. Unlike many products that exist on
either the client or.the server, the Oracle Mobile Agents product is a
combination of components installed and used throughout the network.
In the following component diagram all of the components shown are
part of an Oracle Mobile Agents solution and all except the server are
part of the product itself,

. . Cliem

! Computer S
i ‘ j
| Mamager
? |

\

Oracle Mobile Agents
Angust 1995
Part A22547

orporate
Message LAN
3

13

14

_ Each component plays a role in the system:

o Applications — the customer-written components on the client
* " computer that allow the user to initiate Oracle Mobile Agents requests

+ the Message Manager — the Oracle software on the client computer
- that manages communications for all applications
* the Méssage Gateway — the Oracle system administration software
managing all mobile client computers and network services (agents)

« Agents — a combination of Oracle software and a customer-written
application on the corporate network that responds to client
application requests. - '

o * Servers.— t_he'_ex_i_s_ti_t_ag corporate data sources, either Oracle-based or

_other data sources.

Messages -
The basic means of communication between the system components is

the exchange of messages. Messages carry structured data between

clients and agents and the reverse by way of the message gateway.

The next sections will follow a message from creation on the client
through delivery to its agent to provide an understanding of how the
components interact.

Applications

Customers interact with Oracle Mobile Agents using either a simple OLE

2.0 object or a Windows DLL. Any Windows tool that can act as an OLE
2.0 client or can call a Windows DLL can be used to write Oracle Mobile

~ Agents applications, This includes tools such as:

: ~+Qracle Developer 2000 -
"« Oracle Power Objects.
* Microsoft Visual Basic
o P_qufsth PoWérB&iId_ef_ '
.+ Microsoft Excel ...
.+ Gupta SQL Windows -
.+ Microsoft's C/Visual C++
« Borland C/C++ =~

Requests are initiated on the client by creating a message, identifying the
message contents, and issuing a send command to pass it into the Oracle
Mobile Agents system.

Oracie Mobile Ageats

Angust 1995
Part A22547

S Message Manager e
N R TS -+ The'message manager is Oracle software that receives messages from all
~client applications and -delivers them over the currently available
communications link. It resides with the client applications on the laptop

or mobile device. The message manager operates identically over

- o L wireless networks, phone lines, or local area networks.

Application

OLE 2.0
OLE 2.0 |[Windows | Automation
Objects | DLL |
Message
- ~“Manager

Radio| Phone| LAN

\ Outgoing

Messages

Application

Application

: - Message Gateway
- o e ~ Client messages are sent from the message manager to the message
B ~ 7 gateway to be forwarded to'the appropriate agent. The message gateway
has four primary roles: '

'« forwards messages from mobile users to their agents and the reverse

. queues messages intended for clients or agents that are out of
- coverage, turned off, or otherwise unavailable

* " contains all system-level component configuration — all components
are self-configuring minimizing the risk of installation or user errors.

~ + -applies all system security through user password encryption and
- message authentication -

- .The -me‘s'ségc gateway and the message manager work together to
Lo - - guarantee that the ‘data sent over the radio or phone line is sent
successfully, securely, and with the integrity of the contents intact.

Agent Applications .
- B o - Messages are forwarded from the message gateway to application-
: : - - .. specific agents. Agent programs consist of two components;

'+ the agent event manager — the Oracle software on a server, responsible
______ - for communicating with the message gateway to send and receive
messages and determine what action a message should initiate and

Oracle Mobile Agerits 5
August 1995
Part A22547

15

» customer-written handlers, one for each transaction the client
applications can initiate:'A handler is the specific code required to
~interpret-the specific message, perform some action based on the

" contents, and return a response.

Incoming . : Custom Transaction
Message Handler
Agent
Event Custom Transaction m
Manager Handler ‘_.__’
Qutgoing ' Custom Transaction
Message Handler

Agents can be written using native application environments on each of
the platforms they run. On UNIX servers, this will most commonly be

. the C programming language, while for Windows, any of the tools

mentioned earlier could be used to write an agent.

Agents are the key data access components in the Oracle Mobile Agents
system. They can access many different types of data in an infinite
number of ways. Following are a few examples of agents and how they
serve their clients:

» An order-status agent performs standard query, insert, and update
capabilities against a database to manage sales orders. This agent also
regularly checks all open orders against inventory levels to alert the
field representative and inventory manager of increased demand or
shortages. Even if the user has not accessed the order system in days,
they can be notified of data changes impacting their orders.

+ A support call tracking agent manages call entry and update for field
- support engineers. Additionally, the agent identifies all priority 1
customer problems as they occur and automatically forwards the
" details along an escalation path. Further, the agent can automatically
send the customer contact internet e-mail updates with the call's status
and the individuals working on the problem’s resolution as data
changes.

» A stock portfolio manager allows users to access real time stock
quotes as well as the current value of their personal portfolios from
their mobile computer. Additionally, for any stock, buy and sell limits
can be placed to either alert the user to points of interest, or to
automatically execute trades via on-lin¢ trading gateways.

Servers/Data Sources

Servers are the sources of data requested by the user. While agents will
often execute against database servers, such as Oracle7, they can also use
files. or file servers, or on-line services such as electronic mail or on-line
information services as their data sources. The system is as open on the
server-side as it is on the client-side.

Agents access servers using the best available native interface to that
server. For example, Oracle7 is accessed using the Oracle PRO*C or
OClI interface on UNIX, while on Windows these same interfaces as well
as Oracle Glue or ODBC are available.

{
;
i

:

16

Capabilities in Oracle Mobile Agents
Oracle Mobile ‘Agents provides many product characteristics that are

“fundamentally different than the features found in today’s client-server

systems. The following sections summarize the highlights.

" Asynchronous Operations

Oracle Mobile Agents is an event-driven, store and forward system. This

-allows all applications to be written asynchronously. This ility

unbinds the tight request-response model used in client-server allowing
applications to send and receive information as the user needs it. Users
can dispatch a number of jobs (i.e., message transactions) in the network

... and receive responses as they are completed. The client interface never
.. has to wait while a transaction is processed by an agent.

. ChangmgCommumcatlons .-]I'..,inks

.- With Oracle Mobile Agents, the user can choose the most appropriate
. communications available between the client and message gateway. A

. typical mobile user is not a "single transmission media" user, but will

require a combination of technologies to ensure connectivity in any
 situation. For example, a sales representative may regularly use:

» packet radio technology — in the car, at the customers site, at the
a.irport,et_c. e
* phone line connections - when radio is unavailable or out-of-

coverage, when speed is important, when a phone line is convenient
_(hotel room, home), etc. -

~« "LAN connections - in the office

As the user's needs change;:lhey can change communications in Oracle
Mobile Agents with the click of a button.

Suspended/Disconnected Operations

Oracle Mobile Agents allows users to continue to work through marginal
comimunications or even no communications at all. While disconnected,
all user initiated -messages are queued to be sent later. When
communications are reinstated, any queued messages on the client and

- gateway are automatically sent. All messages are delivered as soon as

-possible.
~This is particularly important when using packet radio networks or phone

.- lines.‘If a user is temporarily out of range of the radio , and then comes

back in, the messages automatically begin to flow. Similarly, if the phone
line drops during a modem or cellular modem connection, the application
can reconnect and pick up where it left off; all work is preserved.

 Unsolicited Data Alerts

Traditional client-server 'ép'plications are dependent on the client

~_connecting to a server then proactively requesting information. Data

alerts allow the user to find out about changes as they occur, without

* having to actively search for them.

Further, when these messages arrive on the client, the message manager
can automatically launch their applications and display the message.

Rncle M;b;le Ageats
ugust 1
Part A22547

17

- With data alerts:

«. A field service engineer can receive a data dispatch for a service

. outage _requ_iring-:i_g_nme_dia_xe_attention.
« A sales rep can be notified of a customer escalation for a key account.
A doctor can be forwarded the medical history of a patient coming
_ into the emergency room.
- Data alerts make the data and the user partners in navigating and
- managing their information. .-
* Auto-Configuration -
One of the most error-prone mechanisms in distributed systems is
consistency across end-user configuration information. With Oracle

~ Mobile Agents, all agents and clients register with the message gateway
“ where all configuration information for the system is stored.

" 'When an agent, user, or application requires system details, they can be

i _looked up in the message gateway. This eliminates most of the user-

~ % errors many products encounter when configuration data is entered in

* " many places. It additionally shields the mobile worker from any of the
" details of the system.

To the end-user, installation and configuration can be as simple as

clicking on an installer.

OpeﬁAge_ntSc | e ¥

The Mobilé Agents system was designed from the beginning to be open

and flexible on.the client:and agent interfaces. Application developers
are free to write agents that can access many different sources of data,

including: ~
- Oracle databases
-+ other.sources of data. "
'~ = electronic mail interfaces
o ser_v_icé_s. S g
o other UNIX sé'rv.i_ccs's_u{;h' as file, print, or RPC services
» Windows services such as custom applications or workgroup servers

This flexibility makes Oracle Mobile Agents an attractive platform for
- both’ customers and third party vendors to develop integrated mobile
+ o solutions. :oe

Open Interfaces
Oracle Mobile Agents promotes an open architecture through support of
industry standards wherever possible.

" On the mobile device, we use the most appropriate native operating

system mechanisms. For example, the first platform, Microsoft Windows
uses OLE 2.0 or Windows DLLs as its interfaces.

%
7k
i

18

- Each of the communications drivers supported are supported through

their native interface:

_+ LAN support is through the international standard TCP/IP using the

sockets interface.

* Phone line modems:are supported through the open asynchronous
standard Point-to-Point Protocol (PPP).

*" Packet radio networks are supported through native published

- _interfaces. These include the international standard Mobitex interface
to the RAM Mobile Data network, and the Winsock interface to a
Cellular Digital Packet Data (CDPD) network.

Agents can also be written using a variety of interfaces including:
s C/C++ T

« Oracle OCI and PRO*C

* Microsoft Visual Basic

- * Powersoft PowerBuilder
- As -'additibnal'platforms-and protocols are supported, Oracle Mobile

Agents will continue to take advantage of native, open interfaces to
maximize system flexibility..

System Management ..

Oracle Mobile Agents can be easily integrated into existing management
infrastructures. An SNMP agent can be used to manage and monitor the
Message Gateway and Agent Event Manager components of a system.

Dynamically configurable logging provides an audit of systern activities.
- Additionally, a remote administration tool for user, service, and message

administration can be used from a LAN, dialup, or wireless connection.

Structured Object Transfer

‘Most other messaging systems support the transfer of binary messages

between points in a system. In a heterogeneous environment, this leaves

'the application programmer with the task of converting data structures
-and - objects between -different operating systems or hardware
_architectures.

Oracle Mobile Agents uses the native type systems of its clients to pass
structured data directly from the objects and structures of the native
programming environment. For example, in Microsoft Windows, a
Visual Basic application can put and take data directly from screen fields
into Oracle Mobile Agents messages. Underneath that programining
model, Oracle Mobile Agents uses OLE 2.0 to determine the datatype of
the field and convert it appropriately for use around the network.

- - The bottom line to the application developer is portable and worry-free
. :use of structured data and objects.

Oracle Mobile Agents
August 1995
Pant A22547

19

" What's new in Version 1.1?

Oracle Mobile Agents Version 1.1 contains a number of features and
enhancements denived directly from experience in the mobile setting.

- Usability improvements-
" The user panel has been redesigned to include more information to the

power user without increasing the complexity to the non-technical user.

Auto-configuration now senses mobile device addresses automatically,
©_and can switch between new ones. The configuration tool has been
" redesigned to present all important information at a glance.

Compression

Compression of data during transmission can increase system
throughput, particularly over wireless links.

System Management

An SNMP agent allows Mobile Agents to be managed by existing,
standard management applications. Additional logging and statistics
provide audit and trend capabilities.

Integrated, traveling dialup support
Use of PPP vendors stacks is seamlessly integrated into the product, and
provides dialup interaction and support to easily change dialing location

- while traveling. -~

- Multiple Network support:
" Mobile devices can now communicate simuitaneously with multiple
- gateways, on completely separate systems. Two example uses of this

feature include: -

1. Information services may provide Oracle Mobile Agents applications
" that co-exist with corporate applications. For instance, an online
travel service application can simultaneously receive updates and
information -from its gateway, while corporate applications receive
data' from HQ. - Most other products and systems will only allow
connection to one system at a time.

2. Within the same corporation, developers and testers can both use a

test and development system, as well as a production system all at the
same time. o

Developers Kit '

" The developers kit has been enhanced to allow developers instant
Cproductivity:

. *_ A prototype mode in the Software Developers Kit (SDK) allows

* windows-windows client and agent development for prototype work.
This saves configuration and setup time of the gateway.

* A debugging tool allows developers to see structured messages.
» An object exposing programmatic control of the panel is available.

» With the Windows NT version, one can develop agents and Windows
3.1 clients from a single machine, even over wireless, by attaching
two modems and communicating modem-to-modem. The entire setup
for this configuration takes less than one hour.

10

Oracle Mobile Agents
1995
Part A22547

20

Summary

With Oracle Mobile Agents, corporations have the means to automate
the employees that work outside of the corporation. Its open mechanism
provides transparent integration between various mobile networks, and is
optimized for capacity constrained and intermittently available networks
such as packet radio technology.

The ramifications of Oracle Mobile Agents as an enabling technology are
broad. The product allows corporations and Value-Added-Reseliers to
focus their development efforts on their applications, mot the
communications infrastructure below. The Client-Agent-Server
architecture preserves corporations’ existing investments in their
networked data infrastructures, while providing their mobile workers
new horizons in data access. Oracle Mobile Agents enables an important
next step to bringing information outside the walls of the corporation,
creating a new kind of company, the Mobile Enterprise.

Copyright © Oracle Corporation 1994. All rights reserved, Printed it the U.S.A.

This document is provided for informational purposes only and the information herein is mabject to
change without notice. Please report any errors herein to Oracle Corporation. Oracle i
docs not provide any warranties covering and specifically disclaims any liability in connection with
this document.

Oracle, and PRO*C are registered trademarks of Oracle corporation; Oracle Mobile Ageats, Oracle
in Motion and Oracle Glue are wrademarks of Omacle Corporation; Windows, Visual C++, Visual
Basic, and Excel are trademarks of Microsoft Corporation; PowerBuilder is a trademark of
Powersoft Corporation; Borland C++ is a trademark of Borland Corporation.

Oracle Mobile Agents
August 1995
Part A22547

1

21

22

ORACLE"

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
415.506.7000

800.633.0676 ext.13

Fax 415.506.7200

Interpational Inquiries:
44.932.872.020

Telex 851.927444 (ORACLE G)
Fax 44.932.874.625

Copyright © Oracle Corperation 1994, 1995
All Rights Reserved

Printed in the [.S.A.

Part A22547

23

~The triumph of common sense:
. Farewell TP-Lite(weight)? -
~ Fareweli TP-Heavy(weight)?
. Arise TP-Middle(weight)?

" Charles Brett
e -;csa'cori's&uuin'g ud.
Spectrum Reports/MIDDLEWARESPECTRA
Introduction

In the celebrated balloon-dominated debate at HPTS 1993, Jim Gray offered his credentials for supporting
and sympathizing with TP-Heavy, elegantly argued the case for TP-Lite - and convincingly won the
debate. Of all the arguments he marshaled, the economic-based ones were by far and away the most
persuasive - as he summarized in his cumulative application of: '

e "Ziph’s Law: small is common

* "Schumacher’s Law: small is beautiful, use appropriate technology

» "Gresham’s law: bad mo.n.e.y drives out good”.)

In his HPTS paper he also asserted that "TP-Heavy will be absorbed by TP-Lite (and that) TP-Lite outsells
non-legacy TP-Heavy 100:1 in revenue and 1000:1 in units". -Both statements remain demonstrably true.

Yet, in the two years since that HPTS, TP-Lite has increasingly found itself under pressure. Despite great
€COonOomic success new pressures have appeared which:

* put the squeeze on TP-Lite (as previously understood) e

* opened up whole new transaction’‘opportunities

could lead to a renaissance of TP-Heavy (if its vendors can ‘get their acts together)

* seems most likely to see the rise of 2 hybrid - a so-called TP-Middle’.
This position paper suggests that this TP-Middle - exploiting a combination of 'c]_ilieuing'and o
workflow /process management - is already evolving and will pose a threat both to conventional TP-Lite
as well as to TP-Heavy. '

5% want CoOmmon sense

.. 94 some 45M+ PCs/workstations were sold. - In each of 1992 and 1993, 35M+ PCs and workstations
were sold - more than the number of automobiles sold worldwide in each year. In 1995 more home PCs
will be sold in the US, we are told, than televisions. We live, therefore, in a de facto distributed processing
world (at least at the physical if not yet at the processing level),

C3B Consulting Lid., St Swithun's Gate, Xingsgate Road, Winchester, 5023 QQ, England.
Tob: (+44) 19562 878333; Fax.: (+44) 1962 §78334; emall: spectrum@ataddin.co.uk

24

What these figures also indicate is the massive unbalancing of the conventional IT industry. Computing
has, for ever, departed the exclusive shores of the glass house specialist and become common place. With
4(X)M+ end users of personal computing (compared to less than 10M IT professionals), the traditional IT
specialist has become an endangered species - however superior his or her specialization.

At the same time what relatively few have noted is that TP-Lite was, and is, largely the province of
traditional IT professionals, albeit those wearing the new clothes called client/server. TP-Lite,
combinations of relatively simple databases with clients and/or dumb terminals, are generally placed on
operating platforms that demand professional support - UNIX or VMSor ...

In 1995 the pendulum is swinging away from TP-Lite. The reason is that the host platforms for TP-Lite
are no longer appropriate for the common place computer user.

The emphasis has changed. Rather than look for 1000s of TpS on large hosts - or even 10s-100s of TpS per
TP-Lite system, the fundamental computing issue is how to bring those 110M+ PCs (and their earlier
brethren) into the transactional world, how to persuade them to:

s originate and undertake an average (say) 100TpD (Transactions Per Day) with other
parties/systems

» thereby provide the source for additional volumes on which traditional transactional skills can
_ depend for providing TP growth. = S e

The reality is that the mass of today’s users have neither heard of transactionality, nor care - because
nobody has communicated with them as to why it matters. Therefore, if they do not know, it cannot
matter.

Exacerbating matters, as every individual knows, is a passive ‘acceptance’ that computers can do anything
(everything). Software remains the triumph of a flexibility that delivers all. Common sense - when
combined with ignorance - tells us this truth (just as common sense, in ignorance, tells children that
ostriches will fly: if it looks like a bird, ...). S e

Would common sense choose P-Lite or TP-HeuVy?

Given this fundamental ignorance about what transaction processing and management offers, is it
reasonable to expect that either TP-Heavy or TP-Lite in their cutrent incarnations will become popular
with the majority of users. In many discussions with clients and users (whether in the US, Europe or
elsewhere) who know little or nothing of the disciplines of TP (never mind Distributed TP), what is
abundantly clear is that the requirements for transactionality (at least as understood by IT) are invisible.
The ordinary user has little or no appreciation of what is involved or needed and, at best, has minimal
interest. :

Indeed this extends into large IT shops, if for rather different reasons. For example, one major US
insurance company CIO - with over 200 CICS partitions - bemoaned the fact that although he offered high
transaction facilities, his I'T staff had been so good at their jobs of protecting application developers from
the intricacies and considerations of TP that they (the application developers) had lost most of their
knowledge about such issues. What exacerbated his concern was that those selfsame application’-
developers were all heading for TP-Lite like lemmings - even though they should have known better.

In this environment, the key question swiftly becomes - would common sense users (given their current
state of knowledge) choose either TP-Heavy or TP-Lite? Jim Gray answered about the first of these in

1993 when he wrote "appreciate that TP monitors really are heavy. Besides a heavy list price, they carry a ‘

high price in specialized staff.". TP-Heavy - however much computer theory may need it - is just
incomprehensible to the average man (or woman) in his or her comfortable SoHo or enterprise office
surroundings. E - T T T . crprise Ol

Interestingly TD-Lite turns out to be little different. Entrenched in the obscurities of database debates, lost
in the technicalities of SMP vs. MPD as well as the rich acronyms of client/server, TP-Lite has turned out

C3B Consulting Ltd., St Swithun's Gate, Kingsgate Road, Winchester, S023 9QQ, England.
T Tel: (+44) 1962 876333, Fax.: (+44) 1962 878334; email: spectrum®@aladdin.co.uk

25

to be as complex as TP-Heavy once it is forced to move out from beneath the protection of the simple
single server (with'a small number of clients) environment where it originally took root. Distributing
processing is not simple. -But the average user cannot understand why it should not be simple - after all
distributing processing is "only a matter of only software”. Distributing TP-Lite, unsurprisingly to IT and
especially TP professionals, has proven to be at least as complex as TP-Heavy - and arguably more so.

The net result appears to be that common sense dictates that Distributed TP (whether of the Lite or Heavy
variety) is simply not attracting the broad support base from the masses of today’s users. TP-Lite and
TP-Heavy are proving too clumsy, too technical and too inaccessible (if in different ways) for common
acceptance. Their strengths will only be accepted at one or more rernoves from the user.

Yet those same hundreds of millions of users are demanding, or will demand, the processing of
transactions. They will demand that their PCs robustly, securely and reliably allow them to initiate and
complete transactions with other ?r'sterns". The key question is, then, what might catch their interest and
at the same time be capable of feeding existing transaction systems? .

Arise TP-Middie? B _ _) _

TP-Middle is an unlai}éi'y' description for what ihitfallj; might séem only to describe a compromise, a

middle ground. Yet, in the absence of a more elegant term, it must suffice here. Initially we defined

TP-Middle as a theoretical approach whose purpose must be to interest (and attract) millions of end users

into using TP and yet also be relevant to (and usable by) traditional transaction systems. By definition it

must have simplicity of appeal and use - at the distributed PC as well as other systems level - as its

underlying foundation. -~ SR T T

What, then, might offer such simplicity? Choosing technologies in advarice always carries risk. However,

from our researches, what is increasingly clear is that the queuing and work flow approaches (most

probably in combination) offer real opportunitiesto: .. -

* provide a simply understood, at the conceptual level, picture of a distributed process world { which
is readily modeled and can, therefore, be readily communicated)

® - introduce invisible or tr'ansparenf -transactionaiiiy.(éspétiailj:if it is made available via automated
queue-queue managers with transaction integrity - providing what we term Implicit Transaction
Processing) ' R BRI :

* permitindependent (and parallel) application development, including retention of specialization at
different levels e SRR o
* separate process management (work flow management) from the various application components
on the various different systems in the distributed world . RS

* enable the bulk of processors (the 110M+ PCs/workstations) to be broﬁght into the transactional
world - but as peers to existing TP-Lite and TP-Heavy systems, not as 'thin subordinates’

* offer linkages between existing (legacy) investments and new investmeénts
® introduce time and location transparency (at least where needed)

* generate the additional volumes of transactions which can drive traditional TP (100M workstations
generating 100TpD each creates a massive flow of transactions to be processed by banks, retailers,
insurers, etc., etc.).

The important factor hete is not the technical’ description of desirable attributes above but three other
factors:

C3B Consulting Lid., 8 Swithun's Gate, Kingsgiate Road, Winchester, 5023 9QQ, England.
Tol.: (+44) 1962 878333; Fax.: (+44) 1962 878334; email; spechum@aladdin.co.uk
3

26

27

* . queuing (whether in a distributed environment or. not) is simple to describe and model in visual .
- terms (try attempting the same with either TP-Lite or TP-Heavy); if the uninitiated think they can
- comprehend what is being offered, they can be sold to (q.v. Lotus Notes; SAP'sR/3, etc) .

s work flow managers, as separate process managers", can assemble and disassemble components in -
multitudes of work streams in ways that are equally describable and recognizable

* decoupling of parts (followed by putting the parts together) almost always makes problems easier
to understand than trying for perfection with one monolithic solution. Lo
Combine this with, first, the acceptability of Implicit Transaction Processing before moving on to Explicit
Transaction Processing and the acid tests of mass market acceptability can be met. This is the key which -

we repeatedly find is poorly understood by traditional TP, In essence, Schumacher’s Law is being "
observed. Small is beautiful; quening and work flow, as a combination of distinct elements; can provide
the environment in which TP can continue to flourish (if communicated and made to work in coherent
ways).

In effect it is the TpD volume sourced from the PC which, if established, will drive traditional TP. This
volume could, however, c_i_j_sp_la_ce._tr_adi_tjpna_l__'_]fl‘__’-i._ite and TP-Heavy if either (or both) do not adjust..

Conclusion =

As Voltaire wrote "the best is the enemy of good". This applies as much to transaction processing and its
future as elsewhere. If TP is not made accessible - as its has not been made by either the TP-Lite or
TP-Heavy brigades - thent it will not flourish in a market which sees no need for its existence.

W}‘?r then might wg_bgwélcorrﬁng back TP-Heavy? One answer is that so much is invested in TP in-
traditional systems that it would be an economically undesirable to discard this. Linking these (legacy)
applications and environments into the 100 TpD environments will be what could save TP-Heavy -

because so much proven transaction processing is already there.- :

In contrast, TP-Lite lacks the underpinnings for long term exploitation - with the one exception of data.
But data can be more readily relocated than can processes. Yet there is hope for TP-Lite - if it reinvents
itself and assumes the clothes of TP-Middle, namely that it makes distributed transaction processing
accessible. The signs are already there that this will occur (Sybase’s purchase of CAl is one example;
Oracle In Motion is another). :

For traditional TP to retain its raison d'étre it must seek introduce common sense, make itself appealing.
If it does this we can look forward to saying ‘farewell TP-Lite', to welcoming TP-Middle (Implicit TP) and

offering the opportunity for returning to the inclusion of TP-Heavy. If, however, this does not occur,

expect the non-TP world to reinvent transactionality - based around TpD pressures, not TpS. Just as the -
automobile undercut the train and the truck undercut the canal, so TpD could undercut Tp5 as

traditionally produced by TP-Heavy and TP-Lite.

CharlesBrett
Winchester, August 1995~

C3B Consulting Ltd., St Swithun's Gate, Kingsgate Road, Winchester, 5023 9QQ. England.
o Tel: (+44)-1962 878333; Fax.: (+44) 1962 878334; email: spechum®Paladdin.co.uk

‘The Revolution Came and We Missed It.
; | - Now What?
~ (Position Paper)

~Kurt Brown .

" Computer Sciences Department
N ~ University of Wisconsin, Madison =~
http://www.cs.wisc.edu/ brown/brown.html
brown@cs.wisc.edu

1 The Revolution :

A revolution in distributed data and distributed transaction processing has occurred since the
previous HPTS workshop in 1993. It wasn’t the victory of TP-lite over TP-heavy. Nor was it
the victory of shared-nothing over shared-everything, workflow and object frameworks over 4GLs,
message queueing over RPC, Unix over MVS, or even Microsoft over IBM. It was the victory of
HTML over SQL. And there wasn’t a single paper or discussion about it at HPTS '93.1

During the week of HPTS 93, there were 18 items in the “NCSA What’s New” page of WWW
servers [2]. During the week of this year’s workshop, there will be over 450 entries, along with
advertisements from corporations like MasterCard International. In September 1993, WWW traffic
over the NSF backbone measured 80 GB per month; in September 1993 it is projected to be 500
tines that amount; in September 1997, 125.000 times that amount [4]. There’s a tidal wave coming.

- At the last HPTS workshop, I could surf through the WWW pages of a couple hundred physics,
astronomy, and computer science research institutions. At this year’s conference, I can make airline.
hotel. and rental car reservations, lookup phone numbers, check on my FedEx packages, order pizza.
read the NY Tinies, fetch income tax forms, apply for a job, register for conferences, search classified
‘ads around the country, watch TV, and check the latest earthquake map for the Asilomar area. |
can also see the first 500,000 digits of the square root of four [5]. In September 1993, 0S/2 came
bundled with a relational database. No longer. It now comes with-a WWW Dbrowser and software to
connect to IBM'’s Internet access service. Windows 95 will follow suit (connecting to the Microsoft
Network, of course). R : :

Tens of millions of people have access to this data. They can search it, hrowse it, and (sometimes)
update it. It is text, audio, and pictures (still and moving). The “information society” has finally
arrived. But this explosion of data doesn’t live in @ DBMS, nor is it controlled by a transaction
monitor. The revolution happerned without the participation of the HPTS community, and for that
matter, without the participation of Comypuserve, Prodigy, or America Online.

YExcept, perhaps, for Susan Malaika's paper [1'+ ironically from sorceane with'a Big Corapany, Big Tron, TP-Heavy background.

28

2 Now What?

Is the HPTS community irrelevant to the new world data order? Certainly, database management
systems and TP monitors are still very much needed, and will continue to be. If the HPTS com-
munity concentrates on issues related to DBMS and TP monitors, it will continue to be important
to the DBMS and TP monitor vendors. But by the time a few more HPTS workshops roll around,
I predict that there will only be three RDBMS vendors left.?2 It may be more important to pay
attention to where Netscape Communications Corporation is headed with its Commerce Server [3]
than it is to track the features of future DBMS releases. :

Stepping back far enough, it might look as if many of the traditional HP'TS topics for structured
data and database management systems also apply to WWW data and WWW servers: security,
standards, performance, and reliability. But the WWW is a different world, and underneath each
of these categories are different problems and solutions. Do DBMS and TP monitor security mech-
anisms (e.g. SQL GRANT and CONNECT statements) have anything to do with the requirements
for secure electronic commerce over the web? Traditional data and transactional interface stan-
dards (SQL, DRDA, ODBC, XA) will continue to be important, but the standards for WWW data
(HTTP, HTML, CGI, URL, SSL) [7] are likely to become just as important.

A lot of the lessons learned in performance and reliability in the DBMS/TP world can certainly
be applied to the WWW world, with one “minor” difference: every person connected to the Internet
is a potential user of a WWW server. A common feeling among HPTS researchers over the last
few years was that central site TP performance was a “solved problem” (e.g. [6]). Sure, American
Airlines will still be looking for the latest and greatest in high TPS, but most of the market can
just meet its TPS requirement with simple brute force solutions based on buying forever-cheapening
hardware, right?-Maybe not. ' ' '

When Ticketron is configuring its web server to support electronic ticket purchases over the net,
should they buy enough hardware to support the peak demand that might occur for a reunion con-
cert of the surviving Beatles? Should any retailer that opens shop on the information superhighway
buy enough hardware to support peak gift-buying periods? If a server vendor provides a way to
dynamically offload demand during peak periods to other idle servers that the retailer doesn’t need
~ to purchase outright, this might be an attractive alternative to buying a lot of hardware. What are
the mechanisms needed to accomplish this? ' '

Data distribution becomes much more important (and interesting) with hundreds of millions
of users scattered over the globe than it does for a single; unified organization with multiple sites
and predictable access patterns. Some data are very perishable (stock data, daily news), some
can go stale but remain somewhat interesting (the Sports Illustrated Swim Suit Issue), while some
may have a very long shelf life (any historical data). Some data have only local appeal (seats
for a symphony concert, orders for pizza delivery, real estate information, local news), some have
regional or national interest (orders for clothing, flower delivery; new car prices, national news),
while others have world-wide value (airline tickets, stock and currency markets, world health and
population data). Perhaps the appropriate model for data distribution lies with existing techniques
for distribution of food and manufactured goods.

We have a long way to go to make the distribution of electronic information as sophisticated as
the distribution systems for food and manufactured goods. The current state of the art is somewhat
abysmally summed up by messages like “server unavailable,” “connection refused,” and "“too many
queries, try again later.” In the world of electronic commerce, these messages mean that potential
customers are turned away and sales are lost. Innovative solutions in high performance transactions
systems that can prevent these messages will make someone a lot of money. Will these solutions be
embodied in database management systems or TP monitors? Looking at the past two years. it's a
safe bet that they may not be.

2ldentifying these three vendors is left as an exercise for the reader.

29

3 Summary

A tidal wave of data has already started crashing on shore, and it’s not clear that very much of that
data will be controlled by database and TP management systems as we think of them today. If

the HPTS community concentrates its efforts on traditional DB and TP systems, we will certainly

become less and less relevant. Instead of waiting for the data model issues to be resolved that might
allow us to twist HTML data (kicking and screaming) into DB and TP systems that we understand
today, we should widen our net to embrace the coming world of distributed data and transaction
processing that does not include traditional DBMS or TP systems. There are exciting new problems
in security, standards, reliability, and performance in the coming world of web servers that are going
to be solved by somelody. The HPTS conununity has the skills to tackle these problems. Even
though we missed the revolution, there’s still time to join the party.

References

[1] Maliaka, S. “Data Liberation.” Proc. 5th Int’l High Performance Transaction Processing Work-
shop, Asilomar, CA, Sept 1993.

[2] NCSA, O'Reilly & Associates, Sept 1993 - Apr 1995,
http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/old-whats—new/

[3] Netscape Communications Corporation, Apr 19953,
http://home.mcom. com/comprod/netscape._commerce.html

[4] Rutkowski, A. M.. The Internet Society, Aug 1994,
ftp://ftp.isoc.org/iscc/charts/90s-wuw.txt

[5] Sarstedt, S., Apr 1995,
http://merlin.faw.uni-ulm.de/ sarstedt/sqrt4.html

[6] Stonebraker, M. “DBMS Research at a Crossroads: The Vienna Update”, Proc. 19 Int’l VLDB,
Dublin, Ireland, Aug 1993.

[7] World Wide Wely Consortium, Apr 1994.
http://www.w3 . org/

30

Position Paper: The Next Iivent for Client/Server 'I'P M_onimrs

Mark Carges -
Novell, Inc. . '
190 River Road, A-313
Summit, NJ 07901
fink@summit.novell.com

Most of today’s client/server-based TP monitors offer several communication paradigms in their
API repertoire for application development. The most common paradigm is some form of stmple

request/response. This style of communication” manifests itself cither in the form of a language- .
based remote procedure call (RPC) tool, oras a sct of library-based function calls that invoke
subroutines in server programs. In either case, two programs afrc communicating in real-time with .
one, the client, making a request of another, the server, with the hope that the server will do some _

processing on the client’s behalf and possibly return somc data;

Some monitors also 6ffer a-more general type of application-to-application communication in the
form of a conversational or pseudo-conversational mechanism where a'pair of programs can ex-
change several messages according to an application-defined protocol. T .ike request/response, this

style 1s also characterized by two programs comrmunicating in real-time, but is used when programs

need to keep or build state information across several exchanges of messages.

Another paradigm found in many of today’s monitors is reliable, disk-based quening. Unlike the
request/response or conversational tools, which assume programs are communicating in real-time,
reliable queuing is used when programs communicate in a time-independent fashion. That is, a
message placed in a disk-based queue might niot be processed for quite some time after it is en-
queued. The enqueuer and the dequeuer communicate through a disk-based queue but éach does
so at its own pace and without requiring the other to be present or available. T ypically, work-flow
applications and batch-style systems exploit reliable queuing. Qucuing ¢an also be used for mobile
computing and high-availability applications. ' '

As popular and as powerful as these paradigms are, T believe that anether parad'igt.n is equally im- .

portant and useful: transactionally-aware event-based communication. livent-based communi-
cation fills a void in the space of building distributed TP applications that neither the real-time tools
(ie, request/response or conversational), nor reliable queuing can adequately address.

In many mission-critical distributed business application, eveits occur that 'impac't the state of the _

business and these must be handled cfficiently and naturally by the application. Today, an appli-
cation developer is usually faced with handling such either via expensive polling mechanisms, or
by trying to build such functionality into the application which is cumbersome and most likely not
very efficient or scalable. -1 believe that client/server-based T’ monitors must incorporate some
form of transactionally-aware event-based communication in order to more fully meet the needs
of today’s distributed business applications. What follows i avery brief overview of the semantics
of this communication techniquc. '

In the context of a TP monitor, event-based commimication presumes the following roles: a sub-

scriber, a poster and a broker. A subseriber is an application program that subscribes to an event
or sct of events, and declares what action should take place when an event is posted. The broker
is a system-level entity (ic, provided by the TP monitor software) whose role is to maintain sub-
seriptions and 1o causc subscribers” actions (0 oceur when cvents are posted. The poster is an ap-
plication program that posts events. Lvents can be posted with accompanying data such that the
broker includes the data as part of performing the required actions.

For example, in an application that monitors cellular telephone calls, one program might scan call
detail records looking for fraudulently used phone numbers. When such is deteeted, that program
would post a “Fraudulent_Call” cvent. 'The event broker would dispatch the actions of programs
that subscribed to that cvent. One subscription might request that a mcessage be sent to the phone
number’s home cell, while another subscription might request that the call information be cnqueucd
in the local cell for later processing. Note that the poster has no ilea which programs subscribed
10 its event nor what they will do with its data.

31

The unique aspect of event-based communcation is that the broker sits between the subscribers and
the posters, allowing these two applications 10 remain anonymous from cach other. Thus, event
subscribers have no knowledge of event posters, and vice versa. All communication is facilitated
by an intemediary broker. It can be the case that subscribers have subscribed to events that may
never occur. Likewise, posters may post events for which there are no subscribers. The benefit of
this anonimity is that the list of subscribers can grow or shrink completely unknown to the pro-
grams responsible for monitoring and posting events (i, the subscriber does not have to poll to see
if an event has occurred; similarly, the poster does not have to maintain a list of subscribers and
worry about kecpmg track of which subscribers are still alive, active, ctc).

Another unique aspect of event-based communication is that whllc the subscrlbcr states what action
should take place when an event occurs, the poster is the onc who provides the data to go along
with the action.” The types of actions support__ed by the event broker might be: notify the subscriber
asynchronously of the event, issue a particular RPC, place the posted data in a rehiable queue, write
a particular message on the adminstrator’s console, or run some arbitrary program. With each of
these actions, the broker may have to “attach” the poster’s data to each subscriber’s requested

action. Thus, application programs using this mechanism must have a priort agreement about. the.

named events on which they will rendezvous as well as the nature of the data that may be posted
along with each event. For example, if a program subscribes to cvent X and specifies that the
action to perform is “put the posted data in reliable queue Y*”, then when the subscriber later reads
its reliable queue, it must know enough about the data so that it can process it.

Since we are talking about event-bascd communication in the context of a TP monitor, this

paradigm gets very interesting when events are posted on behalf of a program’s transaction. As
mentioned above, subscriptions can have actions such as “call this RPC” or “put posted data into
that reliable queue”. Because these actions are using transactional cnmmumcatlon mechamsrns the
event broker can leverage these to prov1dc tramactlonal event posting. .

An application can start a global transaction and post its event along with any accompanying data. -

As part of fulfilling subscriptions that match the event, the cvent broker would then pass on the
transaction context as part of performing any actions that support transaction propagation (eg,
RPCs and reliable queuing). The actions, therefore, have become “infected” with the global trans-
action and can influence the outcome of the transaction in a consensus-building manner.. That is,
the poster has no idea how many actions will occur on behalf of its event but it wants to be sure
that the effccts of those actions become permanent if and only. if all of them are performed suc-
cessfully. If any of them fail at whatever they might be doing, then the poster will roll back its

transaction undoing the effects that occurred as a result of the actions. Of course, the broker wilt.

have to give an indication to the poster as to whether the actions succeeded as a whole or if any
failed so that the poster can decide to commit or roll back its transaction.

Adding transactional event-based comununication to the sct of communication paradigms offered .

by today’s TP monitors will give application developers a powerful tool for modeling their busi-
nesses. Since events are location-transparent application-named entitics, event-based communi-
cation complements other mechanisms offered in most ‘1" monitors which are also based on
high-level naming (ie, real-time request/response and conversations, and reliable queuing). Also,
providing brokered events in the framework of a TP system. provides for an important new

transactional communication mechanism that lcverages c:m!m;_., mmmumc ation tcchmquca but .

adds a new semantic for tr'lnsacuona] consensus- but](hn;,

Mark Carges manages TUXEDOQO System Development at Novell where he has been a member of
the TUXEDO Project for the last 10 years. Ile designed and developed carly versions of the
TUXEDO System and is one of the project’s principal architects. e has participated on X/Open’s
Transaction Processing Commitiee since its inception and is the pnnupai author of X/Open’s XA,
TX and XATMI interfaces.” Recently, he has been working in the arca of tranmmtmnal event
communication, transaction protocol intcroperability and reliable queuing,

32

Integrating TP Monitors and ORBs

Edward E. Cobb
~___Senior Technical Staff Member
- IBM Santa Teresa Laboratory =~
" 555 Bailey Ave. B
©i 7 sanJose, Cal;95141
ed_cobb@vnet.ibm.com

1.0 Introduction

Object Request Brokers (ORB) are touted as the next revolution in distributed computing,
promising to simplify application development through the techniques of object technol-
ogy: encapsulation, inheritance, substitution, and polymorphism while making the deploy-
ment of real distributed applications more feasible than earlier technologies like APPC
and RPC. The current generation of ORBs rely primarily on static binding between clients
and servers suggesting that they may not scale well as more applications and workload are
deployed. I A _ _

TP Monitors, on the other hand, have demonstrated good performance and scalability by
providing dynamic binding between clients and servers with sophisticated algorithms for
creation and destruction of server processes. These architectures have been commercially

- successful in the deployment of OLTP applications, a class of business application charac-

terized by a large number of clients repetitively executing a relatively small number of
short duration transactions. _

It seems likely as ORBs mature and object technology is exténded from the realm of the
desktop to commercial transaction processing applications, that the two technologies
should come together. The subsequent position paper explores some of the issues in such a
convergence and suggests some possible ways it might come about.

2.0 Whatisan ORB?

- An Object Request Broker (ORB) can be considered a software bus that provides the
-+ mechanisms for objects to communicate with each other, regardless of where in a network

they are located. Functions of an ORB include message dispatching. communications |
and object activation. One example of an ORB is the Object Management Group’s (OMG)
Common Object Request Broker Architecture (CORBA).Figure 1 below shows the major
components of CORBA. ' S :

Integrating TP Monitors and ORBs ’ Avgust 27, 1995 |

33

_ FIGURE 1. Common Object Request Broker Architecture

Ob ect |
Implementatnon

Client

T,
DL Skeleton

ORB Core |

The Greater ORB / _
Interface Identicat for all ORB Irnplemontation
Up-call
' There may ba multlple ob]act adapters o ;- Interface
- OﬁB—dapandem interface . S Normal call §
- B ' Interface
e . 'ﬂaere are stubs arld a skeleton for -ach ob]act type

CORBA provides both a stati.c .énd dynamic form of invoking oﬁjéct 6.perations (meth-
ods):
+ The Dynamic Invocation Interface (DII) mterprets dynarmcally constructed requests.

« Interface Definition Language IDL (a syntax similar to C) describes interfaces pro-
vided by object implementations. IDL stubs are bu11t by a compxler and bound with the
client’s executable code. . _

« IDL skeletons provide the linkages between the ORB and the object s implementation.

..+ An object adaptor is respor_l_sable__ for implementing specific object activation policies.
2.1 Message dtspatchmg
Objects communicate using messages. A chent requests service from another object by

constructing a message and passing it to the ORB. The format of the message is described
in IDL and its definition is maintained in an Interface Repository, representing a durable

contract between the object providing the service and all clients that will use the service. - -
The ORB will locate the target object and deliver the client request, in the form of a mes- .

sage, to the object which implements that request. When both are collocated message dis-
- patching is similar to 2 dynamic link library (DLL) call: :

« parameter values are passed w1thout translataon _
« the target object’s method executes in the client process and on the client’s thread.

« the method executes in the call stack of the client.

When they are in different execution environments:

Integrating TP Monitors and ORBs August 27, 1995) 2

34

. paramcter values are marshalled and may be translated (e g ASCII to EBCDIC)

- commumcatxons services are utnhzed to move the resultant stnng _
~'«" the method executes on a dxfferent thread wrthrn a drffcrentprocess, and a new call

stack 1s created

2.2 Commumcatmns o

When the target object is located in a drfferent system than the client, the ORB utilizes the

= facilities of a communications transport to send the client’s request to the target object.
Until recently, each 1mp1ementatron of CORBA defined it own protocol to communicate

with another instance of itself to transfer and receive the request. CORBA 2.0, adopted in

‘December 1994, defines a TCP/IP-based communication protocol (UNO) and an architec-

ture for utilizing additional protocols (e.g. DCE RPC). This penmit different implementa-
tions of CORBA to communicate. Later this year, a specification for interoperability with
Microsoft’s OLE, will also be adopted, extending these capabilities to a very broad spec-
trum of personal computers, workstations, and mainframes.

When a request arrives at the target system, it is “forwarded” to the correct server process
where local message dispatching takes place.

- 2.3 Object activation

To be able to dispatch a message to an ob_;ect requires an object instance in the target envi-
ronment. For collocated objects this'is 51mply memory management. For objects in differ-
ent exccution environments, the target must be located and an environment to activate the
target object must be selected or created.

Within CORBA, an object adapter is the component which provides for the activation of
objects in different execution environments. The Basic Object Adaptor (BOA) interface,
“is intended to support-a wide varicty of common object implementations.” CORBA fur-

- ther defines that, “more (but not many) object adaptors will be needed to support different

kinds of object granularities, policies and implementation -styles.”I

3.0 TP Momtors

TP momtors are used today to support the execution of many commerc:al applications,
especially those using transactions. Most TP monitors are packaged with a transaction
manager and systems management facilities. The principal function of a TP Monitor is
optimal connection of clients to servers, i.e. scheduling.

1. Cf. Chapter 9 of “The Common Object Request Broker: Architecture and Specification” available from
the Object Management Group

Integrating TP Monitors and ORBs August 27, 1995 3

35

3.1 Schedulmg

The TP momtor prowdes a hghr werght scheduler opnmlzed for short duratlon applica-
tions typically found in OLTP systems. TP monitors perform a multiplexing function
which allow a large number of clients to.efficiently access a much smaller number of
application servers. 2The TP Monitor dynamically connects clients to available server pro-
cesses, ensures that the proper server application code is available to thé process selected,
and may also dynamically create and destroy the server processes themselves.

- TP monitors permit server application logic to be written for a single user instance. The
TP monitor supports multiple users by scheduling mulrrple instances of the application ~-
_ideal for languages like COBOL which do not natively support multi-threading. The typi-
cal server in a non-TP momtor enwronment rnust suppo:t rnulttple users m the same appli-

__cation simultaneously.

Today’s generation of ORBs 'r'ely on a server model similar to the non-TP monitor envi-
ronment. .

s A ﬁmte number of server processes are started by some extemal mechamsm (e.g. an
operator command).

» A “listener” thread within the ORB monitors the communication transport for incoming
- request and routes them to the correct server process.

. Each server process must be able to handle multlple users o it w111 be forced to engage
in some form of multl—threadmg wrthm 1ts 1mplementat10n -

This approach has several disadvantages: -

« Application programming is more complex.

Each object implementation must cater to its simultaneous use by multtple users. This
requires multi-threading, concurrency control (to access shared resources), and applica-
tion level security. In other words the apphcatton starts to include many of the functions
of today’s TP Monitors. 3

+ Scalability is limited

As new applications are added, new server processes are required. New clients can also
require additional servers just to handle the increased workload. Since the client to

- server bindings are static, one. qulckly runs out of the ability to add additional servers,
either through diminished processing power.or memory or both.

2. Cf. chapter 5, Transaction Processing: Concepts and Techniques

3. SAP Release 3 is an example of exactly how these TP Monitor functions have migrated into the applica-
tion program even without the use of an ORB.

Inteprating TP Monitors nd ORBs ‘ August 27, 1995 4

36

4.1 An Alternative Design .

In many respects, object invocation is analogous to the transactional RPC function of
today’s TP monitors. Operations arc invoked as the only way to access data.

* ORBs invoke methods as the only way to access an object’s data.

» TP monitors schedule the transaction program named as the target of the RPC. Data
access occurs as a by-product of that program’s execution.)

. Multlple clients may access the same object Thls requlres a mechamsm for mediating
..access. e . .

+ Tn CORBA, this is prov:ded by the Obj@(.‘f Transactzon Serwce (OTS)4and the Object
Concurrency Service (OCS).

+ In a TP monitor, this is provided by the transaction manager and a lock manager.

Since both the OTS and the OCS are based on the same core :Ser\iiée's“(i'.é. transactions and

- locking), the only difference is in the form of the interface (i.e. OO vs. procedural).

4.2 Combining ORBs with TP Monitors

ORBs and TP monitors can be mtegrated by separatmg the schedulmg ﬁmct:ons of the

“object adaptor from the activation functions and using the TP monitor to provide the

scheduling. This is depicted in Figure 2.

FIGURE 2. Integrating TP Monitors and ORBs

Scheduling

> Comm Object
Support Activation
ORB TP Monitor ORB

There are potentially a very large number of scheduling algorithms. This approach allows |

them to be incorporated as required to meet the nceds of different application environ-
ments. Some of the advantages are:

+ efficient scheduling of the environment in which objects are to be activated,
This is essential if objects are to be used to build traditional OLTP applications.

4, Cf. “Objects and Transactions: Together at Last,” Object Magazine, January 1995

Integrating TP Monitors and ORBs Avgust 27, 1995 : 5

37

38

* the ability to define and use objects independent of the TP Monitor selected,
An essential element for a component software market in the OLTP environment.

~o- and the ability to enhance the basic object envnronment orthe: TP Momtor without
impacting the functions of the other. - :

5.0 Conclus:on

TP Monitor and ORB technologles can be combined to build a new distributed computing
infrastructure, exploiting the strengths of TP monitors, while providing a robust applica-

tion development environment based on reusable objects. The marriage of the two can

produce an mtegrated solution that optimally addresses the needs of the commercial trans-

action processing environment. - :

6.0 Blblxography | | -
1. J. Gray, A Reuter, ﬂ'ansactzon Pmcessmg C’oncepts and Technigues, Morga:n Kauf-
mann Publishers, 1993

2.- Gbject Management Group, The Common Object Request Broker: Architecture and
Specification, John Wiley, New York, 1992

3. Object Mauagement Group, Common Ob_;ect Serwces Speaf cation (C'OSS) Volume 2,
John Wiley, New York, 1995

4. Cobb, E., TP Monitors and ORBs A Superzor Cltent/ServerAlternanve, ObjectMaga- e
zine, February 1995 :

Integrating TP Monitors and ORBs August 27, 1995 . 6

System Services For SOM Objects HPTS9S 4/3/95

System Serv1ces for SOM Objects

George Copeland
IBM
Austin, Texas
copeland@austin.ibm.com

Abstract

The goal of]BM s System Object Model (SOM) is to provza‘e the underlvmg
technology to support large-scale code reuse. This involves addressing several
problems. including -binary-code reuse across compilers and languages, local-
remote transparency. automatically inserting object services (e.g., persistence,
concurrency, recoverability, security) into binary classes such as OpenDoc parts.

The result is: that class and framework suppliers can write their code
without the complexity of supporting object services or distribution in their code.
and yet their binary code can then be employed in the broadest possible market.

This paper describes work in progress. Some of it has already been shipped
in products. some has been implemented but not yet shipped, and some is a
description of our direction but has not yet been .implemen ted.

1 The importance of binary code reuse-

Source-code reuse has many problems. Some éxample ploblems are:

. The source code must be available.

+ Itis usually poorly tested and not with your compliei _

« - Itisdifficult to tell whether the code has been changed. :

. Software support is difficult. .

. Compilation is difficult and requzres long complle times.

. It is difficult to guard against software piracy.

» . Etc. R STPT TR _ N

As Figure 1 illustrates, these problems get worse with the degree of rcuse, as more people
and organizational boundaries are involved, representing separate economic or legal entitics and
with a broader range of cultures and development tools.

This means that the importance of binary over source code increases with the degree of
reuse. The main purpose of object technology is code reuse. The above problems are just as true
for OO as for procedural. We have only a limited form of object encapsulation if we have to give
someone source code to either use or subclass the object. For object technology to achieve large-
scale success, binary reuse is essential.

The software industry is gearing up toward sclling apphcanon—spemﬁc blnary classes (c.g..
OpcenDoc parts) that can be tailored and assembled together for a specific application. In thls
emerging component industry, binary code is a must.

- [BM ‘Austin l1ofl3 George Copcland

39

System Services For SOM Objects HPTS95 | 4/3/95

Figure 1: Source code reuse does not scale

difficulty
of source
code reuse

egree o1 source code reuse
2 Compiler and language independence

To support binary reuse, SOM adds the following flexibility to object programming:

. SOM’s compiler independence allows a class compiled by compiler A to be used
or subclassed using compiler B, Note that this. is not possible with the class
libraries produced by C++ compllers that are not SOM enabled because there is no
standard library format.

. SOM'’s language independence allows a class written in language X to be used or
subclassed in language Y. Note that this is not possible with OO languages today.
Ironically, procedure calls across compilers and languages is supported today.

. SOM’s method invocation mechanism allows a base class to change size without
recompiling (solves the “fragile base-class problem”).

SOM supports the first two features by building method resolution on top of existing technology
and conventions for calling binary procedures across language and compiler boundaries. SOM
supports the third feature by allowing adequate indirection for method resolution.

SOM classes can be defined in either of two ways: :

. The Object Management Group (OMG) CORBA IDL (Interface Definition

. Language) can be used to define classes. SOM’s- IDL compiler then produces
language-specific files (e.g., header files) to assist the- class implementor in
implementing the class in either non-OO languages (e.g., C, Cobol) or OO
languages (e.g., C-++, Smalltalk).

. Direct-t0-SOM compilers allow classes to be defined in existing OO languages
(e.g., C++, Smalltalk). These compilers can produce IDL for use with other
languages as described above.

3 Local-remote transparency

SOM support for distribution provides local-remote transparency for binary objects. This
allows a class or framework to be developed and compiled in a single address space without
support for object distribution in their code, and then the binary code can be deployed with

IBM Austin 20f 13 George Copeland

System Services For SOM Objects HPT_S95 , 4/3/95

distributed objects.

Figure 2 illustrates the local case where the object and its client are in the same address
space (AS). In the local case, SOM uses a regular method dlspatch resultmg in performance
similar to C++.

Figure 2: Local library method invbc‘atior_l"
address space 1

operation()
0 1 | ——— | Y =T

Figure 3 illustrates the remote case where the ObjCCt and its client are in different ASs. In the
remote case, both the object and its client are fooled into thinking that the call is local. When a
client first gets a reference to a remote object, SOM produces a local proxy object. This proxy has
the same interface as the remote object. Its implementation can either forward the method request
to the remote object or cache the remote object. The remote object has an object adaptor (OA) in
its AS that either forwards local calls to the target object or manages its caching in clients. The
SOM Distribution framework can be tailored by ‘subclassing to achieve-specialized proxies and
object adaptors, as well as’ employmg various communications protocols. | -

Fxgure3 Remote method mvocatwn '

address'space 1 address space 2
operatz_qu()_ S S N _ . Eeratzon()

client ——— proxy =T—=2_L, a%g etct - object
T . e . 1 p or "
Loowou3QM Distibution [_J

4 Object Identity
Object identity includes both of the following: _ S
. The ORB generates object references and ensures that operanons on daﬁerent
-~ references for the same object arc invoked on the same object. For an incoming
operation, the ORB cither finds the already activated object or activates it.

-« . The ldentifiablcObject operanom allow a clicnt to find out if two object references
. are to the same Ob_] ect..

41 Object references

- . An object client can have elther a “llve or “smnglﬁcd” 1efercncc to ¢ a CORBA ObjCCt SOM
supports the OMG CORBA interface operations object_to_string and string_to_object to map
between live and stringified references.

IBM Austin - - - 30f13 George Copeland

System Services For SOM Objects HPTS95 B 4395

Methods can be sent directly to a hve object reference SOM S 1rnplementat10n of a live
reference is a pointer to the object.
A stringified reference (SR) allows an ob_;ect to be referenced from outside of its home AS.
A SR is used for the following:

. The proxy of Section 3 that supports locai-remote transparency.

. It can be emailed across the network. : -

. It is the persistent form of a reference. If obJect A references object B, then B’s SR
is stored in A’s persistent state. i

‘A SR includes the following identity information: -

<ibm_tag, server_id, key>
. The ibm_tag is. provided by OMG to distinguish our SRs from those of other
~ vendors.
« The server_id 1dent1ﬁes the ObjCCt S home AS, mcludmcr both the machme and the
.. . object’s AS wnhm that machine..

» . . Thekey identifies the object within the object’s home AS.

. In general, anything in the SR becomes fragile (i.e., cannot be changed without
-invalidating outstanding SRs). To.aliow the object to be moved between servers
without invalidating outstanding. SRs, an indirection can be used. The server_id/
key pair could be repIaced by a unid which is mapped onto the server_id/key. This
single mapping would be updated as part of the Lifecycle move implementation.

Object clients do not know or depend on the internal format of a SR or any part.of it. This
allows SOM to support multiple implementations of object identity.

A daemon AS is needed to create an object’s home AS if it is pot already .active, and to
connect the proxy s AS to the Obj ect s AS. The server id gets us to the correct target machine and
AS. :

Wlthm an AS SOM separates object mstance management frorn the OA Thls is 1llust1 ated in
Figure 4.

The SOM OA waits for messages, demarshals messages into a method call asks the instance
manager to find the object’s pointer from the key, invokes the method locally, marshals the
returned parameters into a return message, and sends the return message. For a returned object
parameter, it asks the object to get its ket, so it can build the SR. The SOM OA can be subclassed
to support different message formats.

The SOM instance manager (IM) is responsible for creating keys for objects, and finding or
activating objects from a key. There are many techniques for.instance management, cach far
superior to others for handling different cases. SOM provides: an-extensible mechanism for
dynamically adding IMs to an AS, each of which manages its objects in its own way. Each AS has-
a root IM that the OA calls to translate the key to a pointer. AnIM can be bound to the root IM or
a nested IM with a component key, forming a tree. An object’s key is a path of component keys.
Resolving from a key to an object involves a recursive traversal down the tree. This tree is similar
to a tree of name directories (the Name Service described in Section 5.5), except that it is used for
identity instead of human-friendly names, it is a pure tree 1nstead of a dlrccted glaph and it is
typically much shorter. _

Some examples of nested IMs are:

IBM Austin 4 0f 13 George Copeland

Systemn Services For SOM Objects | HPTS95 4/3/95

* An IM for transient references might usc a pointer as the component key for its
objects that are kept in heaps. The pointer might be either directly to the object
(faster) or through an indirection (safer). _

. An IM for a very large homogencous collection of persistent objects might use a
database record key as the component key for its element objects, manage a cache
of recently used element objects, and manage the persistent state of its element
objects.

. An IM for an OODB might simply use the OODB § object identifier (OID) as the
component key for its objects, and call the OODB’s runtime to find/activate its
objects.

All objects (except the root IM) are assxgned an IM at b!l‘th and support the following

operations: §

. To find the object’s IM: Each IM docs this in its own way. One technique might be
for the object to have a pointer to its IM. Another technique might be based on the
location of the object in the IM’s cache. ’

. To find the object’s full key: This method is generic. It uses the above operation to
find its IM, and then recursively asks its IM to find its key. The recursion ends at
the root IM and the component keys are concatenated on each return down the tree
to form the object’s key.

An object reference can be either transient (lives as long as the object’s AS) or persistent
(lives beyond the object’s AS). For persistent references, the IM must either include the persistent
data identifier (PID) in the component key (cannot change without invalidating outstanding
references), or persistently maintain a mapping between the componcnt key and the PID (allows
the PID to change).

Figure 4: Object Adaptor and Instance Mangers
an address space
root IM

Bsientl p-é;;,g{entl .. OODBl)
(pomterX) (ckeyY) (..de)

a collect10n¢

C. : dbkfyl :)

key for object A: .
per51stent1/ckeyY/dbkeyl

IBM Austin =~ . d0of13 George Copeland

43

System Services For SOM Objects HPTS95 s

42 IdentifiableObject o

OMG provides an interface (IdentifiableObject) to compare the identity of two live object’s
to see if they reference the same object: ' '

. The is_identical operation provides a boolean indicating whether the two input

references are to the same object.

. The _get_constant_random_id operation always returns the same number for an

object. S SR -
If two objects have different numbers, then they cannot be the same. If they have the same
number, the is_identical operation must be used. This allows efficient testing of whether an object
is in a large set, provided the number generation has reasonable randomness.

This programming model allows the semantics of identity to be determined by the object
implementor. SOM provides a default implementation of the IdentifiableObject interface that uses
the identity information in the SR, which is impilemented within the client’s AS (in the proxy if
remote) and without activating the object. This default semantics can be overridden to allow more
application specific notions of identity (e.g., replication). - S

5 OMG Common Object Services

OMG is defining a set of interfaces for system services for object called Common Object
Services. SOM provides an implementation of these services. : :

5.1 Externalization |

The OMG Object Externalization Service is the OMG standard way of getting data into and
out of an object for many usages:

. Copying an object across ASs or machines.

« Moving an object across ASs or machines.

« . Caching an object in the client AS instead of forwarding operations.

. Passing an object by value across ASs or machines.

. Storing and restoring an object’s persistent state.

The Externalization Service is inspired by Taligent Streams. Figure 5 illustrates how the

Streamable operations (externalize and internalize) allows someone to ask an object to stream its
state either into or out of the provided Stream object. :

Figure 5: Example of Externalization

| @ _eXteri_édlize(mySiream) ~_Streamable

client object

write_int(a)

@ create() .
o write_float(b)
StreamFactoryX --—-=myStream e object(c)

The implementation of these Streamable methods is extremely generic, so that they work for
all of the above usages.

IBM Austin 6of 13 George Copeland

System Services For SOM Objects HPTS95 B 4/3/95

. It is independent of which of the above usages for which it might be used.

. It only deals with a shallow view of the object. Whenever a referenced object ol is
to be included, a simple write_object(o1) is called.

» The writer includes only non-derivable data. -

The object implementor/supplier is responsible for implerienting the Streamable methods, as well
as describing the IDL for the data in the stream (the class stream schema).

The specialization for particular usages is handled by providing a specialized Stream object.
. It can be tailored to the particular usage and 'depth of traversal.
. It provides heterogeneous mteroperablhty v1a a btandard byte-stream format (e.g.,
little/big endian).
. SOM Distribution uses a specmhzed Stream proxy that does distributed blocking
to reduce messages across ASs or machines,

The Providing ‘the Stream implementation -is the responsibility of whoever provides the
corresponding usage. SOM provides the Stream for many usages, such as for copying, moving,
caching, pass-by-value, and persistence where a schema mapping between the object and a
database is not needed (e.g., a database BLOB, a Posix file, a Bento fil). When thee is a database
schema, the object consumer prowdes the ‘mapping bcm een the object’s stream schema and the
database schema. C _ .

5.2 Peysistence - -

As described in Sectlon 4, the ORB is responmble for persistent object references. If the
persistent object has persistent state, then some other mechanism than an ORB must be used to
maintain that state. The OMG Persistence Service provides a‘ way to do this.

As illustrated in Figure 6, the OMG Persistent Serv1ce provides an architecture that supports
two-level store (TLS) objects (i.e., an object that lives in regular transient memory and whose
persistent state is stored in some kind of datastore mechanism). The architecture has a router
mechanism called the PersistentObjectManager (POM) that finds the correct PDS to drive the
datastore mechanism indicated by the object’s persistent data identifier (PID). The PID describes
how to find the object’s persistent data. The PDS is responsible for getting the data in/out of the
object and out/in to the datastore, and is the only entity that knows the datastore’s native interface.

The OMG Persistence Scrvice supports any mechanism to get data into/out of the object.
Because the OMG Externalization Service is the OMG recommended way of doing this for many
other usages (copying an object, moving an object, cachmg an object, passing an object by value).
we recommend that it also be used for persistence.

This Persistence architecture uses simple operations that deal with object granularity to
synchronize the object’s state with its datastore:

. storc(obj, PID) streams out the object’s persistent state and: storcs it in the datastore

indicated by the PID.
= - restore(obj, PID) retrieves the object’s persistent state from the da tastore indicated
by the PID and strcams it into thc object. :
» delete(oby, PID) dclctcs thc Ob_]CCt $ pe1 sistent statc from thc datastorc indicated by
- the PID.

A persxstent object can 'optmnally support store, restore and dclete dircc’tiy (called the PO

interface) for applications that nced explicit external control of persistenice.

1BM Austin 7of13 - George Copeland

45

System Services For SOM Objects ~ HPTS95 = 4/3/95

Figure 6: Persistence Service saves object’s persistent state

PO I/F Store() restore() delete()

per51stent
object

PID

' _s_.tofe.-()',_ restore(), dele_te()

Persistent
Object
Marager

/ Stqre(), rc;¥)re(), delete()

"Persistent . Pe'rsiStent.
Data Data
Serwce Serwce

| P_rotqcol‘;_-"'
(Externalization)

I

. EXEC SQL

There are two ways to use persistence. To 111ustrate, let § say you and I want to cooperatively
work on the same spreadsheet.

« Object sharing: If we both can use the same object interface and implementation,
then we can share a single persistent spreadsheet object. I would create the object
using a PID that describes where its persistent data is stored, and give you a
reference to the object. We would remember the reference to get the object back or
give a human-friendly name to the object in a object directory (Section 5.5).

. Data sharing: If we each want a different object interface or implementation, then
we cannot share a single object. Instead, we would have two objects which share

IBM Austin 8of 13 George Copeland

46

System Services For SOM Objects HPTS95 4/3/95

the same data. We would cach create our own object using the samec PID, and
_ would have to remember both the class and the PID to get the object back.
53 Transactions S
The OMG Object Transaction Service provides the normal two-phase commit coordination
N among recoverable objects. A user creates a new transaction context relative to the current
- context. If the currcnt context is not null, this will start a nested transaction. The Transaction
Service also defines the interface that a recoverable object must support. These include prepare,
commit, abort and forget. The Transaction Service is responsible for the following:
» Passing the transaction context between caller and callee.
. Reliably accepting registration of recoverable resources.
- + Coordinating two-phase commiit.
SOM Transactions implements the OMG Transaction Service and also supports inclusion in

the two-phase commit protocol for procedural resource managers that support the X/Open DTP
and other standard protocols. SR e

5.4 Concurrency SR e L

The OMG Concurrency Service provides a lock manager that can get locks on behalf of
cither transactions or threads in the object’s AS. When getting locks for transactions, it correctly
handles lock inheritance for mested transactions. SOM Concurrency implements the OMG
Concurrency Service and also-supports an interface to the object to allow explicit locking and
unlocking for applications where lock contention is a bottleneck. Unlocking early (before the end
of the transaction) is probably the most important of these optimizations.
5.5 . Naming [_ | . |

The OMG Object Name Service allows an object to be bound to a directory (a
NamingContext) with a human-friendly name. Because a directory is an object, it can be bound to
another directory, forming a directed graph much like'a Unix file system. A bound object can be
looked up using a path of names. A binding can also contain properties (in a PropertyStore object)

which can be used in a search predicate to find qu_a'iifying objects. An iterator can then be used to
further examine each object/properties in turn. Figure 7 illustrates an example.

5.6 Factories _ o _ N
A special case of this Naming Service directory is a FactoryFindér. A class description can
be bound 10 one of these directories along with properties describing the class, including its
functional features, the class library, its cost, its instruction set type (e.g., Intel, PowerPC, etc.),
etc. A user can search for a Factory (basically a class object) using a predicate on the properties
and/or its name. The predicate can:include three types of information::
. The functional requirements of the class. Domain-specific property naming
conventions facilitatc writing these predicates.
‘‘‘‘‘ . Location requirements (e.g., local AS or a particular server).
« Which of the Objeet Services are desired to be added to the factory if not in the
original class (sce section 5).

A chosen Factory is then dynamically created in the specified machine/AS, and one or more
instances objects can then be created. Figure § illustrates an example class ina FactoryFinder
NamingContext. o o ' .

IBM Austin : - 90f13 George Copeland

48
System Services For SOM Objects HPTS95 T A39s

Figﬁre 7: Name Service eiamp}e

a NamingContext

(| hcats. d(.)gs.
Lassie .%Pluto)
RN

7 |
| last_vacination: 9/22/93”
R hcence# ”TX88309”

“a PropertyStore

Figure 8: FactoryFinder : NamingContext Example

a FactoryFinder

name: ”eartthake2 1”
function: ’ speaker drlver
low_cps: 50

high cps: 15000

library: ”/usr/bm/myspeaker
‘machine_type: "intel486”

“a PropertyStore

5.7 Other Services

Other OMG Object, Semces mclude

. The Security Service provides user authentication and access control at object-
method granularity.

IBM Austin 10 of 13 George Copeland

System Services For SOM Objects HPTS95 4/3/95

6

The Event Service provides asynchronous operations.
The Relationship Service provides named links between 0bJ€Ct§ and- a traversal
mechanism for the resulting graphs. - '

" The Property Servrce prov1des a way to assomate descnptwe information about an

object.
The Query Service prov1des a search mechamsm for quahfymg ob_]ects in a

collection or directory. -

Automatic Insertion of Object Services

We expect for the class provider to write their code without any concern for normal system-
like services (e.g., persistence, concurrency, recoverability, security, distribution, etc.). When the
customer wants an instance of a class, she specifies what combination of services are desired. We

create another binary class from the original that adds in these services.
This is done using the following two SOM run-time mechanisms:

»

As an example, say the user desires a concurrent, persistent and recoverable version of class
A whose data is stored in a database that is also used by procedural applications or other objects.

Subclassing: A new class is created by mixing in the ongmal class and a special
class that provides the additional finction:

BeforeAfter metaclass: This inserts a mecthod before and ‘a method after the
methods of the original class. The ordering of multiple BeforeAfter methods can
be controlled. [see Forman, Danforth and Madduti, “Composition of Before/A fter
Metaclasses in SOM, OOPSL.A94]

To each of A’s original methods, we need to add a Before method that does the following:

“Lock the object on behalf of the current transaction.
‘Registered the object with the transaction manager for the cutrent transaction (this

requests transaction manager to send a preprepare notification to the object prior to
the commit phase).

On the first method during a transaction, the objects state is-out of date, so it must
restore the object’s state from the' datastore (this also allows the datastore to get
data locks on behalf of the same transaction and register with the transaction
manager via its support of the XA mterface)

We also need to add the following methods:

-

If information is available that indicates whether the method is":'read~bn'ly, the above Before.

preprepare: Store the object’s pers1stent state to 1ts datastore (this also allows the
datastore to upgrade locks).

commit and abort: Mark the object’s state as out of date, so it w:ll be restored again
at the beginning of the next transaction.

methods can be optimized accordingly, .

There arc scveral advantages of this automatic “just-in-time”. insertion of objcct services

over handcrafting:

There is much less work to do Handmaftmg these services into objects takes a
great deal of work. : :
Source code is not required.

| IBM Austin -

11of13 George Copeland

49

50
System Services For SOM Objects HPTS95 S . R - 4/3/95

¢ The user’s class diagram and library do not increase in complexity and size. With
handcrafting, all of the possible combinations of these services could lead to an
enormous explosion in the number of classes. Every new service could cause it to
double (i.e., x 2"s where s is the number of services options). .
The desired combination of object services are specified as part of the search predicate to a
FactoryFinder. If the original class does not already provide some of these object services,
automatic insertion is used to provide them.

7 Datastore independence _

SOM Persistence, in conjunction with SOM Transactions, provide datastore independence.
This allows the location of an object’s persistent data to be transparent to the object’s binary class
and its clients. L e : .
Our goals are _ : R . _ _ _
. To provide full datastore independence across all datastores, including both single-
level-store (SLS where the object lives directly in a persistent memory, €.g., AS/
400, ODI’s ObjectStore) and TLS implementations (e.g., SQL database, IMS
database, VSAM file system, Posix file system). =~ .
. To have a simple programming model. . . :

A datastore that can only store data can only provide a TLS implementation (the object lives
in regular transient memory and its persistent data lives in a separate datastore). A datastore that
can store either data or objects can provide either a TLS or SLS implementation.

We found that we could -provide:a unified programming model for both TLS and SLS
implementations by using the more abstract SLS programming model. Fortunately, this also
achieves our second goal of simplicity. The programming model for datastore independence is the
following: : _ y

. At object creation, specify whatever is needed for persistence via the PID. For

example, for a Posix file system (a TLS implementation), the PID might say

datastore_type = "PosixFS” :
path = “/wmickey/pets/pluto” s
For AS/400’s SLS implementation, the PID might say
datastore_type = "AS/400_SLS_Native”
package = mickey_pets heap =

Either the PID or the persistent object’s reference 1s typically input to the

application. B

. After object creation, use o

- The Transaction Service interface to begin, end and abort transactions. This
provides all synchronization, including between the object’s state and the
datastore (for TLS) and between the datastore’s cache and disk.

- The CORBA interface to manage references. This includes
object_to_string to get a stringified reference (the object id) from a live
reference, string_to_object to get a live reference from a stringified
reference, and release to deallocate all resources for a reference, etc.

- The object’s normal operations. This includes the object’s functional
operations as well as the destroy operation which deallocates all resources
for the object.

IBM Austin 120f 13 George Copeland

System Services For SOM Objects HPTS95 4/3/95

. The PO interface store and restore should be used only for import/export kinds of
operations (e.g., initializing an object just after creation or making a backup of an
object).

Support for this programming model can be automatically inserted into a class in the manner
described in Section 6. At object creation time, if persistence is desired, then a PID is also
provided. .

If the PID indicates a TLS implementation, the factory does the following:

1) Create a new class from the original class that adds in the mechanisms required to

make it persistent and recoverable. This includes the following:

- Before methods to register with the SOM transaction manager (which
includes a request for the transaction manager to send preprepare
notification to the object), and a restoring the object’s state from the
datastore (which allows the datastore to get data locks).

- Additional methods on the object to implement the preprepare operation
(which stores the object’s state to the datastore).

2) Create an instance of the new class in regular volatile memory.

3) The PIDis assigned to the object.

If the PID indicates a SLS implementation, the factory does the following:
1) .Ask the original class how large it is.

2) Allocate memory for the new instance in the indicated SLS heap.

3) Create an instance of the class in the provided memory.

Some have argued that an OODB should always be used for persistent objects. In some

cases, this is the best approach. However, in many cases, this is not desirable:

. Often the data is already stored in a datastore and moving it is not possible,
because it would be expensive or traumatic, or there are procedural applications
that are still using the data.

. Even for new data, often the performance characteristics of an OODR do not fit the
application workload. For example, SQL systems typically run OLTP applications
with several times the throughput of OODBs. OO applications need the same
freedom to choose among these alternatives as procedural applications.

. Often the security or integrity characteristics of an QODB are not adequate for the
application. Again, OO applications need the same freedom to choose among these
alternatives as procedural applications.

. Often only a small per cent of the object’s state need be persistent (the rest is
derived and cached). Only this part of the state is included in streams using SOM
Externalization and Persistence, whereas most OODBs store all of an object’s
state.

We view the SOM environment as an OODB that is much more open than typical OODBs. It
allows data to be stored in any datastore, any transaction manager to be used, objects to reference
or be referenced by objects in other CORBA-complient ORBs, remotely referenced objects to be
handled via caching or message forwarding, support transient and persistent objects, etc. Much of
the SOM environment can be specialized by customers for many different purposes.

IBM Austin 13 of 13 George Copeland

31

52

Notes on Th1rd Generation Database Access

“Wayne Duquaine
Grandview DB/DC Systems
10777 Cherry Ridge Road
Sebastopol, CA 95472 707-829-9633

Independent Consultant -Client/Server Interoperabﬂ:ty
HPTS 1995

 Abstract: This paper discusses the recent changes occurring in the heterogeneous client/server database :nreroperabzluy

environment. In particular, it describes the growing movement away Jrom propriétary protocols toward standardized DBMS
interoperability protocols, and away from 3GL embedded SOL and native client APIs toward 4GL objected-oriented tools. It
is based on “lessons learned” over the last 7 years in the client/server arena.

1. Introduction

The database industry is in the midst of a set of very sweeping changes in terms of storing and accessing “mission-critical”
data. Gone are the days of centralized (mainframe-based) data servers storing all of the mission-critical data. Instead, a
plethora of database servers running on mainframes, Unix, and PCs, all containing some form of mission-critical data, is
becoming the norm. Increasingly, these data servers are being used in client/server plug-and-play environments, accessed via
GUI front-ends. This set of developments is forcing a fundamental re-thinking of how applications are built, and how
networks of heterogeneous DBMS servers (and supporting transacuon managers) interoperate.

This paper explores the major areas where these changes are taking place, and makes several prOJecuons based on historical
trends, as 10 where the changes are likely to lead. This paper takes the “politically incorrect” view that the current proprietary
Database Gateway “middleware” and associated protocols, which are the primary means of heterogeneous database access
today, will ultimately go away, and be replaced by standardized protocols, which will almost certainly be IBM’s DRDA
(Distributed Relational Database Architecture). It further takes the view that DRDA has a better “fit” with the new crop of
fourth generation (4GL) object-oriented client GUI tools, than the emsung propnetary protocols.

1.1, Heterogeneous DBMS Access Evolut:on

Historically, access to heterogeneous DBMS servers has gone through the followmg stages

« First Generation (1982-1988) - Prim'axily slow DSS-oriented systems, that were completely closed. These required
special code on the mainframe, and typicatly did not work with the standard (DB2) database tools. These products used
proprietary protocols and proprietary gateways 1o communicate with the mainframe.

« 'Second Generation (1989- -1995) - OLTP oriented systems featuring fast response times and Open APIs, allowing
‘customers to write specnahzed code to access relational or non-relational databases. The APIs were vendor proprietary,
and required special code on the mainframé. They used proprietary protocols and proprietary gateways. Different
vendor’s gateways could not cross-communicate to other vendor’s gateways. Client/server compuiing is heavily
embraced by all the “early adopters”.

* Emerging Third Generation (1995-...) - OLTP oriented systems featuring fast response times and Open APIs. Industry
standard APIs (such as X/Open SAG CLI or Microsoft ODBC) become the primary customer programmable interface,
and (de facto) industry standard protocols that allow plug-and-play between different vendors clients and servers begin
to emerge: Client/server computing becomes mainstream, and the “late majorlty” beg:n building and deploying
client/server based systems.

Notes on DBMS Access 1

53

1.2. Critical Infrastructure Pieces for Mission-Critical Client/Server

Client/server is now becoming mainstream, but it still has a significant number of rough spots that are in the process of being
worked out. For client/server to succeed in displacing the currently ubiguitous 3270/VT-100 dumb-terminal/smart-host
production application paradigm, the following key pieces need to coalesce:)

. A common, set of interoperability standards needs to emerge, which will allow plug and play between different vendor’s
clients and servers. Currently, each vendor has proprietary interoperability protocols. This requires gateways (and in
some cases, two tiers of gateways) to allow cross vendor DBMS access. What is needed is some form of industry
“Esperanto” that will allow plug-and-play access between different vendors databases, runmng on different platforms
and in different departments of a corporation.

* The above Esperanto must allow fairly “tight™ mtegraﬁon with the back-end DBMSes, in order to ensure OLTP e
performance when processing “mission-critical” data. It must also provide robust 2PC support, when multiple DBMS
servers are involved in a transaction. '

« Good integration with the new 4GL GUI object oriented client access tools is required, since virtually all new client
development will be done using 4GL tools.

* Logical high-speed bi-directional “pipes” between mainframes and LAN-based servers or departmental servers is
needed, that will enable the mainframes to retrieve and update summary or detail data on those lower-tier servers.

¢ Mature Workstation Operatmg Systems that are capabIe of supportmg departmemal “rmssnon-cntxcal” data on LAN-

2. Building the Esperanto - DRDA
The reality is that the existing “de jure” standards for DBMS mteroperabxhty; RDA and OS] have failed. RDA has never
seriously taken off, and has no significant markelshare anywhere. OSI is, was, and continues to be a niche product, that is

increasingly being clobbered by TCP/IP, At this point, lookmg for the sanclaoned dej jure standards to solve the
interoperability problem is like waiting for Godot.

One of the key weaknesses that sunk the de jure standards was their emphasis on a “least common denominator” (LCD)

approach. An LCD approach effectively cripples customers from using their 4GL front-ends to tap into all the various

features that each of the different DBMS servers offer, and in many cases can severely reduce performance on the back-ends

as well. LCD approaches fail, because customers want to be able to use the vendor specific features of a back-end.! They buy

MVS DB2 because they want high-end robustness with thousands of users and terabytes of data, they buy Oracle because they

like its rich functionality, they buy Microsoft SQL Server because it is cheap and they like Stored Procedures, they buy

Informix because they like its parallel scalability, and so on. Nobody buys a database because they are in love with how well it
conforms to the 1992 SQL standards. Customers /ike standards, but they buy product differentiation.

To avoid the least common denominator trap; DRDA allows server-dependent SQL enhancements to be utilized by the client

on the target DBMS. DRDA “passes through” such requests, and lets the back-end either accept or reject the request. On

occasion, this has caused much angst and wringing of hands among SQL purists about the lack of 100% SQL transparency in

a DRDA environment. But different market niches dictate different requirements and feature sets, and users do want to take
advantage of those features. Were that not true, everyone would buy the same database from desktop to mainframe.

! On a pragmatic note, the majority of the vendor differences manifest themselves in the' DDL area (e.g the ability to tune the underlying
databases by playing games with STOGROUPs, SEGMENTS, index clustering, etc). Most of this work is done by DBAs; not end-users
or application programmers. SELECTs tend to be the other major area of weirdness: Most real world apps (probably 80%) tend to be
fairly simple, standard SELECT/UPDATE/DELETE type operations. The areas where vendors’ featuretttes are heavily used tends to be
in a small number of very critical transactions, where the customer wants o use the vendor extensions to super-tune the application.
LCD approaches get in the way of allowing these kinds of workload optimizations,

Notes on DBMS Access 2

In reality, a fully transparent heterogeneous SQL dialect probably won’t happen within our lifetimes. Hence, DRDA’s “let
the target process it” escape mechanisim, is the most réasonable pragmatic solution. DRDA will win in the “real world”
because it effectively bridges the above mennoned custorner dtchommy :

One of the underlymg forces that are driving the need for some form of Esperanto is the fact that vmually all: F1000
corporations have at least 3 different vendor’s databases deployed throughout their enterprise, and in many cases have five
six or more. Studies by DBMS market research ﬁrms show the followmg “avera ge” FlOOO proﬁ]e in terms of deployed
DBMSes: ' :

1. Nearly every FIOOO has IBM’s MVS DB2 database deployed at the corporate leveI

>

2. Nearly every F1000 has Oracle tnstalled at the departmental or regtonal !evel

3. Nearly every F1000 has a third vendor’s DBMS installed - a’ two-way tie bet“ een Inforzmx Turbo or Sybase s SQL
Server DBMS.

In addition to the above, follow-up research by Forrester indicates that Mterosoﬂ’s SQL Server has “slipped in the back door”
-at the majority of F1000 corporations (typically in a workgroup or departmental seétting). As corporations continue to “down-

size™ and push decision making and P&L responsibility into lower levels of the corporauon, the need to interconnect the
various mainframe, Umx, and PC based DBMS servers will increase:

Current market pro;ect.lons mdtcate that a veriiable “explosmn will occur over the ne\'t 5 years in workgroup and
departmental based LAN servers. This will further exacerbate the need for plug and play interoperability, not only between
departments and mainframes, but between and across departments as well. While Microsoft’s ODBC offers a potential help, it

- can‘also degenerate into a gazillion different protocol stacks runring off to different vendor’s servers, with the inevitable

excessive storage, bugs, maintenance currency issues, etc. The logistics for a F1000 ofganization with hundreds of LAN-
based servers and thousands of desktops, with each desktop having 10 support multiple different protocols stacks (Oracle,
Sybase, Informix, Gupta, DB2, IBI, ...) to communicate with different departmental servers is staggering. The maintenance
headaches and costs of keeping such an environment operating reliably would be a huge expense. To cure this maintenance
nightmare, corporations will ultimately start winnowing down the number of dlsparate DBMS cllent/server protocols. Just as
the number of proprietary communications protocols have significantly dropped over the last few years?, ultimately, the
number of proprictary DBMS protocol stacks will be reduced as well, with one or tivo protocols u]tnmately dominating as de
facto standards.

2.1. So whatis DRDA

In a nutshell, DRDA is a fully self-describing datastream, designed on an object oriented architecture. It features a layered
architecture, where the database requests and replies are cleanly separated from the data contents®. Overall, the wire flows
closely match an embedded SQL API (e.g. an EXEC SQL OPEN Cursor causes an DRDA Open Query request to flow, a
Dynamic EXEC SQL PREPARE causes a DRDA Prepare Statement request to flow, status replies are sent back as wire-ized
versions of SQLCAs and SQLDAs, and so forth). DRDA utilizes an efficient length-type-value (LTV) encoding scheme,
where every command request, parameter, data object, and reply is encoded in a self-describing LTV format. Result sets are
efficiently encoded such that column descriptor information is sent back only once, at the very front of the result set. A wide
range of data types (integer, float, char, varchar, decimal, long varchar, binary, blobs, etc) can be sent as input parameters,
output parameters, or row results. Recent enhancements have included support for distributed two-phase commit, invocation
of stored procedures, and support for multiple result sets.

? In the Unix and mainframe markets, TCP/IP and SNA dominate, owning 90% market-share between the two of them. In the still young
PC market, IPX/SPX and NetBIOS/NetBEUI currently dominate, but TCP/IP is making extremely rapid inroads. With Microsoft’s latest
bundlmg of TCP/IP into NT and Win93, NetBIOS is effectively dead, and IPX/SPX will probably be very seriously wounded. By 1996 it
is reasonable to expect that TCP/IP will be the protocol-of-choice for LAN-based servers.

- 3 For example, the DRDA database command requést is always sent first (such‘as a Execute Immediate tequest), then a specifically tagged

object containing the actual data or parameter contents (stich as SQL statémient text) is appended behind it. In the future, the tagged
object’s data contents could be a spoken voice comimand, rather than an SQL text statement; The DRDA command requests would be
unaffected by the change in data contents. In'OOB-ese, DRDA database requests and replies are polymorphic.

Notes on DBMS Access -3

54

35

DRDA utilizes a “receiver-makes-right” philosophy, such that clients send the commands and data in their native format (e.g.
Intel x86 little-endian ASCII), and the receiving server converts it 1o its internal format. Conversely, the server sends replies

and result data back in its native format (for example 370 bigendian EBCDIC), and the receiving client converts it to its

internal format. Part of the initialization handshake when a DRDA conversatlon between a chcm and server starts up
exchanges what type of receiver and sender each s:de is.. DRI : : :

In pracuce DRDA and 1ts receiver makes nght approach has proven to be quxte robust,,and transparent to applncatrons

utilizing its services. The author has built DRDA server sofiware that can transparently take mainframe SQL requests -~ =~
originating from SPUFI and COBOL applications, and have those requests access or update LAN-based Oracle and SQL
Server database servers’, From the SPUFI or COBOL applications’ standpoint, they cannot tell the difference as to whether
the data was obtained from the local DB2 database, or from a different vendor’s database operating as a remote DBMS server.
DRDA is real, it works very well, its fast, and it’s plug and play. The rival de jure standards have falled while many of the
existing proprietary solutions are slow, and cannot do muiti-vendor plug-and-play.

The cost to build a DRDA client and server implementation is approximately 40,000 executable lines of code. This is roughly
on par with the lines of code needed for Sybase’s TDS 5.0 proprictary protocol, probably slightly more than Oracle’s SQL-
Net, and noticeably less than the size of building a full RDA implementation. The biggest knock and stumbling block against
building a DRDA implementation is the documentation (in particular, the DDM documentation)’. It often requires a number
of line flow traces and laborious tests to completely get the implementation right: The other DRIDA knock is the lack of
“native” TCP/IP support (IBM currrently encapsulates SNA-based DRDA requests over TCP/IP). This is a political issue, not
a technical issue. In spxte of those 1rr1tat10ns over 13 non-IBM vendors have burlt DRDA support (mostly chent—suic access
1o date). : : RIEIRIRE : _ _

Enhancements to the DRDA architecture are performe_d through;two avenues: an IBM intemal _architecture board that is used
by IBM products, and an external review board (the “DRDA ISV Council”), composed of all the non-IBM ISVs that have
implemented DRDA products and/or licensed DRDA technology. Licensing is non-dlscnrmnatory {e. g IBM has licensed
DRDA to competitors such as OracIe), at reasonable fees and conditions for all invelved. e .

As previously mentioned, DRDA i :s based upon an object-oncnted architecture; To date, DRDA is the only chentfserver
database protocol that has been designed from the ground up to be ob_]ect—onented All of the current proprietary chentjserver
protocols (Oracle SQL-Net, Sybase TDS, TBI FocNet, ..) are all based on older 3GL oriented technology. A diagram
depicting the major object classes in DRDA is shpwn below..

4DB2 3.1 communicating to AIX 3.2 and OS/2 2.1 based versions of Oracie and SQL Server. (An NT based version was also available but
not used during the testing).

5 It has been rumored that the DIDM documentation writers were ex-archeologists who worked on translating the Rosetta Stone’s
hieroglyphics into ancient greek. Given the si gmﬁcant amounts of barely decipherable ,,reek that exists in the DDM documentation, this
would appear to be an accurate rumor, . : e e

¢ Specifically, the mamframe-bascd DRDA products are reluciam to step up to native TCP/IP support due to a lack of resources. The s
mainframe world continues to be dominated by SNA, while the LAN world is. mcrcasmgly dominated by TCP/IP. Currently DRDA only
runs over SNA protocols. Using “AnyNet” technology, the SNA packets can be transported over TCP by encapsulation. But it still

. requires an SNA protocol stack on each client. The IBM SAA strategy was predicated on a similar “SNA on every desktop”, and it failed
miserably. The complexity of installing SNA on every desktop is not feasible in the bulk of most departments. While there has been
recent hand-waving by the mainframers that *“we’l} make SNA installation a no-brainer and invisisble to those users”, in 18 years of
working with SNA T have vet to see it happen. Apparently IBM has still not leamned from the SAA fiascos.

Notes on DBMS Access 4

Representatwe Class Hlerarchy for DRDA

Base Ob;ect
Scalars N _ o "C'oll'ectioné:._.
; Command . .
Sessions Requests Data Objects Reply Objects Packages
| [|
Command I I I i l]
Instance Vars| finputOulput | .. |Result Set Result Sel | |SQLCA SaLbA Eror saL
Parms | |Descriptors | -] s patg < |- = ~{Replies” | - |, Stmis

3. Moving 'TM..-fu‘n'ctfibna'lity"-o-uf-'td the LAN

~ Like it or not, missioncritical data now lwes out on the LAN. And as ume goes on even more mission<critical data is going

to live out on the LAN. The upshot of this, is that ultimately Transaction Managers (’I'Ms) will have'to live out on the LANs,
in order to ensure correct ACID support in a distributed client/server environment.

3.1. Down-sizing: Fo‘rward into the Past _ _

Looking from a historical perspective, it can be argued that the centralization of data into a single spot (e.g. 2 mainframe)’,
was somewhat of a historical aberration. Through-out the 1800s and the first half of this century, nearly all corporate
“mission-critical” data was local. Accounting, payroll, inventory, etc data was kept via manual systems at the local branch
office, local branch bank, or local warehouse. Summary data was then prepared daily, weekly, or monthly, and sent to the
“head office”, where it was manualiy entered 1nto the corporate books. .

With the widespread introduction of corporate computerization in the late 19505 and early I9605 the departmental and
branch office manual book-keeping systems became replaced by computerized book-keeping systems. Unfortunately, given
the technology at the time, it was too expensive to place computers in every branch or department. So inevitably, the users
had to reluctantly relinquish control of their “local” book-keeping data to a centralized computer complex. Centralizing
things in mainframes at the time was a necessary compromise, because today’s infrastructures (cheap micros, LANs, etc) did
not exist. Yet the movement of “local” data to a centralized spot was not without its pains and complaints. The irony is that
studies by both IBM and Xerox in the 1970s and again in the 1980s showed over and over again that over 80 % of the critical
data needed torun a busmess oha day-to-day busmess is 1deally located thhm 1200 feet of the department or people needing
the information.

The emergence of low-cost MIPs, robust PC and Unix based DBMS servers, eheap large (IGB+) disks, and fast LANs has
allowed data to be moved back out to the departments that use the data for day to day operations. Trends indicate that as
corporations “down-size” and “right-size”, more and more data will eventually go out on the LAN. The new client/server
technologies allow the locaI users to “get their data back”, and many of them are doing it wnh a vengeance. For example:

» Most Wall Slreet traders now use “real-time” posmon keepmg of their ponfohos with theu' current stock/bond posmons
being recorded and tracked on their local SUN (or AIX) workstation running a Sybase or Oracle DBMS server.
Summary information is periodically sent up 1o DB2 on MVS. From the “big bucks” trader’s position, their mission-
critical data lives on the LAN—based Oracle or SQL Server. MVS DB2 is nolhmg more 1han a back-end trade summary
engine.

7 The reality is, the data was never truly centralized into a mainframe eillier."fhe data wa‘s'pﬁt into a small number of regienal or local
mainframes, which were then lashed together, using either tape dumps or message switching between the systems to exchange data.

Notes on DBMS Access 5

56

57

« Several of the major brokerage houses are now starting to move their customer account data off the mainframe and back
into the local branch office servicing the account. The branch office and local broker now “own™ the customer data, and
it resides on a LAN-based DBMS (typically Oracle or Sybase). The mainframe information exchange with the branch
office is increasingly devoted to just summary information (roll-up and billing of daily trades, etc). —

+ Most independent insurance agents (who sell and service over half of the insurance policies in the U.S.) are now
deploying PC-based DBMS servers in their offices to track all of their customers and policies. From their perspective,
their “mission-critical” data is the data on the LAN. The 3270 hook-up to the insurance carriers is only used for initial
order entry and status checking.

As LAN and client/server DBMS management tools continue to improve, it is inevitable that even ‘more mission-critical data
will move out onto the LAN, to be updated and used directly by the departments that are usmg the information on a day-to-

day basis.

3.2. Server PCs: It’s Not Your Mother’s PC Anymore

PC based servers are encroaching on Unix’s and mainframe’s turf. Indeed, in some areas, the PCs are pulling ahead,

particularly vis-a-vis Unix. Compaq Proliant Servers provide “hot-pluggable” disks (something which not all Unix servers

can boast), duplex-ed controllers, multiple busses, “hot standby” processors, multi-bit error detection and correction for main-
memory, and sophisticated environmental monitoring. Advanced PC software operating systems are starting to incorporate .
sophisticated, MVS-like recovery schemes - for example Microsofi’s NT Advanced Served can successfully recover from most

swap device failures. (An area where most Unix boxes still crash and burn with the infamous “panic” message.) Hence, the

concept of putting mission critical data on LAN-based servers is no }onger a “high-risk” bet. The reliability of t.hose machines
exceeds the reliability of 308x class mainframes of a decade ago.”

It is not an exaggerauan 10 say that today’s 100 Mhz Pentium-based servers, with RAID “hot-pluggable” disks, large 32-256
MB memories®, and robust multi-tasking operating systems (NT Advanced Server and OS/2 SMP) are effectively 308x-class e
mainframes, yearning 10 break free of the PC stigma. .) '

Finally, the highest RDBMS gromh rates over the next 5)ears are pro_|ec1ed to be in PC-based servers 'I'he hottest RDEMS
market is for “Workgroup” and departmental PC-based servers, which is growing in excess of 70% per year (in contrast to
Unix-based servers which are growing at approximately 35%). With Oracle and Microsoft aggressively pursuing this market,
there will be an explosion in the number of PC-based RDBMS servers. In the F1000 world, this will entail a strong need to
mteroperate these new LAN-based servers mto the exisung mainframe and Unix based server networks.

3. 3 Mainframes: Accessmg LAN—based Servers

As data continues to move down, and new “nuss:on-cnucal” data is created on departmental and workgroup systems, the
need for existing corporate mainframe applications and tools to access that data on the LAN will be overwhelming, Thus, it
will increasingly become common for today’s mainframe-based applications to not only access, but also update data on
databases resadmg on LANs, outmde of the giass house

Over the next few years, we will begm to see an inversion of the tradmonal maslerlslave host/termmal hierarchy, into a peer-
to-peer client/server orientation.. The “central host” will gradually just become another server (albeit a very large one). But
corporate applications will still need access to the various data which has now been down-sized to (or new data created on)
the lower tier systems. Weekly, monthly, yearly summary reporting and collection of data will still be required at the
corporate level, and mainframes are still the most cost effective at coordinating and generating such information.” Rather than
the mainframe being the “big cuhuna” that all the lower tier systems slavishly request data from, it will instead see its role

% By way of contrast, the largest mainframe, circa 1984, was a “4-way” 3084 mainframe, with a maximum main memory size of 64 MB
with simple ECC and single-bit error correction. The one area the 3084 still has over Server PCs is that it had built-in “power
partitioning” (half the machine could be powered down and repaired while the other half kept running). In all other respects, the Server
PCs have higher reliability MTBF numbers (2,000 hours for 3084 versus 20,000 hours for Server PCs); larger main memories, and equal
ot better online DBMS throughput numbers over a 3084, o

Notes on DBMS Access _ 6

evolve into a top level coordinator and summarizer. The mainframe will have to gooutasa client and request data (or update
data) on the LAN-based servers.

With technologies such as DRDA, it is trivial to take existing mainframe-based relational applications, and re<route them to
request data off other DRDA servers (e.g. LAN-based servers). It just requires entering the name of the remote LAN-based
server into the SYSLOCATIONS table, and setting up the LAN server’s node name in the' SYSLUNAMES table. None of the
existing proprietary “middleware” solutions provide such an easy migration path.- - . -

3.4. “Big” CICS: a Great TM on the Wrong Side of the LAN

Most existing “first generation™ client/server systems today rely upon GUI front-ends on a desktop hooking into on the TM
being on the mainframe. As more and more mission-critical data moves down to LAN-based departmental or branch-office
servers, centralizing the TP monitor in the mainframe just plain won’t work. In the case of mainframe applications reaching
out 1o update data on LAN-based servers, the TM is on the wrong side of the wire ! The real-world rule of thumb is that you
want the TM near the database(s) that are being updated. -

While MVS CICS is an excellent TM for mainframe-based apps, it often doesn’t buy much value when mainframe
applications try to update data out on LAN-based servers. When using DB2 and DRDA in a distributed environment, CICS is
often not even involved as the TM. Batch or TSO DB2 apphcatlons and TSO SPUFL et al users do not even go through
CICS. Instead, DB2 and its DRDA DDF component act as the TM.® This means that to enforce ACID and 2PC semantics in a
host-to-LAN server environment, a TM function will need to reside on the LAN, and the host components will need to
interoperate with the TM on'the LAN'®, - :

® This is true régardless of whether the remote database is aniother DB2 system or a LAN-based DBMS system’ CICS is only involved as a
TM if an active CICS application is making client calls to a local DB2, or to a remote DBMS through the CICS-DB? interface.

'® For example, the new DB2/6000 Version 2 support requires either CIC8/6000 or Encina/6000 to be present on the system, in order to
allow two-phase commiit to be performed between a local DB2/6000 and other [DB2 ditabases.

Notes on DBMS Access 7

58

Mainframe as a Client - a TM must be out on the LAN

Operates with standard
DB2 tocls. No host changes
or special code required. _
Just bind to a different server

|| 1BM ClientTools: |

SPUFI,QMF

|Customer.

Client Apps

I — - TSO, Batch,

DRDA

Client Support 4

CICS, IMS

Workgroup System

Network

¥

DRDA Server Support NT

Microsoft TM
* |
Other Data
SQL Server Sources (OFS, ...)

4. APl Changes: 3GLs Replaced by Client GUI Objects

Branch Office System

DRDA Server Support Unix
IBM TM
| [
Other Data
DB2/6000 Sources (JFS, ...)

Communicating to Server DBMS Objects

The rules for writing client/server apps have significantly changed over the last six years. The first generation client/server
DBMS LAN-based apps almost always used the “native” programmable third generation language (3GL) based APIs for
communicating with the DBMS. Example of these include Oracle’s OCI, Sybase’s DB-Lib, or 3GL. embedded SQLpre-
compilers. Results from informal surveys in 1990, showed that approximately 90 % of the LAN-based apps were using 3GL
techniques, and only about 10 % were using any form of 4GL GUI tool. By mid-1994, this situation had almost completely
reversed - over 80 % of client development was being done using 4GL or related “visual” design tools, most typically
PowerBuilder, SQL Windows, and Visual Basic. Less than 20 % of client development was still being done with 3GL tools

(“native” AP] calls or embedded SQL). This was due to two major reasons:

(1) the 4GL tools were providing measurable 10-to-1 productivity improvements over 3GL methods, and

(2} the PC client hardware was moving off the old slow 286/386 based platforms, and onto 486-based platforms which could
adequately handle the overhead associated with the first generation 4GL tools.

With the emerging “second” generation 4GL GUI tools, such as Borland's Delphi, Oracle’s Power Objects and Oracle Objects
for OLE, Gupta’s SQL Windows 5.0, etc, the remaining performance gap between 3GL tools and 4GL tools will effectively
disappear, since most of these newer products can produce compiled code, rather than interpreted code. Ultimately this means
that the future of “native™ APIs such as QOCI and DB-Lib will eventually wither into a niche market, used only by 1SVs and
4GL tools vendors “under the covers”. Client GUI development will ultimately rest upon object-oriented GUI 4GL paradigms

and tools.

That’s the good news. The bad news is.that a lot of the “back-end” server DBMS stuff (particularly mainframe related) is
sti)l dominated by 3GL techniques (usually embedded SQL in COBOL programs}. As the 4GL tools add new functionality,

Notes on DBMS Access

39

— : 60

such as support for persistent SQL objects, this backlog could quickly be alleviated. DRDA allows “static” SQL tobe
compiled and stored on the host; without requiring any host COBOL programs to be written. In DRDA-ese, these are referred
to as packages. If 4GL tools could merge persistent SQL object support with DRDA’s package support for static SQL, the
need for hand-written COBOL programs on the mainframe for OLTP environments would be drastically reduced, if not

_ 4.1." Typical 4GL GUI Object-Oriented Class Hierarchy =
Most of the new 4GL tools utilize a fairly common sef of classes and hierarchies for database access. While the various -

- products differ in some of the details, the majority of them support a class hierarchy similar to what is shown below.

 Representative Class Hierarchy for 4GL Client DEMS Access
-(Borland Delphi, Oracle Objects, ...). e

Base Object

- Components

N Session Database DynaSet Field

|

Query Stored Table Data
Proe Types

Column
Description:

Row
Data

sal Input
Statements

It is instructive to compare this class hierarchy diagram for GUI taols, with the class hierarchy diagram for DRDA. While
some of the boxes have been moved around to different spots in the hierarchy, the basic objects (sessions, parms, SQL
statements, descriptors, fields/scalars) are consistent between the two models.

5. Summary

Nature (and customers) abhor a vacuum. Some form of standardized heterogeneous plug-and-play protocol is going to emerge
to unite the disparate mainframe, Unix, and PC worlds, “De jure” standards such as RDA have failed. The de facto DRDA
standard is the odds on favorite to win the interoperability wars, assuming IBM doesn’t do something stupid."!

3GL proprietary vendor DBMS APIs are entering a period of de-volution. 3GL object-oriented GUI and visual tools will rule
the market for end-users and most corporate developers. The new “second generation” of ODBC and X/Open CLI drivers
have dramatically improved in performance. Most drivers now have no more than a 5-10% performance difference between

" Such as severely restricting licensing or raising the cost of licensing DRDA, not publishing new architecture changes or enhancements on
a timely basis, or not aggressively pursuing “native” TCP/IP support for DRDA on the LAN,

Notes on DBMS Access 9

61

the ODBC driver and the DBMS vendor’s “native”™ API drivers.. This will cause ISVs and tools vendors to increasingly rely
upon industry standard APIs such as X/Open SAG CLI and ODBC to build their “low-level” client/server calls, rather than
upon the proprietary database vendor APIs.. - . . . oo oo I TR RRCIE

Over the next few years, the traditional departmental desktop-to-host data access model will become inverted. Mainframes
will need to reach down to departmental/LLAN-based DBMS systems to access and update mission-critical data on those
systems. The mainframe will begin to take on the role of a client. The major challenges to be solved as more mission critical
data resides on the LAN-based servers, is how to coordinate and interoperate the mainframe applications and TM support
with the TM support that resides on the LAN-based systems. o '

More effort is needed to better understand how to map.cbject-oriented client facilities onto some of the newer DBMS server
features, to yield better integration and productivity. In particular, mapping “stored procedure” concepts into object-oriented
front-ends today is still klutzy. The lack of support for “persistent” pre-compiled SQL objects (e.g. DRDA static “packages”,

or SQL 3 “modules”) is another area of weakness. Finally, most of the current GUI tools are ofien restricted to only one
database at a time, and only a few tables at a time. Some form of multi~database oriented browsers that would allow

simultaneous browsing of different databases on different servers would be highly desirable for both DS3 and Systems

Management support.

Notes on DBMS Access 10

Queuing Systems: a Floor Wax and a Dessert Topping?

Jeffrey L. Eppinger
~ Director of Product Management
_ Transarc Corporation ~
- Gulf Tower
Pittsburgh, PA 15219

o | September1995
_ ©1'9'95 Tra.nsarc CbrpOrétiqn - All Ifighst reserved.

Listening 1o the debate about the purpose of queuing systems in transaction processing reminds
me of the Saturday Night Live commercial about the fictitious product called Shimmer. In the
commercial a young married couple is sqiiabbling. The wife demonstrates that Shimmer is a great
floor wax, while the husband shows that Shimmier is a delicious dessert topping. The announcer
proclaims that they are both right: Shimmer is a floor wax and a dessert topping!

How analogous is the debate about quél:lin'g' systems? Some claim that queuing systems are
databases while others claim that queuing systems a.ré messaging systems. The problem with
Shimmer is that T don’t think I would like to use it on my floors and I know I don’t want to eat

it. The issue for queuing systems: . _

1. Would you use a queuing system in j)lace of a relational database?

2. Would you use a queuing system in place of a request-response comrmunications system?

I argue that (1) queues make a fine databases for certain applications, such as workflow, but not
(2). Queues should not be used in places -of request-response communication systems, such as
remote procedure calls.

Queues as Databases

For workflow applications, such as customer service requests, printing packing lists, and funds
transfers, a queuing system is a great paradigm. Data can be stored in queues for later, asyn-
chronous processing. Two-phase commit and the ACID properties guarantee that queued data
will not be lost due to system failure. Data can be dequeued with transactional integrity so that
if the subsequent processing fails, the transaction aborts and the data remains in the queue,

62

Queuing Systems: a Floor Wax and a Dessert Topping?

Queues have several advantages over a relational database:

1.

Queues provide a structurmg mechamsm for workflow apphcatlons. In arelational
database, queues could be implemented using stored procedures, but most customers would
rather purchase a queuing system. Most ISVs find it simpler to either build their own
queuing system from scratch so that they are not tied to any particular database or to
bundle their queuing system with a comprehenswe turn-key application running on the
database. So, there is a market for tum key queuning systems not built on a relational
database.

. Queues provide an enhanced security model. The implementation of the queuing

system guarantees the integrity of the queue data structures plus provides access control on
which users can access which queunes. This is not easy to do with stored procedures, today.
In the future, stronger security models may become easier to implement in a relational
database as stored procedures incorporate object models that will allow the instantiation
of queue objects, u:nplemented with common code, but with different access control lists.

W m e mh e ammm e

Queumg systems prov1de better performance. With custom data structures and

no overhead for using SQL or stored procedu.res queuing systems can out performance

relational databases. Although there may be additional cost for two- phase commit if the
work were otherwise to be done completely local to the relational database.

. Queumg systems provide simplier administration. Administration commands in

queuing systems permit the adm1mstrator to inspect and manipulate queue objects. Such
operations may make much more sense to the administrator than manipulating relational
database tables that use many parts to represent the gueues. (Of course, one must keep in
mind that the customer must have a significant application because one does not want to
take on the administration of an additional type of system lightly.)

Queuing Systems as Messaging Systems

Queuing systems are very good for asynchronous transmission of data, however queues are not
so good as a basic communications paradigm for synchronous commumcatxons in transaction
processing systems. Queues are either volatile or recoverable: :

1.

Volatile queues are not a good paradigm for synchronous communication. The
application must write additional code: code to send the request, code to receive the reply,
and code to cope with all of the errors. Compare this with a remote procedure call. With
an RPC, the application only makes a call to send and receive the reply and must cope
with fewer errors. In case of system failure, there is little difference in the outcome of the
communication: you get no response indicating whether the request executed before the
failure. After restart, the request will not execute (if it hadn’t already executed before the
failure).

63

Queuing Systems: a Floor Wax and a Dessert Topping?

2. Recoverable queues provide an additional point of comparison. Recoverable queues still
have the same additional code requirements, but in the case of system failure the request
will execute and the response will be provided after restart. There are two additional
concerns about recoverable queues as a communications paradigm:

(a) Performance concerns. The recovery guarantee is given at the expense having to
store the requests and the responses on disk. This can be very expensive, although
through the use of batching, many requests and/or responses can be written to disk
at one time.

(b) Requester looses interest. What is the benefit of recovery guarantee? The vast,
vast majority of the requests execute correctly. In cases of failure, the likelihood of the
requesting application still being available is small. The PC will have been rebooted,
or the customer will have hung up the phone.

Conclusions: a Floor Wax, but Not a Dessert Topping

In conclusion, queuing systems make a fine database. The structuring queues provide is essential
for many types of applications and can provide enhanced security, performance, and simplier

adminjstration.

Queuing systems do not make a good messaging system. Remote procedure calls allow sim-
plier coding and better performance. Some applications do use queuing systems as a messaging
paradigm for interoperability across heterogeneous systems. However, if a common remote pro-
cedure call mechanism were provided everywhere, we would be a better off.

64

“Shared Air” - Exploiting Broadcast in Large-Scale Information Systems*
(Position Statement for HPTS ’95)

Michael J. Franklin

Depén'tment of Computer Science
©A.V. Williams Building
'_ University of Maryland
~ College Park, MD 20742
N ff"anklin_.@cs.umd...e.dﬁ

Introduction

The perennial HPTS debate _émong advocates of the Shared Di.sk,. Shared .Memory, and Shared
Nothing architectures, while still ﬁnresolved, has grown somewhat stale. More iniportantly, many
emerging Information Systems application domains present new constraints t_hai are not addressed
by these traditional architectures. One such constraint is that of Communicatfons Asymmetry —
the communications bandwidth available for transmitting information can differ widely between
the nodes of a distributed system. A common form of asymmetry occurs when the downstream
communication bandwidth available from servers to clients greatly exceeds the upstream band-
width available from clients back to servers. This type of asymmetry arises in a wide range of

environments, including: .
¢ Wireless networks with mobile clients.
e Cable and direct Sroadca.st satellite .TV s.ystems.:
s Advanced traffic information systems.
¢ Information -diépersal applications. . .
e Information retrieval systems.

In such asymmetric environments, the ‘advantage ‘in .bandwidth from servers to clients can be
exploited by broadcasting data to the clients rather than (or in addition to) serving data to clients
in response to specific requests. In systems that exploit server-to-client broadcast, the broadcast

medium is a key shared resource. Therefore, we refer to broadcast-based systems as ”Shared Air”

*Partially supported by NSF grant IR1-9501353 and a research grant from Intel Corporation.

65

architectures. It is important to note, however, that while data broadcast over airwaves is likely in

many scenarios, broadcast will also be used over more conventional, wired media.

Communications Asymmetry

Communications asymmetry can arise in two ways: The first is from the bandwidth limitations of
the physical cornmunications medium. An example of physical asymmetry is a wireless environment
in which stationary servers utilize é_ high _bﬁhdividth satellite broadcast while (possibly mobile)
clients cannot transmit at all, or can d6 56 only ovéf 2 lower bandwidth (e.g., cellular) link. Perhaps
less cbviously, communications asymmetry can also arise from the patterns of information flow in
the application. For example, an information retrieval system in which the number of clients is
far greater than the number of servers can be asymmetric if there is insufficient capacity (either
in the network or at the servers) to handle the simultaneous requests generated by the multiple
clients. Also, it is important to note that asymmétry can arise either statically, through invariant
properties of the physical devices and/or workload, or dynamically. Dynamic asymmetry can arise,
for example, in wireless network if mobile clients become temporarily ihcapabie of transmitting due
to environmental considerations (e.g. anterference) or are temporanly prohlblted from transmitting

(e.g., on a commercial airplane ﬂ;ght)

Broadcast Disks

In an asymmetric communication environment, data broadcast can be used to exploit the servers’
advantage in transmission bandwidth in order to provide responsive data access to clients. Data
broadcast has been explored previously, in the Boston Community Information System of Gifford
[Giff90], in which news and other items were broadcast over FM to PC’s around the Boston area,
and in the Datacycle project at Bellcore [Herm87], which continually broadcast data over an optical
ring and used special filtering hardware to extract required data from the broadcast. In recent work
with Stan Zdonik, Swarup Acharya, and Rafael Alonso, I have been investigating a technique called
"Broadcast Disks” [Zdon94] that goes beyond this earlier work. As in Datacycle, Broadcast Disks

uses a broadcast stream consisting of data that are repeatedly and cyclicly transmitted as a type of

storage device. The essence of the Broadcast Disks technique is to superimpose multiple broadcast

programs (or ”disks”) spinning at different speeds on 2 single broadcast channel. This in effect
creates an arbitrarily fine-grained memory hierarchy. The advantages of this approach are twofold.
First, it provides improved performance for non-uniformly accessed data by allowing the broadcast
program to be tailored in a way that reduces the delay for “important” data (at the expense of
less important data). Secondly, the availability of critical data can be improved by placing that

data on the faster (and thus, more frequently repeated) disks. In addition, any number of clients

66

can listen to the broadcast without impacting performance, and thus, broadcasting can have great
scalability advantages for applications in which clients primarily read (rather than update) shared
data. o

The Broadcast Disk approach also encompasses the use of client storage resources for caching
and prefetching data that is delivered over the broadcast. Caching improves performance for fre-
quently accessed data and allows clients to continue to access such data even if network connectivity
is reduced or lost. Prefetching is a more aggressive use of local resources that opportunistically
absorbs important data from the broadcast in order to anticipate future data requests and protect

against future connectivity lapses.

Architectural Issues and Design Challenges

The central problems that arise in the development of the Broadcast Disk paradigm can be divided
into server-side and client-side issues. On the server side, the issues involve: determining a good
broadcast program for a given client population, coping with changes in the priority of data items
and the needs of mobile clients, and providing timely dissemination of modified and new data items.
The client-side issues involve: devising cache management policies that improve responsiveness for
a given broadcast program, developing simple and effective prefetching strategies, and determining
the best use of an upstream channel, if and when one is available. Furthermore, although it is
conceivable that many systems will use data broadcast as the primary method of data delivery
to clients, it is also interesting to look at hybrid architectures in which data broadcast is used
in conjunction with request-based data access. In this manner, the Shared Air approach can be
integrated with the more traditional systems architectures.

Our initial work on broadcast disks has focused on a restricted environment in which data is
accessed in a reaﬂ';ﬁhly fashion by a static client population that has does not use dn'ﬁpstream
communications capability. Even in this highly restricted setting, we have found that the inversion
of the traditional relationship between clients and servers that arises in the broadcast environment
has significant implica,tioné for the mahagement of client stordge resources.

In [Acha952] we show that traditional LRU-based cache replacement policies do not work well

in a broadcast disk environment. The problem is that because the broadcast program is a shared

resource, it must be designed taking into account the needs of the entire c':lient‘ population. Such

a broadcast is unlikely to be ideal for any individual client ~— a client may find that some im-
portant (to it) data items are being broadcast infrequently (i.e., on a slow disk), while relatively
unimportant data items are broadcast on faster disks. To address this mis’matéh‘, the client cache
replacement policy must be cost-based. That is, the cost of re-accessing an item must be factored
into replacement decisions. We have developed a policy called £ZX that addresses this need and

have shown that it approaches the performance of an idealized cost-based policy.

67

In [Acha95b] we examine the unique opportunity for prefetching that exists when using data
broadcast. The dissemination-based nature of the broadcast environment makes it particularly
conducive to prefetching. In traditional disk-based environments, prefetching is a risky business
because it places additional load on shared resources (i.e., the disks)_--in anticipation of possible
future requests. Performance for all users can suffer if this gamble does not pay off. In contrast,ina
broadcast environment data pages continually flow past the clients, so prefetching can occur without
placing additional load on shared resources. Only a client’s local cache is affected. We describe a
simple heuristic for prefetching and examine implementable approximations to it. We show that
in contrast to traditional systems, prefetching from a Broadcast Disk improves performance not by

increasing the cache hit rate, but rather by reducing the penalty that is paid on a cache miss.

Conclusions

The development of systems architectures that can meet the requirements of emerging application
domains and environmental considerations is crucial if HPTS systems are to remain a relevant
technology. The Shared Air approach has the potential to provide performance, availability, and
scalability improvements for a large class of new applications — in particular, those that exhibit
communications asymmetry. The inversion of the traditional client-server relationship that results
from broadcast-based information delivery changes many of the fundamental tradeoffs for client
resource management. As an additional benefit, the discussion of such architectures can add some

spark to the inevitable debate on Shared "X".

References

[Acha95a) S. Acharya, R. Albnso, M. Franklin, S. Zdoﬁik, “Broadcast Disks: Data Management
for Asymmetric Communications Environments”, Proc. ACM SIGMOD Conference, San
Jose, CA, May, 1995.

[Acha95b] S. Acharya, M. Franklin, S. Zdonik, “Prefetching From a Broadcast Disk”, Technical
Report CS-TR-3511, University of Maryland, College Park, August, 1995.

[Giffe0] D. Gifford, “Polychannel Systén__is for Mass Digital Communication”, Communications
of the ACM, 33,(2), February, 1990. pass EERAR

[Herm87] G. Hermaﬁ, G. Gopal, K. Lee, A. Weinrib, “The Datacycle Architecture for Very High

Throughput Database Systems”, Proc. ACM SIGMOD Conference, San Francisco, CA, May,

1987. '

[Zdon94] S. Zdonik, M. Franklin, R. Alonso, S. Acharya, “Are 'Disks in the Air’ Just Pie in the

Sky?”, IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA,
December, 1994. : T

68

Position Paper For HPTS95
Jim Gray . '
Computer Science, UC Berkeley
310 Filbert St., S.F., CA. 94133
~ Gray@crl.com ' -

THESIS: Queues are Databases.

Abstract: Message-Oriented-Middleware has become a popular buzzword. It represents an industry that
offers queued transaction processing as an advance over pure client-server transaction processing. This brief
note makes three points: . N T E _ » :
1. Queued transaction processing is 1ess general than-direct.- Onié can build a gueued system on top of a
- direct system. One cannot build a direct system atop a queued system. Conversational and distributed
transactions are very difficult in a queved system. . . : L
2. Queues are “interesting” databases with interesting concurrency control. It is best to put these
mechanisms into a standard database so other applications can use these interesting features.
3. Queue managers are simple TP-monitors managing server pools driven by queues.

Acknowledgments: These ideas derive from discussions with Andrea Bor, Richard Carr, Dieter
Gawlick, Franco Puizolu, and Andreas Reuter.

1.. Queues Are Bést.Bﬁilt-Atop Direct TP Systems.

Traditionally TP systems offer both queued and direct transaction processing. They offer both client-server
and peer-to peer direct processing. Gray & Reuter [pp. 246] offer the following cornmon taxonomy:
Process-to Process : :
Direct
Peer-To-Peer
Client-Server
Queued

In queued processing, requester processes place request messages in aquens. ‘A pool of server processes,
rnanaged by a TP-mnonitor, service these request queues, perhaps placing results in other queues. Reguestors
can poll these output queues to see the status or outcome of their transaction requests.

Queued processing is the basic mechanism of IMS, so we have 30 years experience with its'pros and cons.
Advocates of queued processing point out that, at saturation, a direct system is, really a queued system:
servers are dispatched via a queuing mechanism. When' clients saturate a server pool, the queues become
visible. Indeed, it is optimal to schedule new requests to'a server pool via asingle global queue,

The difficulty is that queued transaction processing of a request-response is three ACID units:

1. Requester places request in queue.

2. Server dequeues request, performs task, engueues response.

3. Requester dequeues response from output queue.
This tri-ACID unit model has the virtue of decoupling the requester from the server, but has the flaw that i
makes multi-request transactions impossible. Implementing distributed transactions, conversational :
transactions, or multi-step transactions 'on top of a2 queued system requires building a ot of applicaton-level
machinery. :

By conrast, direct transaction processing systemns can easily add a queuing mechanijsm by implementing a
direct transaction that places requests in queues, and by having pools of servers that poll these queucs.
Indeed, this is the course that CICS, ACMS, and Encina have taken. At last count, CICS had over six
distinct queue managers as part of the regular product - each with slightly different performance-
functionality tradeofTs.

We are not arguing that queucd processing is bad - quite the contrary. Queued processing has been a
common transaction processing style and will continue to be very important in the futurc. Queued

HPTS 95 Position Paper: Queues are Databases 1

69

_ processing is increasingly important for workflow, disconnected operation, and replication applications. It
has always been the mainstay of batch and spool operations.

The controversial opinion here is that I believe queues are best built as a naive resource manager atop an
object-relational database system. That system must have good concurrency control, recovery, triggers, and
utilities — indeed it must be a good TP-lite system. .

2. Queues Are “Interesting” Databases

Storing queues in a conventional database has considerable appeal. The idea is that queues are encapsulated
as a daabase class with create(), enqueue(), dequeue(), poli(), and destroy() methods. By using the database,
the queue manager becomes a naive resource manger with no special code for startup, shutdown, checkpoint,
or even commit. Rather it is just a simple application. In addition, it benefits from all the database
utilities 10 query, backup, restore, reorganize, and replicate the data. -~ - S

Queues pose ditficult problems when implemented atop a database. An enqueue request transaction is an
insert followed by a commit. This places extreme performance demands on the concurrency control and
recovery components of a database — it exposes hotspots and hi gh-overhead code.

The dequeue transaction typically involves deleting a record from the queue, processing the request,
enqueuing results in other queues, and then committing. Serializable isolation requires that there can be at
most one dequeue executing at a time.- This suggests that queues need lower, indeed specialized, isclation
levels.

In Gray~md Reuter {ibid. pp. 402] we outlined the concurrency control mechanisms needed to impletnent

queues within a database:

1. READ-PAST locks allow a program to skip over dirty (uncommitted records) to find the first cornmmitted
record. This is what a dequeue operation wants.

2. READ-THROUGH locks allow a program to examine records that have not yet been committed. This
is useful in polling the status of a queued request that is currently being processed.

3. NOTIFY LOCKS (events) allow a program to wait for a state change in a lock. This allows a degueue
operation to wait for the queue to become non-empty. -

Non-transactional queues are sometimes needed for performance reasons. The same reasons encourage us to
suppont non-transactional tables in an SQL database. These tables and queues are not durable (do not
survive system restart or media failure), but have low overhead. . -

The paradox is that queues are just an application data structure. Their concurrency control and recovery
needs appear in many other contexts. An auction application looking for a set of sellers to match a buyer
needs exactly these lock modes. One sees similar needs when looking workflow, CASE, and parallel
programmiing models like Linda where an application wants any free tuple (read past locks and notify locks
help here). ' _ .

There is a pattern here. Each new requirement for a queuing system seems {0 reflect a corresponding
requirement for user-application data. . This recurs when one considers query interfaces to queues, queue
performance monitoring, queue backup/restore/recovery utilities, queue security, and so on. Indeed, Richard
Carr reports that when a queueing mechanisms was added to Tandem’s database servers, several applications
becamne simpler and faster.

3. Queue Managers Are Simple TP-Monitors

So far, the discussion has ignored the question of server pool management. Some queues have a server pool
attached to them. TP-monitors configure, manage, and load-balance these pools.

Typically the pool is allocated with a minimum and maximumn number of servers. At startup, the pool is

configured at its minimum size. As traffic on the queue grows, the pool grows. As tratfic shrinks, the
pool shrinks. If'a server fails, a new server is allocated. If 100 many servers fail in a time window, the TP-

HPTS 95 Position Paper: Queues are Databases 2

70

monitor declares the queue broken and human intervention is required. Operator and programmatic interfaces
are defined to create, configure, query, and control (start/stop/redefine) queues,

Queued processing has many variants;
» Periodic: Servers are created at certain times,
« Event: Servers are created on demand when a request first arrives in a queue.,
» Batch: Servers are created when the queued grows to a certain size.

Queues have a FIFO scheduling policy by default, but it is often desirable to have a priority scheme
whereby some queue clements are processed before others if the pool is saturated.

Gee! This sounds like a ot of stuff you do not find in a database system.

But... what about triggers? Modem database systems allow users to associate procedures with data records.
These trigger procedures fire when records are inserted, deleted, or updated. Currently, the triggers fire at the
time of the operation (immediate), or at the time of commit (deferred) — and they execute within the ACID
transaction of the operation that fired the trigger.

Trigger procedures are out-calls from the DBMS. Typically they are written in C, COBOL, FORTRAN or
Visual Basic. In general they have t0 be executed in a protection domain separate from the requester and
separate from the DBMS. Consequently, they are typically executed in a separate process (address space).
Sybase’s OpenServer design is typical of this idea - although it uses a single multi-threaded process rather
than having a separate protection domain per trigger. Oracle’s Rdb uses a separate process 1o process
outcalls.

Managing the trigger processes is a chore. For performance, they must be pre-allocated. There must be a
load-control facility to prevent saturation. The pools must grow and shrink with demand. Gradually, the
trigger-execution mechanism of the DBMS merges with the DBMS’s TP-lite front-end dispatcher 1o make a
fairly general TP-lite monitor. Indeed, the Sybase OpenServer started as a front-end, then becarne a side-end
{trigger) and back-end (gateway) mechanism.

So DBMS systerns are growing a server pool management system. This is part of the evolution of TP-lite
to TP-heavy.

Not much is needed to add queued processing to a TP-lite DBMS. First one must implement the queues as
an encapsulated type atop the Object-Relational system. Then one must recognize that triggers may be
fired as part of a transaction, or fired asynchronously as a new ACID unit (either immediately, or if and
when the transaction commits). This small conceptual leap and a simple matter of programming gives a
simple queued transaction processing system. It should be as scaleable and robust as the underlying DBMS.

4. Summary

Many people are building queue managers from bare metal as a transactional resource manager and a TP-lite
monitor. An alternative approach is to evolve Object-Relational systems to support the basic mechanisms
needed 1o build a quening system: .

» reduced isolation levels and fine granularity locking

- efficient support for simple transactions.

« asynchronous trigger invocation executed by server pools

* management of server pools.
With these basic facilities, enable the implementation of queue managers but also make the DBMS more
useful by other applications.

5. References
[Bernstein, Hsu, & Mann] P.A. Bernstein , M. Hsu and B. Mann. “Implementing Recoverable Reyuests
Using Queucs.” Proc. Proc. ACM SIGMOD, Atlantic City, NJ. 1990

[Gray & Reuter] J. Gray and A. Retuer, Tranasaction Processing Concepis and Technigues, Morgan
Kaufinann, San Francisco, 1993.

HPTS 95 Position Paper: Queues are Databases 3

71

Drawing the Line be’tWeeh'-Consdmers--énd Suppliers of Trahsa‘ctions
in Object Oriented Application Development

August 25, 1995

Geoff Hambrick

{BM Object Services Technology Center
- M3 8372

11400 Burnet Road

“Austin, TX 78758

_ email: gedff@austin.ibm.com

72

Problems with Source Code Reuse

Object technology has been touted as the means by which large scale reuse-of maintainable fine-grained
objects will become a reality. Unfortunately, reuse of this sort has yet to happen because most practitioners
are- still looking to inheritance..and subclassing rather than exploiting encapsulation and separation of
concerns. ,

For applications requiring object services such as transactions, separation of concemns means drawing an
appropriate line between the business logic of the application developed by a domain expert and the
platform specific logic of the transaction system developed by an expert in high performance transactions.
Given that both experts employ object technology, the question then becornes when and how these two
separate object models are integrated together.

Assuming a typical development cycle with analysis, design and code phases, the obvious answer seems to be
at design time (the “when”)} using the source code (the “how”). That is, the transaction mode] can be viewed
as a general pattern applied to each object in the business domain, resulting in a design model that gets
coded and built in the programming language of choice.

This source code based approach has the advantage of faster execution time, since the transaction code is
directly intergrated into the methods of the application objects. The direct integration also makes it
relatively easy 10 “tweak” performance by modifying transaction boundaries, choosing read transactions over
read-write where possible, etc. However, there are some serious disadvantages:

1. True encapsulation is broken, since the internals of the business objects and their behaviors are exposed
to those who would add transactions at a later step.

2. Code complexity increases as each method must include the appropriate transactional boundary calls
(begin, commit, rollback). This makes the resulting binary larger as well as making maintenance much
harder (even given good tools).

3. Dependency on one particular transaction model is hard coded into the application, making it nearly
impossible to reconfigure later if a new and/or more efficient implementation becomes available.

These problems are compounded when one takes into account other services like concurrency, persistence,
replication, security, etc.

Problems with Binary Code Reuse

Since the “obvious” answer is out, what about the other extreme? That is, assume that the two experts have
shipped only binary objects and no source code. In this scenario, integration can occur anywhere from
install to run time, which poses some interesting questions of its own:

* how to make appropriate boundary calls in objects that were not coded with transactions (or other

services) in mind;
« how to get enough information about the essential state of the object or its behavior such that the most
efficient commits and rollbacks can be made.

This paper proposes a programming model that answers both questions in a consistent, object-oniented
manner,

73

Making Appropriate Boundary Calis through a "Usage” Object

One approach 1o overcoming the first obstacle is to generalize the notion of boundary calls across services to
"before/after” behaviors. That 1s, for each method invoked on an object, a given service may have code that
must be run before the method, and shay also have some that must run after it. For example,-a persistence
service may need 1o restore the internal state of the object prior to executing a ‘method; it may store it
afterward. - A transaction service 1may issue a begin transaction before the method, and a commit or rollback
afterwards (depending on the success of the method executed)

There may be "state dependent aspects to execunng the service eﬁicxemly as well -For example, a
persistence service may only restore an object once and only store it at release, if and only if it has been
changed during the methods run since the restore. As another example, most transaction services only
register an object with the transaction context once. . These examples not only require the ability to extend
an -object with arbitrary attributes .(such as “dirty bits” and/or “current coniext”), but also the need to
determine the type of method executed in terms of an abstract -domain -independent lifecycle on the
associated object (e.g., “create”, “read”, "update”, and “delete”).

Sometimes there may be more than one approach to using the service that trades one resource for another,
or provides for a higher or lower “quality of service”. For example, a “flat” transaction service may begin a
transactional boundary with some outermost call and only register other objects within this context, trading
speed at the expense of partial rollbacks. A “nested” sérvice could be provided by the same vendor as well,
starting a new~iransaction with every method, allowing for partial rollbacks at the expense of speed.

The proposal is for the service provider to ship one or more “usage” objects that encapsulate this before/after
behavior and associated state variables that are integrated into the business objects at install or run time
(through either inheritance or aggregation). These usage objects ‘can take the place of lengthy tutorials on
how 10 code to the service imterfaces. Shipping separate objects makes the service easier to use by the
customer; they also allow the service provider to change any and all interfaces (except for the before/after
calls), since services are transparent to the domain objects.

Well, almost transparent, since there are times when more than just domain independent information is
needed about an object. For example, transaction services need to restore/save the state of the object (or
save an “inverse” operation) prior to exécuting a method in order to handle a rollback. Enabling these kinds
of services requires some work from the domain expert to expose the essential state and/or behavior of the
business objects. The following details standard approaches for each.

Exposmg Essentlal State v;a External:zatlon

An approach 1o exposing external state borrows from ' OMG, OpenDoc and Tahgent “which make heavy use
of the riotion of “extérnalization” behaviors that are associated with each object. In this model, an object

has methods that either write its essential state to a “stream” or read state from it. Strictly speaking, this does .

not break encapsulation since the internal form of the object can be encrypted, rearranged, or indirectly
accessed. The “strearmn schema” (order of data wntten 'read) represents the contract between the business
object provider and any arbnrary service prouder The serv1ce prov:der supplies the stream nnplememanon
tailored to the service. '

Thus, a transaction service needing 10 save an image of the object for recovery would simply create a stream
(either in memory or on disk ‘depending on the quality of service), and use it as a parameter to an
“externalize_to_streamn” method. In case of a rollback, 1t would use the same stream and execute an
“internalize’ from_stream” method on the object. ~Other services, like persistence would work simularly:
"mternalizing” durning a restore and "extemalﬂmg during a store. In this manner, the domain expert supphes
iwo methods to suppon any number of servxces that need access 10 state.

2 Drawing the Line

74

Exposing'Essentia!- Behavior via Commands

The approach to supporting those services that rely on behavior rather than state; is to borrow. again from
Taligent and OpenDoc and use a lightweight “command” object that supports “do”, “undo” and “redo”
interfaces. The idea is for the domain expert to provide one for each method of a domain object (paying
particular attention to the undo method since the do/redo can be generated automatically). - Any-service can
create and use commands during the before/after methods- described above for various purposes. - For
example, a transaction service might save a list of command objects representing the methods executed
during the cowrse of the transaction that are “undone” if a rollback occurs. A “disconnected” chent service
might save commands 10 be batched and executed on the server when connection is made.:

Since a command is an’ object, it can support externalization methods' that enable it to: have services
transparently attached using the same mechanisms that we are discussing here for arbitrary domain objects.
Taken together, streams and commands provide a consistent mechamsm for 1he domain expert to enable
complete configurability without breaking encapsulauon :

A Concrete Example

To see the above proposed solutions 1n acnon w&lkmg through a concrete example is m o:der The domain
chosen is a Trovel Reservation System, with the following objects of interest:

* Travel Service. Represents a company that provides a given travel service. For ex.ample Hertz rental
cars or Hﬂton hotels. Basically serves.as a ”factory for Reservations.- e

* Travel Agency Memb.er_. Represents the cu_st_o_me_:_r of Fh_f!;-lrav_el a_gcncy. Basic aHy' Sel_f\'és as u “collector”
for Profiles and Trips. : R :

» Profile. Represents the “preferences” that a member has for a given Travel Service. 'For example,
non-smoking rooms, mid size cars, aisle seats, etc. This object is used by the Travel Service for default
values when making Reservations.

* Trip. Represents a given tnp planned or actually taken by the Member. Basica]}'y serves as a “collector”
for Reservations, with extra attributes to record the “purpose”, primary destination, etc.

* Reservation. Represents the need for a specific travel service, like a hotel, car, train, airline flight, etc. In
general, these objects are “pinned” to the type of travel service, but serve to abstract out the common
attributes needed for the travel agency 1o print itineraries, etc.

All the objects above should have externalization routines that read/write the essential attributes according to
a published stream schema (IDL that describes the attribute types and names). Given that the nonderivable
attributes of a Travel Agency Member were name, address, phone, fax,_ department, preferred credit card, list
of profiles and list of trips, the domain expert can write/read them in any order and/or format desired (as

long as she is consistent). For example, the credit card number might be wntten/read as a string, the Lists as .

sequences of references, etc..

I} is important for the domain expert to design the stream schemas for stability across various internal
implementations, as once they are published, the format becomes a contract with users. Thus, strings and
sequences of references were chosen as more genenc than hash tables or linked lists (which may in fact be
the internal form of the Profile/Trip lists described above for Travel Agency Members). Each of these forms
is easily converted to/from a sequence (or sequences) dunng the externalization methods. :

The Reservation class deserves some extra attention since it represents a “domain boundary crossing” from
the. travel agency’s system to that of the travel service company (for example American Airlines’ Sabre
systemn). This crossing makes it likely that the functions associated with reservations (such as “confirm” and
“cancel”) will affect two disconnected systems that cannot work within the same transactional context (or any

3

75

other service for that matter). Therefore, the domain expert should at least provide command objects for
those methods and supply an undo method for each to enable changes to be “backed out” consistently. Of
course for the maximum configurability, the domain expert should provide command objects for every
method.

In any event, undo methods on commands can be written in terms of other methods on ihe domain-objects
that in fact invoke compensating transactions on the underlying systems. For example, undo for the
"Reservation_confirm” command could simply execute the “cancel” method on the associated reservation
(stored as part of the command during the do method), which would issue a cancel reservation on the
appropriate Travel Service company system The undo for the ”Reservanon cancel” command could simply
execute the confirm method again.

Other than providing the externalization methods and command objects, the domain expert should strive to
ignore ‘any ¢ode associated with ob}ect services such as transactions, concnrrency, persxstcnce security, etc.
Code associated with’ these services is the concern of another expert.

The Role of the Transaction Expert

So, how could a transaction expert make use of these domain objects with externalization methods, stream
schemas, and commands 1o enable an efficient implementation? The answer depends on the assumptions
made about the end user’s configuration in terms of how tightly integrated transactions are with other
services like persistence. For simplicity these configurations can be divided into four categories:

1. Objects with persistent data from procedural databases. For many years to come, it is probable that
objects will “wrapper” data from existing procedural databases that are still accessed via external query
engines, etc., For this reason, any associated transactional usage will need to restore the persistent data
during the before method from a stream that wrappers the database, and register the object to the
transactional context. During a pre-prepare for commuit, the data is then stored to the database, again
via the database stream wrapper. A rollback need not do anything, since the object will be restored
again anyway.

2. Objects with persistemt data from object oriented databases. As objects become pervasive over time,
object databases will come to implement a single-level-store model of both object and data as a single
entity. The the transactional usage can then take advantage of the fact that no other applications can
update the associated data and only restored the object during the first call (not on every transaction as
above). The commit behavior is not affected; however, a rollback must at least reset a flag indicating
that the object needs restoring on the next call (it could restore automatically if desired).

3. Object oriented transaction monitors. These are object “wrappers” around purely transactional interfaces
(like the American Airlines Travel Service object does for the Sabre system in the example above). As
such, there is no persistent data to store/restore, so commands with undo methods that execute the
compensating transactions must be saved in case of a rollback. Nothing actually needs to be done in the
case of a commit except reclaim the space taken by the saved commands (possibly in a stream).

4. Transient objects. This category does not necessarily imply that the domain objects lack persistent data
within the system configuration, but that any persistence must be treated orthogonally to the transaction
service. l'or example, a high availability server with transparent backing store could benefit from a usage
object that creates a stream (either in memory or a file depending on the quality of service) to save the
image of the object a1 the start of the transaction. If a rollback occurs, the object is internalized from
the stream to restore its state. As is the case with the transaction monitor, there is no need to do
anything during a commit operation (except reclaim the beforeimage stream).

The common theme of each of these approaches is that each one provides a specialized usage and stream

optimized for the documented assumptions. Other usage/streams could be provided that mix and match
these assumptions where they make sense (such as a “transient transaction monitor”, where both a

4 Drawing the Line

76

beforeimage and compensating commands are saved). - The fundamental advantage to this approach based
on separation of concerns should be clear: the transaction: service can: be completely transparent to the
domain objects without limiting the choice of implementation.

Summary '

Given that binary code is the only proven means to get large scale Teuse, and that ob]ects are the way 1o get
fine-grained reuse with mamlamabxhty through encapsuiauon we must enabIe _sepasation of concemns
between the domain expert and the service provider in order to get both.

The simple programming model outlined above has the domain expert encapsulate essential state and
behavior of business objects through externalization methods (mcludmg a stream schema) and command
objects; it has the implementation expert encapsulate the essential state and behavior. needed by services
through usage objects supporting before/afier methods, and stream objects used by externalization methods
on business objects. Integration tailored to specific performance and legacy constraints can then be achieved
at install, start-up, or run-time as is desired by the application assembler with Iittle or no coding through
inheritance and/or aggregation.

Drawing the line between consumers and suppliers of transaction services; i.e., separation. of concerns, allows
the “night expert” to do the work in developing a complete commercial quality application.

77

Transaction Processing on_the Internet — Revolution or Evolution?

James R. Hamilton, IBM Toronto <jrh@vnet.ibm.com> N o

Susan Malaika, IBM Hursley <malaika@vnet.ibm.com> .) - .
Patricia G. Selinger, IBM Alnaden Research Center <palbalmadcn ibm.com> - '
Eugene Shekita, IBM Almaden Research Center <shekita@almaden.ibm.com>

Abstract:

Commercial data processing over the Internet is rapidly evelving along a path similar to the one taken by intra-cnterprise
transaction processing sysiems in decades past. . The two fundamental issucs that still rust be addressed are the statclessness
of the current Web protocols today and issues related to security and authentication. This paper argues possible approaches
to be taken and speculates on their success.

Introduction:

The revolution furning the Internet ‘into ‘a miechanism for global commeree is in some ‘ways similar to what occurred in -
commercial intra-enterprise data processing scveral decades ago. - 'We anticipate, however, that the timescale of change will
be significantly more rapid driven by what is quickly approaching universal access. The Internet in the 1970’s linked
computer science research sites funded by ARPA, and was used primarily for electronic mail and file transfer. During the
1980°s, this usage expanded to rémote server access (ordering research reports automatically, for example), and participation
broadened to the general scientific community. Today the Internct has entered the home, with consumers and businesses as
well a3 the scientific community communicating and participating actively. Uscnet news group distribution and mail transfer
fueled early growth. However, the emcrgence and widespread availability of World Wide Web [WWW] browsers and servers
has led to explosive growth and lias been one of the driving forces behind the spread of Intérnel usape into the hore
computing farket. Web browsers are well on the way to becoming the Internet "universal client” in that they not only
provide access o HyperText Markup Language (1HITML) documiciits, bt also RFC822 [RFC] mail, USENET news, Wide
Area Information Server (WAIS), File Transfer Pritocol (FTP), Goplict. and telnet. And, more importantly, Web browsers
are lypically installed or available for most client computing platlorms. An emerging area of Web usage is electronic
commerce with a few vendors such as Netscape (http://home.mcom.com) providing software supporting server authentication,
encryption, a reliable channel, and optional client authentication.

It is illuminating to examine in more detail the evolution of intra-enterprise data processing. In the late 19350°s, compuier
access was almost entirely local, with jobs submitied serially via punched cards or paper tapes. Then the concept of spooling
was invented to improve baich throughput by sctiing up a background task to read off a slow input device while processing
another job concurrently. The input from the background task was queued for the next job. A good example of early use is
the SABRE system of American Airlines, which became operational in 1964, supporting clectronic airline reservations trom
1100 ageni terminals submitting requests 10 a single complex with duplexed processors [JS81]. In August 1967, IBM
announced Remote Job Entry (RJE) for the 08/360) cperating systeny, allowing more sophisticated scheduling, queuing, and

job control from remote terminals.

Having evelved from a single job to multiple jobs being queued. and then o remote job cniry, carly systems provided
telecommunication access methods to manage this work. These were (ollowed in the 1970%s by transaction monitors, built
using protocols such as SNA. In 1974, SNA |SUND&7] was introduced for the DOS/VS operaling system supporting
commupication networks of one' computer connected to'muliiple terminals. Remote terminal support was added the following
year, and, in 1977, SNA added the capability of reaching multiple hosts from a given terminal, followed by retwork
management services, DIS encryption, and parallel session support in 1979, During the 1980’s SNA added option scts for
transaction program security, {or authenticating session pariners, autpmatic reestablishment of sessions and resynchronization
of user sessions upon link {ailures, classes of sefvice, and two-phase commit. Despite the functional richness of SNA and
many predictions that it would "emerge as |the] standard” [GRAYS89] it [aces strong competition due to the widespread use
and availability of TCP/IP. o

-1-

78

79

Web protocols and current status:

Web browsers (the user agent) communicate over TCP/IP connections with Web servers using HyperText Transfer Protocol
[HTTP]. For backwards compatibility and ease of use, most browsers are able 1o also support additional protocols: FTP,
telnet, Wide Area Information Service (WAIS), Gopher in addition to being able to send RFC822 mail [RFC]. However, the
native protocol for Web browsers is HTTP, which is used for accessing hypertext documents. at the Web server..]{TTP 15 a
simple protocol supporting 7 main methods: get, head, text search, link, unlink, post, and put.

The servers, and the documents on these servers, are accessed via Uniform Resources Locator (URL). The URL
"http://home.mcom.com/newsreffindex.html" for example, refers to the Hypertext Markup language (HTML) document
"index.htm]" on the server "home.mcom.com” in directory "/newsret” to be accessed via the HTTP protcol. Similarly the
URL "fip://fip2.netscape.com/1.1b3" refers to the file netscapel.1b3 accessed via fip from the fip server: fip2.netscape.com to
be found in the default (root) fip directory.” Web browsers primarily access HyperText Markup Language documents. -
(HTML). HTML is an application of the SGML 1SO Standard (SGML 1SO Standard 8879:1986 Information Processing Text
and Office Sysiems, Standard Generalized Markup Language).

The HyperText Transfer Protocol is currently a draft of the Internet Engineering Task Force [IETF). HTTP/1.0 was made
widely available in November of 1994. HTTP uses Multipurpose Internet Mail Extensions (MIME---Internet RFC 1342) ‘
headers to describe the format of the data being sent. Among the defined MIME standard headers are descriptions for
HTML documeants, GIF images, PostScript documents, JPEG images, MPEG movies, and many others |GRAHY5]. Most
Web browsers support some of these formats darect]y and also allow the user (o register other viewers and players to extend
the document format support.

HTML describe the logical organization of a document (a Web browser chooses the presentation format supported by the
client system for the display of this document) and HTML supports hyperlinks. These hyperlinks are embedded URLs,
essentially. pointers, that.can be foliowed by the Web browser to the next HTML document.

Web servers support the Common Gateway Interface [CGI] spemﬁcauon wrilten by Rob McCool at the NCSA. The CGI
allows an external program writien in any. language to. be queried by a Web Browser. The CGI specifies the mechanism by
which the query is communicated to the external program. The expected output is an HTML document to be displayed at
the Web client. This interface allows existing database and transaction processing systems to be easily integrated into a Web
environment. CGI programs are generally available supporting Web gueries agamst Oracle, DB2, and Sybase amongst
others.

Premise: the revolution of commercial data processing on the Internet:

Given where it is today, what will it take for the Web to support commercial data and transaction processing? Historical
evidence from the intra-enterprise transaction processing world strongly suggests that to be successful, some of the Web
paradigms and protocols must change fundamentally. - Our premise is that two. fundamental problems must be addressed
before the Web can evolve to the point where it can be used. for real commercial transaction processing: 1) the current
stateless HTTP must evolve to retain state, and 2) there must be mechanisms for authentication and security. Whether these
changes take place and, if they do, how successful they will be at addressing the problems; remains controversial.

Context management and remote agent surrogate support at server:

To make our case on these two issues, it’s usetul to contrast the capabilities of a transaction monitor, speuhcally ClCS
[CICS95], with Internet interactions over the World Wide Web [WWW)].- One difference is that Web servers retain no state,
and have no continuing connection te a client across. invocations, while. conversational use of CICS provides both. The
concept of "state” is fundamental, as it establishes context for an active; already authenticated agent to hold resources at a
remote server. If we disregard the concept of "state” for a moment, Web servers and CICS have many similarities. Both
CICS and Web servers schedule and process short repetitive pieces of work on behalf of many users accessing shared data.
And both CICS and Web interactions have a similar application model: when the application is running on the server, the
client is synchronously dedicated to waiting for the response in order to prescnt it to the user. Web programs can provide the

22-

illusion of staie at the server by transferring context information (user identification, the page ihe user was last accessing,
etc.) via a hidden element in the HTML form passed with every server interaction. '

While these programming tricks can provide the illusion of state, they do not provide the feality. This approach would
prevent servers from holding resources between interactions, such as locks or authenticatiofi information, memory. or
transaction records in the prepared state of two phase commit. 1t would also make it impossible to establish and maintain a
connection while interacting with a given server. Either Web protocols niust sicp up to supportirig the concept of state, with
notification and cleanup at servers upon failure, or data processing capabilitics will bé forever limited. :

Without state, a fundamental problem remains: it is impossible to know whettier a transaction will ever be completed or was
just left unfinished (A user may choose nevér to {inish the interaction). This is fundimentally incompatible with any
concurrency and recovery sysiem that holds transaction duration locks. The solution may be oplimistic concurrency control
systems (OCC) [KUNG&1]. Even though they have not been extensively used in existing commercial sysiems, these protocols
are ideally suited to this environment where holding locks is impractical. ' ' :

Another alternative might be simply 1o place on the user the burden of verifying the completion state of a transaction. For
example, 2 user would taciily commit to a transaction by clicking the “send” button on an order screen. To avoid holding
jocks for unpredictable time periods, the order would be processed af the server afier receipl of the user’s "send”. Under
normal circumstances, the server would respond with an acknowledgement and probably a digital sales slip of some sort. If
the network times out, or if theré is a crash at cither end of the connection, however, then it would be up to the ‘user to
verify whether that order was actually processed. This could be accomplished by having the user call up a "status” screen on
the server afier being reconnecied. The status screen would allow the user to check on the order gtatus. Wihile this scheme
is hardly user-friendly and probably not an attractive long-term solution, it has the advantage of simplicity. Further
complications arise if there are miltiple servers, the possibility of legitimate duplicate orders; in those cases unique
application-specific tags refained at the usér system will be required. ' '

It's also inleresting to draw parallels between the WWW evolution we anticipate and the onc that has already taken place in
shared file systems. For example, the Sun NFS protocol is staicless, fairly casy lo program bul a relatively poor performer.
Although the argument in favour of statelessness is based on increased server performance, it is exactly this feature that
prevents many very effective performance optimizations (e.g. client side cache and one time authentication check). The AFS
system, is a much better performer, in that it is stateful and supports the maintenance of a client sidc cache. We speculate
that Web servers will need (o maintain state (and connections) to get the performance and robustness required by high
volume commercial OLTP systems. In the interim, OCC may be a partial answer.

Authentication and Security:

The other significant problem area for the evolution of Web protocols lo perform commercial daia processing transactions is
the requirement to have secure communications with 2 known, authenticated client. Today, and lor the foresccable future,
the Web client is an insecure environment, and Web communications are subject to malicious modification and monitoring
by an adversary.

To suppon commercial transaction processing, the following security issucs must be addressed: 1) supporl client
authentication, 2) support server authentication. 3} avoid monitoring and theft of information, 4) support replay protection, 5)
prevent modification. and 6) implement once-only semantics.

“The Pretty Good Privacy mail system |PGP95] is a good model in that, as a mail system operating uver insecure
communications links, it must address many of these same issues.. PGP uses the IDEA {PGPY5] private key cneryplion
system 1o protect against moniloring and information thell, it uses the RSA [PGP95] for both sender (client) and recipicnt
(server) authentication, and the MDS5 message digest system [PGPY3] (o prevent modilication.

Netscape Communications Corp. has implemented a secure web protocol called HTTPS (HypterText Transter '
Protocol--Secure) in their Nelscape Commerce Server (http:/home.meom.com/eomprod/netscape_commeree.iml). HTTPS is
implemented on top of the Seeure Sockets Layer (httpz/home.meom.com/ newsrel/std/SSL.himl) which, like PGP, is
implemented using the RSA public key encryption system and MD5. Rather than using only the 1DEA private key

3.

80

encryption system as PGP does, SSL supports RC2, RC4, DI'S (Data Incryption Standard), in addition to IDEA. Buth 40 bit
and 128 bit RC4 keys are supported (128 bil is far more secure but RC4 with 40 bit keys are legal for US export whereas
most of the other algorithms still carry export resirictions),

Netscape Communications. Corp. has also proposed an electronic payment protocol for Internet credit-card applications
(http://home.netscape. comfnewsreﬁ’std/credu himl). The proposal is for a Ehree-pany protocol, involving a Customer,
Merchant, and Payment Gateway {(representing the acquiring bank). The prmocol is layered on top of Netscape’s Secure
Sockets Layer. The Secure Sockets Layer provides connection security, while the electronic payment protocol provides
signature, non-repudiation, and secondary encryption. Secondary encryption is based on public keys and is used to conr.eal
the customer’s credit-cand number from the merchan, generate dlgnal s:gnamres, and soon.

IBM has also pmpos«ed a secure eleclrcmc payment protocol for the Internel cafled iKP

(http:/fw3. urich.ibm. com/g/kk/www/extem/ecommerce) iKP is a family of protocols that implements credit-card-based
transactions between the customer and merchant while using the existing financial network for approval and (.lean.ng Like
the Netscape proposal, iKP is a three-party protocol, involving a Customer, Merchant, and Payment Gateway. Public-key
encryplion is used to protect ¢onfidential information such as credit-card numbers and for signing authonatmn mesaagea
iKP has been designed 1o prov1de strong encryplmn wh.lle stxll sausfymg u-npon/expun restru,uom

Other approaches to Web secunty can be found on hitp/www-ns. mtgerb edu/ www-security/draits.html. - Some examples are
"Shen: A Security Scheme for the World Wide Web” from CERN and "Secure Hyper‘l'ext Transfer Protocol (SHTTP)
proposal" from Enlerpnse Inzegrauon Technologies. '

We believe that the techno]ogy exists to properly secure Web communications and, in many caws, xmplementauons already
exist. What is missing is an agreed upon, widely unp!emenled standard (ideally, one free of US exporl restrictions) and a
widely used, reliable encryption key distribution system (public keys must be verified as valid, then published and made
broadly available).

Other issues:

If you accept our premise that the Intemnet is rapldly evelving to support the same mode! of cormnercml transaction
processing as we have today within the enterprise, and given that the two btgmhtdnt issues needed lo complete that evolution
are resolved, there remain some concems:

1) session management and naming. Communications between web clients and servers have no notion ol session
stale on the target system, and names of servers are associated with their addresses, preventing transparency for
modular growth or failure redundancy.

2) guaranteed invocation, with restart on failure. C]CS provides hardened messages, which guarantees dehvery of
messages and exccution of transactions.

3y ACID enforcement,. _

4) mapping services from server back to clients. We anticipate that there will be extensions to help with commercial
Web applications, e.g, to ease the integration ol business data held on relational* databases with multimedia on the
Web. There are exlenswns already avatlable to enabEe programmmg on lhe clleni ¢.g. Hotlava from Sun a
hnp://webrunaer.neaio.org S :

5} load balancing. In many cases, a single server will not be able to handle the demand placed on a popular WWW

site. A potential solution to this problem is described in hitp://www.nesa.viue edw InformationServers/, The basic
idea is to rotate through a paol 01 servers, each of which is alternately mapped to the hosiname alias of the
WWW server. o P

81

Conclusion:

We predict that commercial data processing on the Web will follow the evolutionary path of traditional, intra-enterprise
technology. However, this evolulion will be much compressed, nearly a revolution, driven by near universal access, and will
require innovative solutions to traditional problerns.

References:

[CICS95]
[CGI)
{GARF95)
[GRAHYS]
[GRAYS8Y]

[HTTP)
[IBMY5]

{REC]

[SUND3&7]

GC33-0155 CICS General Information Manual.

Common Gateway Inferface. For more information sec: hitp://hoohoo.nesa.nine.edw/cgi/overview himl.
Simson Garfinkel, "PGP: Pretty Good Privacy”, O'Reilly & Associates, 1995,

Graham, lan S., "HTML Source Book: A Complete Guide to HTML", John Wiley & Son, Inc., 9935,

Gray, Jim., "Transparency in its Place -- The Case Against Transparent Access to Geographically Distributed
Data”, Tandem Tech. Report TR 89.1.

More information on HTTP is available from hitp://info.cern.ch/hypertext WWW/Protocols/Overview.html,
CICS Family: Interproduct Communication, IBM SC33-0824 [IETF] More information on the Internct
Engineering Task Force (IETF) can be obtained from htip/iwww . jetf.carireston.va.us. [KUNGSI1| H. Kung
and J. Robinson, "On Optimistic Metheds for Concurrency Control”, ACM Transactions on Database Systems,
Association of Computing Machinery, 1981.

All Internet Enginecring Task Force Request for Comments (RFC’s) can be viewed or obtained from
hitp://ds.intemic.net/ds/dspg lintdoc.htmi.

Sundstrom. R.J. et al. "SNA; Current requirements and directions,” IBM Systems Journal. Vol 26, No.1, 1987,
(J381] Jarema, D.R., and Sussenguth, E.H. "IBM Data Communications: A Quarter Century of Evolution and
Progress,” IBM Journal of Research and Development. Vol. 25, No. 5. September, 1981.

[WWW] hnp.//www.w3.org/hypertext/www/ TheProject

82

Netscape Secure Courier
A Presentation to HPTS

Michael Higgins

Overview and Goals:

The goal of this presentation is the increase the awareness and
understudying of the listeners on the topics of: Commerce on the Internet,
and Secure Financial Transaction Processing on the Internet, as the apply
to the HTPS framework.

Secure Courier is a Specification and a Product offered by Netscape
Communications Corp. in conjunction with its partners, which include:
Intuit and MasterCard.

Secure Courier is a Transaction based protocol for doing very secure
financial transactions over a public TCP/IP network, -specifically the
Internet. The protocol involves moving data between at least three players
in a financial transaction: the consumer, the merchant, and the credit card
processor (sometimes called the acquirer).

The outline below contains the slide topics to be covered in the
presentation.

83

Netscape Secure Courier

A Presehtéﬁbﬁ ffo HPTS

Internet Overview

¢ Brief History

e Size: Users, Computers, Nations, etc.

¢ Typical Usage Modcls

Netscape Communications Corp.

e History - A S

¢ Charter

¢ Product Overview
Commerce on the Internet

» Revenue Today

e Advantages

* Problems

o Security Issues

Browsing vs. Transaction

e Session-less Model

e HTTPvs. HTML

o (lient (Browser) State
Secure Courier ‘

e Problem Definition

e Architecture

s Cryptography

e Transactions

e Gateway Model
Summary

e Performance

* Partnerships

s Q&A

84

Enterprise Transaction Processing on Windows NT

‘Greg Hope, Chief Architect, Paul Oeuvray, VP Systems Design,

Paul Miniato, Senior Consultant
Prologic Corporation
L 100-3851 Shell Road
‘Richmond, B.C. V6X 2W2 Canada . - .
"Phone: (604) 278-6470 Fax: (604)278-5206 -
© . Internet: hope@prologic.ca

“We sit here and look at the world s most demanding transaction-processor-based
systems, and we ask ourselves ‘What does it take to make PCs or networks of PCs
- suitable for those tasks?’”

- «==Bill Gates Fortune, January 16/95.

Migrating to Cllant/Server'
Solutions

For over 10 years Prologic has béen replacmg
mainframe and mini-computer based enterprise-
wide trafisaction professing systems with
distributed networks of PCs.”

Reoad to Success .)

Prologic’s customer base includes over 100
installations of line-of-business systems in
barking, insurance and inventory control. With the
development of PROBE = for Windows NT=i, our
new partnerships include high profile transaction-
processing environrents at EDS, Dallas, Texas
and Normura Research Iristitate, Yokohama, Japan.

Back in 1987, Prologic’s first customer,
Richmond Savings of Vancouver, B.C.,used
Prologic’s PROBE for DOS-based technology in
production. This award-winning application (Bést
in MicroBanking, 1988) is a complete Tetail
banking systern, including a consolidated customer
information file, deposits, loans, GL, and ATM
EFT/POS,VRU. . -

Re- Englneerlng Pay Off o

Richmond Savings has over 400 users in 12
locations performing approximately 150,000
online transactions per day; month-end batch
transaction volumes exceed 300,000 their 20
million row database is located on their enterprise
server: a 486/66 with 16MB of RAM and 3GB of
disk using MS-DOS and Netware. End users
experience an average 1.5 second response time
over low bandwidth 9600 BPS WAN circuits with
99.98% availability. Richmond Savings’ new .

business systemn has paid off—since 1987 it has
had an industry leading 16% compound growth
rate,

Key Design Goals -

Prologic established some key criteria early on
for PROBE. These goals include: 1) simplified
application development and maintenance through
a unified, homogenous platform and tools for the
entire solution including client, server, gateway,
and batch components; 2) high performance,
scalable transaction-throughput utilizing the lowest
available life-time Operating cost platform and
efficient communications; and 3) increased
developer productivity 10 iMprove responsiveness
to business change, and reduce cost and risk of
new application development.

Development Infrastructure

‘Applications are developed using PROBE’s
Unified Development Environment (UDE) and
deployed using PROBE’s Unified Application
Framework (UAF). The application is composed
of the data dictionary where all datrabase objects
and properties are specitied using SQL DLL
extended to include features such as pre-defined
relationships, time relationships, and visual
properties of data objects. Compiling the data
dictionary automatically generates the complete
Windows user interface and SQL database catalog.
The Windows intertace includes a complete MFC
MDI application including forms, menus, and data
entry and retrieval functions, The SQL database
catalog is automatically synchronized via ODBC
including conversion of existing data, and

85

generation of all indexes and stored procedures
required for high performance transaction
processing data access.

Application business rules are encapsulated in. . -

event procedures corresponding to the location,

object, and event that fires the business rule using '~ -~ g

a full-function procedural logic language based on
extended C and SQL. The application function is
automatically compiled into high-performance 32-
bit DLLs using Microsoft Visual C++. With this
development environment, developers can see
dramatic increases in productivity. In.one case, a.-

California financial firm replaced a CICS/COBOL

application of more than 2 million lines of code
with a PROBE application of less than 100
thousand lines.

Once written, the application is deployed with
PROBE’s UAF to deliver a three-tiered,
distributed-function, message-shipping, enterprise-
wide transaction processing architecture on local
and wide area networks. PROBE operates
efficienty over 9600 BPS WAN bandwidth,
reducing communications costs, Improving -
response time, and providing greater scalability.

The Three-Tiered Answer -

— PROBE Clent | -[PROBE Client |- - | _Galewsy :
Applicaion Application |- | Apolicat Execuables | Tier t
Source Manager Manager

PROBE Unified Windows31 |- - | Windows NT Windows NT
Development T\] .
Enmvironment rﬁ'pc Y Y ') . |
| ~ 1 7
o ppicaton BLEs |ma] ApSHERLOn DLt]
PROBE Sesver PROBE Server | Batch
Windows NT Application Appliation |~ 1 Execunbles | Tier2
Manager L Manager .. ’
Windows NT Windows NT | Windows NT
~N yd
[ooee__ ~_ 7 |
SQL Server | - -
for Windows o Tier3
o . . o
Windows AT |

The three-tier client/server architecture consists of:

» Tier 1, the Client Application Manager
(CAM) coordinates the WIN32s
presentation tunctions, data access, update
operations, and client application. dynarmc-
link hbranes (DLLs). :

«» Tier 2, the Server Application Manager
(SAM), a Win32 multiprocessing,
multithreaded program that manages
transactions, data, and server application
DLLs, processes messages from the CAM
received via NetBIOS, NetBEUL, IPX, or
.. TeC/P,
-e Tier 3, the SQL database performs database
" management system functions requested by

the SAM via a 32-bit ODBC driver.
Client Services

CAM provides a complete user interface
including a visual service and a non-visual service.
The visual service supports object and task user
imerface models, workflow, views, security,
navigation, forms, field input, printing, menu and
toolbar management, keyboard and mouse
management, status bar, context-sensitive help,
clipboard functions, resource management, and
OLE functions, including linking, embedding, drag
and drop, and in-place activation. The non-visual
service provides network session management,
data entry and retrieval, field binding, event

notification, error handling, and interfaces to 3rd

party visual services vxa OLE automauon and
APls. .
Server Services

SAM includes the Commumcatlons Manager
{CM), the Transaction Manager (TM), the
Temporal Data Manager (TDM), and the ODBC
Optimizer (ODBC-0). The CM provides scalable
transaction throughput with session management,
context free operation, connection multiplexing,
heuristic load balancing, transaction time-out, and
pl_‘_idr_i_ty:queuing; The TM provides robust and
scalable processing with features such as
transaction bracketing, logging and recovery,
nested transactions, lock initiation,
deadlockAivelock resoluuon commit, savepoiris,
transaction logging, exception handling, and event
logging. The ODBC-O provides high performance
through optimized set and ISAM access, catalogue
and database synchronization, data conversion,
automatic usage of optimized stored procedures,
and metadata suppression, The TDM provides
high quality and functional applications through
automatic management of time ordered
relationships between tables, including: automatic
audit trail of master changes, temporal integrity
which guarantees the “sum” of transactions equals
the master, “asot” past and future projections,

86

automatic recalculation of master values on non-
destructive error correction.
Complete Enterprise Soluticn

PROBE for Windows NT completely
integrates with Windows NT for system
administration using services such as Performance
Monitor for transaction statistics and Event Viewer
for problem tracking and diagnosis.

PROBE for Windows NT provides a complete,
unified solution when used with Microsoft
BackOffice facilities such as SQL Server as the
ODBC database management system, SNA Server
to provide real-time data transfer with legacy
systems, and SMS as a single, centralized control
point for troubleshooting, monitoring, and
distributing not only the PROBE transaction
processing application, but also personal
productivity and DSS applications and data.
Ready for the Task

PROBE for Windows NT is a powerful
transaction management system and development
tool for ¢lient/server. applications. PROBE makes
networks of PCs suitable for the world’s most
demanding transaction-processing systems.

87

88

Charting The Seas
Oof Informatlon Technology

CHAOS

Jim Johnson

THE
STANDISH
GROUP

89

The Roman bridges of antiquity were very inefficient structures. By
modern standards, they used too much stone and, as a result, far too
much labor to build. Over the years we have learned to build bridges
more efficiently, using fewer materials and less labor to perform the
same task.

Tom Clancy: The Sum of All Fears

In 1986, Alfred Spector, president of Transarc Corporation, co-
authored a paper comparing bridge building to software
development. The premise: Bridges are normally built on-time. on-
budget, and do not fall down. On the other hand, software never
comes in on-time or on-budget. In addition, it always breaks down.
(Nevertheless, bridge building did not always have such a stellar
record. Many bridge building projects overshot their estimates, time
frames, and some even fell down.)

One of the biggest reasons bridges come in on-time. on-budget and do
not fall down is because of the extreme detail of design. The design
is frozen and the contractor has little flexibility in changing the
specifications. However, in today's fast moving business
environment, a frozen design does not accommodate changes in the
business practices. Therefore a more flexible model must be used.
This could be and has been used as a rationale for development
failure.

But there is another difference between software failures and bridge
failures, beside 3,000 years of experience. When a bridge falls down,
1t is investigated and a report is written on the cause of the failure.
This is not so in the computer industry where failures are covercd
up, ignored, and/or rationalized. As a result, we keep making the
same mistakes over and over again.

Consequently the focus of this latest research project at The Standish
Group has been to identify: '
» The scope of software project failures

* The major factors that cause software projects to fail

» The key ingredients that can reduce project failures

ClIAOS

90

A Specinl COMPASS Report

FAILURE RECORD

In the United States, we spend more than $250 billion each year on

_ IT appl_ication_ development of approximately 175,000 projects. The

average cost of a development project for a large company is

- $2,322,000; for a medium company, it is $1,331,000; and for a small

company, it is $434,000. A great many of these projects will fail.

Software development projects are in chaos, and we can no longer
~ imitate the three monkeys -- hear no failures, see no failures, speak
- no failures,

The Standish Grdhp research shows a staggering 31.1% of projects

. (iri_ll_ be cancelled before they ever get completed. Further results
_ indicate 52.7% of projects will cost 189% of their original estimates.

The cost of these failures and overruns are just the tip of the
proverbial iceberg. The lost opportunity costs are not measurable,
but could easily be in the trillions of dollars. One just has to look to
the City of Denver to realize the extent of this problem. The failure
to produce reliable software to handle baggage at the new Denver
airport is costing the city $1.1 million per day.

Based on this research, The Standish Group estimates that in 1995
American companies and government agencies will spend $81 billion
for cancelled software projects. These same organizations will pay an
additional $59 billion for software projects that will be completed, but
will exceed their original time estimates. Risk is always a factor
when pushing the technology envelope, but many of these projects
were as mundane as a drivers license database. a new accounting
package, or an order entry system.

On the success side, the average is only 16.2% for software projects
that are completed on-time and on-budget. In the larger companies.
the news is even worse: only 9% of their projects come in on-time
and on-budget. And, even when these projects are completed. many
are no more than a mere shadow of their original specification
requirements. Projects completed by the largest American
companies have only approximately 42% of the originally-proposed
features and functions. Smaller companies do much better. A total
of 78.4% of their software projects will get deploved with at least
74.2% of their original features and functions. '

This data may seem disheartening, and in fact, 48% of the 1T
executives in our research sample feel that there are more failures
currently than just five years ago. The good news is that over 50%
fcel there are fewer or the same number of failures today than there
were five and ten years ago.

Page 2

The Standish Group Internationul, Inc. Copyright ©® 1954

A Special COMPASS Report

91
CHADS -

METHODOLOGY

The survey made by The Standish Group was as thorough as
possible, short of the unreachable goal of surveying every company
with MIS in the country. The results are based on what we at The
Standish Group define as "key findings” from our research surveys
and several personal interviews. The respondents were IT executive
managers. The sample included large, medium, and small =
companies across major industry segments, e.g., banking, securities,
manufacturing, retail, wholesale, heath care, insurance, services,
and local, state, and federal organizations. The total sample size was
365 respondents and represented 8,380 applications. In addition,
The Standish Group conducted four focus groups and numerous

‘personal interviews to provide qualitative context for the survey

results.

For purposes of the study, projects were classified into three

resolution types: '

» Resolution Type 1, or project success: The project is completed
on-time and on-budget, with all features and functions as initially
specified.

» Resolution Type 2, or project challenged: The project is completed
and operational but over-budget, over the time estimate, and
offers fewer features and functions than originally specified.

« Resolution Type 3, or project impaired: The project is cancelled at
some point during the development eycle.

Overall, the success rate was only 16.2%, while challenged projects
accounted for 52.7%, and impaired (cancelled) for 31.1%.

-PROJECT RESOLUTION BY TYPE

Type 1 Type 2
16.2 % 52.7 %

Type 3
31.1%

Copyright ® 1994

The Standish Group International, Inc. Page 3

CHAQS

FAILURE STATISTICS

Restarts

Cost Overruns

Time Overruns

A Special COMPASS Report

The Standish Group further segmented these results by large,

. medium and small companies. ‘A large company is any company with
- greater than $500 million dollars in revenue per year, a medium

company is defined as having $200 million to $500 million in yearly

or revenue, anda small company is from $100 mﬁhon to $200 million.

The figures for fallure were equally dlsheartenmg in companies of all

_sizes. Only 9% of projects in large companies were successful. At

16.2% and 28% respectively, medium and small companies were

~-somewhat more successful. A whopping 61.5% of all large company
- . projects were challenged (Resolution Type 2) compared to 46.7% for

medium companies and 28% for small companies. The most projects,

- 37.1%, were impaired and subsequently cancelled (Resolution Type

3) in medium companies, compared to 29.5% in large companies and
21.6% in small companies.

One of the major causes of both cost and time gverruns is restarts.

~ For'every 100 projects that start, there are 94 restarts. This does not
" mean ‘that 94 of 100 w1]1 have one restart, some projects can have
N severai restarts. For example the California Department of Motor
' -Veh:cles project, a failure : scenano summarized later in this article,

had many restarts

Equally telling were the results for cost overruns, time overruns, and
failure of the applications to provide expected features. For

" combined Type 2 and Type 3 projects, almost a third experienced cost
~.overruns of 150 to 200%. The average across all companies is 189%

of the original cost estimate. The average cost overrun is 178% for
large companies, 182% for medium companies, and 214% for small
companies. !

COST OVERRUNS | % OF RESPONSES
Under 20% 15.5%
21 - 50% 31.5%
H1- 100% 20.6%
101 - 200% 10.2%
201 - 400% 8.8%
Over 100% A.1%

For the same combmc(l challcnged and impaired projects, over one-

~ third alqo experienced time overruns of 200 to 300%. The average
B overrun is 222% of the original time estimate. For large companies,

Page 4

The Standish Group International, Inc. Copyright © 1994

92

A Special COMPASS Report

93

CHAOS

N the average is 230%; for medium companies, the average is 202%;

'.: .and for small companies, the average is 239%.

Content Deficiencies

" average, only 61% of originally specified features and functions were

SUCCESS/IPAILURE
PROFILES

" “TIME OVERRUNS | % OF RESPONSES
Under 20% . o 13.9%)
21.50% | T 18.3%
51-100% | . - 20.0%
101-200%] 35.5%
. 201-400% | L 11.2% 3
Overd00% | 1.1%

'For challenged projects, more than a quarter were completed with

only 25% to 49% of originally-specified features and functions. On

available on these projects. Large companies have the worst record

" with only 42% of the features and functions in the end product. For

medium companies, the percentage is 65%. And for small companies,
the percentage is 74%.

% OF FEATURES/FUNCTIONS | % OF RESPONSES
| . Les:: Thdn 25% _ 40670
25 - 49% 27.2% -
50 - 74% 2180,
75 - 99% 39, 1% -
100% T

Currently, the 365 companies have a combined 3,682 applications

under development. Only 431 or 12% of these projects are on-time
andon-budget. - : : -
The most important aspect of the research is discovering why

projects fail. To do this, The Standish Group surveyed IT executive
managers for their opinions about why projects succeed. The three

major reasons that a project will succeed are user involvement,

" executive man.ngemcnt support and a clear statement of

requirements.’ ’I‘hcre are other success criteria, but with these three
elements in place, the chances of success are much greater. Without
them, chance of failure increases dramatically.

Copyright © 1994

The Standish Group International, Ine. Page 5

CI1AQS A Special COMPASS Report
‘PROJECT SUCCESS FACTORS l 25 OF RESPONSES
11, User Involvement - 15.9%
2. Executive Management Support 13.9%
.' 3....Clear Statement of Requirements ST 13.0%
4. _Prop’ei‘ Planning 9.6%
5. _Realistic Expectations 8.2%
6. Smaller Project Milestones 7.7%
7. Competent Staff =~ 7.2%
8. 'Ownership 5.3%
9. Clear Vision & Objectives 2.9%
10. Hard-Working, Focused Staff 2.4%
Other 13.9%
The survey participants were also asked about the factors that cause
projects to be challenged.
PRGJECT CIIALLENGED FACTORS E "5 OF HESPONSIES
1. Lack of User Input : 12
1°2. - Incomplete Requirements & | 2.0
- Specifications
3. (",hnnging.Rxe(;{:ir.o.rh'en't's. &) 11.8%
Specifications
4. Lack of Executive Support 7.0%
5. Technology iﬁcmimetc‘m'é' 70%
6. Lack'of Resources 6.4%
7. Unrealistic Expectations 9%
3. Unelear _()1)jv.clji’m-; Dot
9. Unrealistic Time Frames 1.3%
10. New Technology : 3.7
(ther 240%
Page 6 ~ The Standish Group International, Inc. Copyright © 1994

94

A Special COMPASS Report

FQCUS GROUPS

. Opinions about why projects are impaired and ultimately cancelled
ranked mcomplete requxrements and lack of user involvement at the
top of the list. B

PROJECT IMPAIRED FACTORS

% OF RESPONSES

I Incomplete Reqmremonh 13.1%
2. Lackof User. ln_volv_m_nont 12.4%
3. Lack of Resources 10.6%
4. Unrealistic Exbéét_ations 9.9%
5. Lackof Execu_ﬁve Support ' 89.3%
6. Changin.g Requirements & R.7%
Specifications :
7. Lack of P]an.ning. B ! 3145
8. Didn't Need It .—\n._v. .Longm' 7%
9. LackotIT I\lanarremenr : 6.2%
10. Tedmolu"x llhterau 4.3%
Other 0.59%

Another key finding of the survey is that a high percentage of
executive managers believe that there are more project failures now
than five years ago and ten years ago. This despite the fact that
technology has had time to mature.

Than 5 Than 10
Years Awo Years Avo
Significantly Morc Failures 27% 17%
Somewhat. More Failures 21% 20
No Change 114% 230,
Somewhat Fewer Fatlures 19% KRN
Significantly Fewer Failures 2425 Ao

To augment the survey results, The Standish Group conducted four
focus groups with IT executives of major companies. The attendces
were from a cross section of industries, including insurance, state

Copyright ® 1994

The Standish Group International, Inc.

CHAOS

A Speaial COMPASS Report

and federal government, retail, banking, securities, manufacturing
and service. Two of the focus groups were in Boston. The other two,

“in San Francisco. Each focus group had an average of ten
~ participants with an overall total of forty-one IT executives. The

purpose of these particular focus groups was to solicit opinions on
why projects fail. In addition, The Standish Group conducted
interviews with various IT managers. Some of their comments are
enlightening about the varlety of problems besetting project

- development

' Ma'ny of the comments echoed the findings of The Standish Group

survey. "We have 500 projects. None are on-time and on-budget.
This year, 40% will get cancelled,” said Edward, Vice President of
MIS at a pharmaceutical company.

Other comments W'eht'directly to the reasons for failure. Jim, the

* Director of IT at a major medical equipment manufacturer, said:

"Being that it's a mindset, it's very difficult to get all-of the

: ‘mariagement -- it's even on the Jocal level, not even on a worldwide

level -- to get all of the management to agree on a set of rules....

'That's a challenge in itself because you have to, in some cases,
© conviri¢e them that this is best for the company, not necessarily best
" for them. hut best for the company. And you have to have that buy-
in. If you'don’t have that buy-in, }ou re going to fail. I don't care
" how big or how small the project is."

John, Director of MIS at a government agency added: "Probably 90%
of application project failure is due to politics™ And Kathy, a

_programmer at a telécommunication company, offered an even more
' scathing commerit on politics: "Sometimes you have to make a

decision you don't like. Even against your own nature. You say
well, it's wrong, but you make that decision anyway. It's like taking
a hammer to your toe. It hurts."

Bob, thé Director of MIS at a hospital, commented on external

factors contributing to project failure. "Our biggest problem is

“competing priorities," he said. "We just had a reorganization today.
- So now that's going to'sap all the resources. And explaining to senior

management that, ‘Well, it's really taking us the time we said it was

- going to take. But because you've reorganized the company, I'm

going to take another six months on this other project, because I'm
doing something else for you.' That's the biggest issue | have." Bill.
the Director of MIS at a securities firm, added: "Changes, changes,
changes; they're the real killers.”

Page 8

The Standish Group International, Inc. Copyright © 1994

96

A Special COMPASS Roport

CHAOS

CASE STUDIES

California DAV

Some of the comments were darkly humorous. "Brain-dead users,
just plain bram dead users,” said Peter, an application analyst at a
bank. “When the pro_;ected started to fail," said Paul, a programmer
at a personal products _ma_nufacturer, "the management got behind it
-- way behind."*

The comment most indicative of the chaos in project development

came from Sid, a project manager at an insurance company. "The
project was two years late and three years in development,” he said.
"We had thirty people on the project. We delivered an application

- the user didn’t need. They had stopped selling the product over a

year before.” '.

For further insight into failure and success, The Standish Group
looked carefully at two famous Resolution Type 3 {cancelled) projects
and two Resolution Type 1 (successful) projects. For purposes of
comparison, the project success criteria from the survey of IT
executive managers was used to create a “success potential” chart.

~ The success criteria were then weighted, based on the input from the

surveyed IT managers. The most important eriterion, "user
involvement," was given 19 "success points". The least important --
*hard-working, focused staff’ -- was given three points. Two very
important success criteria -- "realistic expectations" and "smaller
project milestones” -- were weighted at ten and nine points
respectively. Fmally, as presented later in this report, each of the
case studies was graded.

In 1987, the California Department of Motor Vehicles (DMV)
embarked on a major project to revitalize their drivers license and
registration application process. By 1993, after $45 million dollars
had already been spent, the project was cancelled.

According to a'specia_l report issued by DMV, the primary reason for
redeveloping this application was the adoption new technology.

~They publicly stated: "The specific objective of the 1987 project was

to use modern technology to support the DMV mission and sustain
its growth by strategically positioning the DMV data processing
environment to rapidly respond to change.” Also, according to the

DMV special report "The phasing was changed several times, but the

DMV technical community was never truly confident in its
viability...."

The project had no monetary payback, was not supported by
exccutive management, had no user involvement. had poor planning,

Copyright © 1994

The Standish Group International, Inc. Page 8

97

CHAGS

A S‘p(r(‘.i:x] COMPASS Report

American Airlines

Hyatt Hotels

Baneo Hamarati

poor design specifications-and unclear objectives. It also did not have
- the support of the state’s information management staff.

- The DMV project was not rocket science. There are much harder
- ..applications than driver licenses and registrations. But because of

internal state politics, unclear objectives, and poor planning, the

i -project was doomed from the start.

Early in 1994, American Airlines settled their lawsuit with Budget

o Rent-A-Car, Marriott Corp. and Hilton Hotels after the $165 million
- CONFIRM car rental and hotel reservation system project collapsed
into chaos. .

This'project failed because there were too many cooks and the soup
spoiled. Executive management not only supported the project, they
were active project managers. Of course. for a project this size to
fail, it must have had many flaws. Other major causes included an
incomplete statement of requirements, lack of user involvement, and
constant changing of requirements and specifications.

While Marriott and Hilton Hotels were checking out of their failed
reservation system, Hyatt was checking in. Today, you can dial from

—.a cellular airplane telephone at 35.000 feet, check into your Hyatt

hotel room, schedule the courtesy bus to pick you up, and have your
keys waiting for you at the express desk. This new reservation
system was ahead of schedule, under budget, with extra features --
for a mere $15 million of cold cash. They used modern. open systems
software with an Informix database and the TUXEDO transaction
monitor, on Unix-based hardware.

Hyatt had all the right ingredients for success: user involvement,
executive management support, a clear statement of requirements,

proper planning, and small project milestones.

A year after a strategic redirection, Banco Itamarati. a privately-held
Brazilian bank, produced an annual net profit growth of 51% and

‘moved from 47th to 15th place in the Brazilian banking industry.

Three fundamental reasons account for Banco Itamarati's success.

First, they had a clear vision with documented specifie objectives.
Second, their top-down level of involvement allowed Banco Itamarat;
_ tostay on course. And finally, the bank produced incremental.

measurable results throughout the planning/implementation period.

Page 10

The Standish Group International, Inc. Copyright © 1994
PYTIg

98

A Special COMPASS Report

CHAQS

Banco Itamarati's clear business goal is to be one of Brazil's top five
privately-held banks by the year 2000. Their objectives include
maintaining a close relationship with their customers to improve and
maintain an understanding of their needs, offering competitive
financial solutions, guaranteeing customer satisfaction, and finally

. producing balanced results for the Itamarati Group. Banco

Itamarati's objectives were incorporated into a strategic plan that
clearly identified measurable results and individual ownership.

Their strategic plan made-technology a key component of the
business strategy. Itamarati used Itautec's GRIP OLTP monitor as a
basic tool for integrating software components. According to
Henrigue Costabile, Director of Organization Development, “We are
one of the first banks to implement a client-server architecture that
maximizes the potential of this architecture.” Executive leadership,
a well-communicated plan, and a skilled diverse team provided the
foundation for Banco Itamarati to achieve their long-term goal,
potentially ahead of schedule. :

CASE STUDY The study of each project included adding up success points on the
CONCEUSIONS “success potential” chart.
SUCCESS CRITERLA PoINTS | DMV | CONFIRM | HVATT | TAMARATI
1. User Involvement 19 NO (D NO(» YES (I YES (1Y
2. Executive Manazemcent Support s Ny (O YES (I VES (16} VIS)
3. Clear Statement of Reouirements 13 NO(® NOtm YES (1D Ny em
1. Proper Planning 11 . N L . Ny |) YES (1D YiS (D ;
3. Realistic Expoeetations 10 YES (10} YES (IL;) YES (10y VIS (i
G. Smaller Projeet Milestones 9 o _ I\'(..U { 0): NO (DY YES (9 YER (™
7. Competent Stalf 8 NO {0 TNO (D VES (8 Yits ¢ &)
8. Ownership [H NO () NO YES (1) YES 0
. Clear Vision & Ohjeatives 3 ' NO () CNO (D Y o0 ‘:'l-':,"?]
10, Hard-Warking, Foeused Seadf ."i. NO) (_.l).). YES (%) YEES (D VER)
TOTAL 100 [1o | HA)) 85

With only 10 suceess points, the DMV project had virtually no
chance of success. With 100 success points, Hyatt's reservation
project had all the right ingredients for success. With only 29

Copyright © 1994

The Standish Group International, Ine. Page 11

CILAOS

A Special COMPASS Report,

THE BRIDGE 10 SUCCESS

success points, the CONFIRM project had little chance of success,

With 85, Itamarati, while not as assured as Hyatt, started with a
high success probability.

Notwithstanding, this study is hardly in-depth enough to provide a
real solution to such a daunting problem as the current project
failure rates. Application software projects are truly in troubled
waters. In order to make order out of the chaos, we need to examine
why projects fail. Just like bridges, each major software failure must
be investigated, studied, reported and shared.

Because it is the product of the ideas of IT managers, the “Success
Potential” chart can be a useful tool for either forecasting the
potential success of a project or evaluating project failure.

Research at The Standish Group also indicates that smaller time
frames, with delivery of software components early and often, will
increase the success rate. Shorter time frames result in an iterative
process of design, prototype, develop, test, and deploy small
elements. This process is known as "growing" software, as opposed
to the old concept of "developing” software. Growing software
engages the user earlier, each component has an owner or a small set
of owners, and expectations are realistically set. In addition, each
software component has a clear and precise statement and set of
objectives. Software components and small projects tend to be less
complex. Making the projects simpler is a worthwhile endeavor
because complexity causes only confusion and increased cost.

There is one final aspect to be considered in any degree of project
failure. All success is rooted in either luck or failure. If you begin
with luck, you learn nothing but arrogance. However, if you begin
with failure and learn to evaluate it, you also learn to succeed.
Failure begets knowledge. Out of knowledge you gain wisdom, and it
is with wisdom that you can become truly successful.

Page 12

The Standish Group International, Inc. Copyright © 1994

100

DBMS Bookmarks

(‘position paper)
~March 31, 1995

7 TanJose | _
~ Microsoft Corporation -
Introduction

The position described in this paper was developed through work with Microsoft Access, a wildly popular
PC DBMS, and with Microsoft Exchange, an unreleased mail product, with a server database.

Bookmarks are record identifiers. They are currently a controversial topic in Microsoft as existing DBMSs
adopt new features, including clustered indexing and on-line compaction, which invalidate previous
bookmark designs. e

Bookmarks have a variety of uses in both client and server components of DBMS products. Server
component uses include non-clustered indexing; query execution, cursors, record lock management, and
record multi-version management. Client component uses include updatable query results and cursors.
This paper focuses on bookmark designs for server component non-clustered indexing and query
execution uses. In non-clustered indexing, bookmarks are the record pointers. In query execution,

bookmarks are used as record data surrogates, avoiding costs of data retrieval from records not ini the final

query result. They are also used to combine subquery results into a final query result.

Bookmark designs must support minimal requirements and, in addjtidn',.may meet design goals to greater
and lesser extents. Forward reference and primary key bookmark designs are criticized in the context of
the requirements and goals defined in this paper.

Bookmark Design Requirements"

Bookmarks must support the following requirements.

unique identification of a record .

For the uses described in this paper, unique identification of a record is only required in the context of a
table. It may be possible for an inserted record 1o have the same bookmark as a previously deleted record.
In order to avoid aliasing between the two distinct records, a duration of bookmark validity must be
established. For example, a bookmark may be valid for the duration of a transaction in which it is
retrieved, or for the duration the cursor with which it is retrieved is open.

navigation to a record
A bookmark must support navigation to the record it points to during the period the bookmark is valid. If

the record has been deleted, then an appropriate error code should be returned from the navigation
operation.

101

102

consistency

Query engines must be able to decompose queries into subqueries on different 1able indexes, and logically

combine the resultant sets of bookmarks. In order to logically combine sets of bookmarks, i.e., intersect,

union, etc., comparable' bookmark values must be returned for the same record regardless of the index v
from which the bookmark is retrieved, and also for the duration of bookmark validity.

retrieval from non-clustered index without record page access

Retrieval of bookmarks from non-clustered indexes must not access record pages. Query execution will

retrieve large numbers of bookmarks from non-clustered indexes and combine these intermediate results

with set operations, greatly reducing the number of bookmarks in the final query result. Accessing record

pages in non-clustered index order typically has a poor locality and will result in one or more buffer cache

misses for each bookmark retrieved. Avoiding page accesses during non-clustered index bookmark

retrieval so dramatically improves query performance that it is a requirement of a bookmark design. —

Bookmark Design Goals

In addition to design requirements, bookmark de51gns should endeavor to meet the followmg goals

navigation to a record with minimal page accesses

Bookmarks are used to nav1gate to records when accessing record data from non-clustered indexes and
when data is retrieved from records in query results. Page accesses w]uch iead to buffer cache misses and
limit server th.rough put, should be rmmmxzed

record reorganization with _minimal page accesses

Records may be reorganized during page splits and page merges. Page splits occur in clustered indexes
when a record is updated or inserted on a page and insufficient page resources are available to support the
operation. Page merges occur in clustered indexes when record updates. or deletions allow two or more :
adjacent pages to be merged into fewer pages. Page merges may also occur when no clustered index is —
.present, when record deletions or reductions allow two or more adjacent pages in a sequential ordering 1o

be merged into fewer pages. Page accesses should be minimized. =~ . L

orderable by record page

If bookmarks can be ordered by record page, bulk bookmark navigation can be ‘optimized to access those
records from the same page together®. This can substanua]ly reduce the number of page accesses when
multiple bookmarks are from the same page. Accessing records from dxfferem pages in page order may
also be more efficient via read-ahead. . : : _

compact

Non-clustered indexes will have one bookmark in every index entry. More compact bookmarks will allow
more index entries per page and hence reduce page accessed during non-clustered index range scans.

! Bookimarks which represent the same record but are not identical may be compared to be equal’
according to rules or a provided comparison function.

? Bulk bookmark navigation includes non-clustered indexes with duplicate key values, Ordering non- —
clustered indexes by both key and record page number minimizes record page access during non-clustered
index range scans.

unrestricted record reorganization

Retrieved bookmarks should not prevent records from being reorganized, due to page splits, or page
merges. Preventing page splits reduces concurrency. Preventing page merges can cause additional page
accesses during subsequent DBMS operations. : '

Bookmark Design Alternatives

Forward Reference

Forward reference (FR) bookmarks are the record page number/slot nufber address. 'When records are
reorganized to a new page during split or merged, a forward reference to the new page number/slot
number is stored in the original address and the original bookmark is stored in the reorganized record [1].
The bookmark uniquely describes the record until such time as the record address is available for reuse.
This can occur if the record is deleted thereby freeing the page number/slot number for reuse, or if the
forward reference for a reorganized record is deleted, again freeing the page number/slot number for
reuse. Asaresult, deleted record addresses are freed by a back ground cleaning thread instead of being
freed immediately. Forward references are also deleted and freed by the back ground cleaning thread.
The cleaning thread only operates on bookmarks that are no Ionger valid and hence bookmarks uniquely
describe a record for the duration of validity.

Navigating to a record is as simple as accessing the page number/slot number and checking for a forward -
reference. If one exists, the record is accessed with the forward reference page number/siot number.

When a bookmark is retrieved from a record, the page number/slot number is returned, or if the record has
been reorganized, the stored original bookmark is returned. As a result, a consistent bookmark is
returned until a back ground cleaning thread deletes the forward reference and stored original bookmark.
Note that the back ground thread must only operate on bookmarks that are no longer valid. This may
mean that overlappmg usage of bookmarks prevents t.he back ground cleaning thread from ever operating
onatable.

Non-clustered indexes contain FR boolcrnarks as record pointers, and hence bookmarks can be retrieved
from non-clustered indexes without accessing the record page. Alsc, non-clustered indexes are not
updated with new record bookmarks during record reorganization. Instead, they are updated by a back
ground cleaning thread.” The background clearing thread operates atomically on both the record and all
the record non-clustered index entries. As a result, bookinarks retrieved from non-clustered indexes are
consistent in the same way with bookmarks retrieved from the clustered index.

Navigation to a record is in typically one page access. or iwo if the record has been reorgamzed since the
last back ground clean up could operate on the record.

Record reorganization is required to access pages for all previously moved records. In the worst case, one
additional page access is required for each record moved! As the number of records on a page increases,
more page accesses are required for record reorganization.

FR bookmarks can be ‘ordered by original récord page number since this is contained w:thm the
bookmark. ‘Provided that records have not been reodfganized too many times since the backup ground
clean was Iast able to operation on them, this is as good as ordering by actual page number. 'Non-
clustered indexes can be ordered by both key and bookmark for reduced record pages accesses during non-
clustered index range scans of duplicate keys. -Note that the back ground cleaning thread must also
coordinate operation with queries performing non-clustered index range scans to avoid the scan finding
the same record twice, when a bookmark of low value is updated to a bookmark of high value, or
conversely, not ﬁndmg arecord in :he index when a bookmark of high value is updated to a bookmark of
low value. : - : .

103

FR bookmarks are small, and can stored in non-clustered mdexes as bxg -endian page number/slot number _

for prefix compression along with non-clustered index keys.

FR bookmarks do not restrict record reorganization. Both page splits and pages merge can proceed since
neither operation changes a record bookinark or prevents navigation to a record from its bookmark.

Primary Key

Primary key (PK) bookmarks are primary keys. All tables must have and be clustered on a primary key.
When records are reorganized to a new page, the primary key is unchanged and can still be used to
navigate 10 the record via the clustered index [1]. Itis possible for a record 1o be deleted and another
record to be inserted with the same primary key. As a result, deleted keys must be retained for the
duration of bookmark validity. The duration can be for the current transaction which would then allow
existing isolation mecharnisms, i.e., locks or multi-versioning, to be used to guarantee bookmark vahdlry

Nav1gatmg toa record is a simple asa clustered mdex seek.’

When retrieving a bookmark the primary key is returned Since the pmnary key does not change, a
consistent booknark is returned.

Non-clustered indexes contain primary keys and, hence, P bookmarks can be retrieved from non-
clustered indexes without accessing record pages.

Navigation to a record is typically three to four page accesses, depending on the size of the relation.
However, considering locality, two to three of these pages should already be buffered and actual page
faunits should be one to two [1].. .

Record reorganization can occur with minimal page access. Non- clustered index pages do not have to be
accessed as the record pointers are unaffected by the record reorganization, -

PK bookmarks are orderable by record page to the exten_t Lhax.Lh_e clustered z_nd_ex_is ordered by record
page. Frequent update activity, with associated page splits and page merges, may leave adjacent clustered
index leaf pages poorly clustered. However, ordering PK bookmarks will ensure that each record page is
accessed only once for all bookmarks for records on that page. :

Primary keys may not be compact but typleally are compact For example purchase order number can be
Jjust as compact as.record page number/slot number Furt.her prunary keys may be preﬁx compressed
when non-clustered index duplicate keys are presem

PK bookmarks do not restrict record reorganization.

Conclusion

Both forward reference and primary key bookmark designs satisfy the minimal design requxremems
described in this paper. Forward reference bookmarks are a natural choice at Microsoft, since previous
bookmark designs, in DBMSs which did not support clustered indexing or on-line compaction, used
record page number/slot number as bookmarks. Many query engine data structures and algorithms have
been designed specifically for page number/siot number bookmarks. However, primary key bookmarks
have substantial benefits over forward reference bookmarks.. :

Primary key bookmarks require no additional page accesses during page splits and merges. over that
rormally found in index page splits and merges.” Forward reference bookmarks require additional page
accesses to update the forward references for those records which did not originally reside on the page
being split or merged. Further, these accesses have poor locality and are likely to be buffer cache misses.
Also. deleting forward references, to reduce page accesses during page splits and merges. requires non-
clustered index updates. Again, poor cache locality is likely to result in two buffer cache misses per

forward reference deleted per non-clustered index’. Lastly, the forward reference bookmark design
described in this paper cannot delete forward references in the presence of bookmark usages which have
overlapping durations of validity. This ioad must be supported by server DBMSs.

Primary key bookmarks may involve typically two page faults per bookmark riavigation, but this is no
worse than forward reference bookmarks with a substantial percentage of record reorganizations. Further,

primary key bookmark record reorganizations do not require non-clustered index updates. As a result, the

primary key bookmark should be employed to the exclusion of the forward reference bookmark design in
server DBMSs,

References

{1]J. Gray and A. Reuter. Transaction Processing Concepts and Technigues. Morgan Kaufmann
Publishers, San Mateo, California.

* Note that as many as four page accesses may be needed to update each non-clustered index bookmark
when a non-clustered index has many duplicates, since the index is ordered by both key and bookmark.

105

Position Paper

Johannes Klein
Tandem Computers Inc.
10100 North Tantau Ave.

Cupertino, CA 95014-2542
klein_johannes@tandem.com

Affiliation.

As a software designer I am responsible for open transaction management and efforts to
introduce transaction processing and reliable workflow management into object frame-
works. My interests and research includes workflow management systems, electronic
commerce, transaction models and synthesis of reliable protocols.

Position.

Transaction processing today is deeply entrenched in an infrastructure race. Yesterday’s
environment of choice DCE has been superseded by CORBA/OLE. Tomorrow’s infra-
structure might be the world wide web or something else. Business process re-engineering
and the promise of electronic commerce will introduce new challenges. Assumptions and
requirements are changing at a rapid pace and pose new challenges for transaction pro-
cessing systems. This trend has lead the industry to replace lengthy standardization pro-
cesses such as ISO/TP and X/Open by efforts which can complete in a short amount of
time and only need a minimum of common agreement. The drive for detailed specifica-
tions has been replaced by letting marked forces and actual implementations work out
many of the hard issues. A good example is the object transaction service.

In contrast to those developments the actual implementation of transaction support for
new environments is lagging behind. Vendors struggle to open up their current systems
and retro-fit them into upcoming infrastructures. Transactional interoperability is still not
wide spread. These problems become more severe with the deployment of workflow man-
agement systems and electronic on-line services. Object oriented approaches are used to
facilitate the current transition and to prepare for anticipated new requirements.

Reliable workflow management systems stress transactional component integration. Any
resource manager and any communication manager which cannot play its role in a trans-
action will complicate delivery of reliable workflow systems. Besides that persistent pro-
gramming languages, user accessible audit services and sophisticated directory services
are needed for inter-enterprise and intra-enterprise workflow management.

Electronic on-line services introduce new requirements for commercial security, service
deployment and software distribution. Current transaction processing environments must
enable merchants to download new services, i.e. new transaction programs. Advertise-
ments and delivery of electronic products will include data and programs. Transactions
must be secure, Merchants must get payed. Consumers must be able to have a choice of
credit cards and cash. In addition electronic on-line services will need support for work-
flow management in order to process orders and track the actual delivery of goods.

Position Paper March 31, 1995 1

106

Transactional Objects with OpenStep

Charly Kleissner

Director of OpenStep

NeXT Computer, Inc.
charly_kieissner@next.com-

1. Introduction

Today’s information systems need to be flexible to adapt to ever changing business conditions. Manzagement of
change is a key computing concept of this decade. Information systems must also be robust, scalable, and reliable
in order to guarantee correct execution of mission critical custom applications.

Object-oriented tools and development frameworks are starting to deliver the benefits of increased productivity
and flexibility, code re-use, easier code maintenance, and better modeling of the real world: In order o scale to the
enterprise level, object technologies need to leverage transaction technologies and seamlessly integrate with
existing TP lite and TP heavy system architectures. This marriage of technologies results in the development and
deployment of transactional objects. These objects fully exploit the object-criented development environment
without being burdened with legacy-style application development as in stored procedures or SQL. At the same
time transactional dbjects take advantage of proven data and process management capabilities of database
systems and transaction processing monitors. : : :

The OpenStep multi-vendor initiative has the goal of creating an open, high-volume portable standard for
object-oriented computing. The primary benefit of this standard is to enable rapid development of business
applications, in particular distributed applications which fully exploit the power of client/server computing through -
the use of object technology. The OpenStep standard has been published and can be copied from the net free of
charge. NeXT Computer, Inc. provides a reference’ implementation and a test suite that certifies compliance with
the reference implementation, : :

In this extended abstract we summarize the products, architectures, and technologies that allow OpenStep objects
to scale up to the enterprise level by taking advantage of existing transaction management technologies. These
transactional objects leverage object-oriented technologies for application development and transaction processing
technologies for production deployment.

We first review object-oriented client/server architectures and then describe the Enterprise Objects Framework, a
product that is used to automate the process of storing complex objects in relational database systems. We then
outline the usage of Enterprise Objects Framework to implement TP lite objects and show how this can be
extended to TP heavy objects. We conclude with an assessment of major industry trends in the area of
object-oriented transaction processing.

2. Object-Oriented CliéntISerVer -Architectu_res -

Object-oriented client/server architectures maintain a clear separation between the user interface, business objects,

and the database server. Business policies are implemented as methods on business objects in order to take full
advantage of customization, inheritance, and re-use. The user interfaces of business objects may be changed
without having to change the business policies. The reverse is true as well: The developer may choose to change
certain business policies while maintaining the same user interface.

107

10%

In non object-oriented client/server architectures, some of the business policies might be implemented in screen”
definition code of 4th generation language products or stored away as stored procedure code in database
products. These non object-oriented approaches to distributed application design do not yield the desired results
with respect to code re-use and therefore are not covered in this abstract, R

Business objects transform the traditional two-tiered relational database model into a three-tiered model. The user -
interface usually executes on a client machine, the database server on a server machine. The business objects may e
execute either on the client, on the database server, or on a separate application server.

This flexible, object-oriented, three-tiered client/server architecture provides the architectural framework for
transactional objects. Scalability requirements with respect to networking traffic, session management, and server
management dictate where the. objects actually execute and which part of the system architecture manages the - .
communication between various tiers, i.e., the database management system, the distributed object infrastructure, -
or the transaction processing monitor.

This architectural framework can be used to implement object warehousing as well as workflow applications. In

object warehousing, the main data resides on a database server on the third tier. The online transaction processing

applications which have the most stringent throughput and response time requirements. are executed on the

second tier. The second tier also features some object store (e.g., an object oriented database) which is used as a.

mostly read-only decision support database, i.e., an object warehouse. In workflow applications, the network -~ ..
topology usually includes multiple different types of object servers. Enterprise objects which execute on these
servers decide at execution time that some other type of enterprise object needs to be invoked or created in order
to achieve a business objective. The dynamic nature of the Openstep object modet allows this type of flexibility.
Utilizing the transactional technologies extends this flexibility to include the required level of robustness and
scalability for enterprise deployment.. . : : S o S

OpenStep products like Portable Distributed Objects (see [NeXT- -OpenStep 95]) and Enterprise Objects Framework
provide the core object infrastructure for flexible two-tiered or three-tiered object-oriented client/server system
architectures. They can be used in conjunction with existing relational databases and TP monitors to provide the -
desired robustness for enterprise production systems. s

3. Enterprise Objects Framework

The most significant problem that developers face when using object-oriented programming environments with
relational databases is the difficulty of matching static, two-dimensional data structures with the extensive
flexibility afforded by objects. The features of object-oriented programming concepts such as encapsulation,
inheritance, and polymorphism and their associated benefits like fe_we'r lines of code and greater code re-usability
are often negated by the programming restrictions that co_mé with accessing relational databases within an

object-oriented application, o . -

In his recently introduced "Third Manifesto® (see/DD95)), Date faults the relational database vendors for not ,

correctly implementing the relational concept of "domain" which he falsely equates to “object class" (also see [Date —
95)), thereby mixing up user-defined data types with object classes. There is, of course, no one-to-one mapping- -
between an object class and any single relational concept (like domain or relations) since objects contain not only
data but also methods and adhere to an object model which defines, among other things, the semantics of
inheritance and polymorphism. It does, however, make sense to define the mapping between the data portions of
the object model and the relational model. ' o

The Enterprise Objects Framework product provides a conceptual bridge between a mature object model as
described and implemented in OpenStep (see [NeXT-OpenStep 95]) and existing relational database products by

taking the more practical approach of allowing data of multiple base relations to be mapped to an enterprise object.
Enterprise objects, like any other object, also contain logic, algorithms, and methods. These methods represent
business policies and procedures. Only part of an enterprise object's data may be stored in a relational database
management system, other parts may not reqr.nre the same level of persistence or may be stored in different
storage engines. _ : y

Object technology improves developer productivity and simplifies maintenance by enabling applications to be built
out of re-usable, pre-built components. Relational database systems have the refiability and performance needed to
build large-scale, multi-user decision-support and production on-line transaction processing applications -
capabilities still unavailable from most object database systems. Enterprise' Objects Framework provides a flexible '
mapping between the two models.

4. TP Lite Objects

The Enterpnse Objects Framework system archltecture provxdes the framework for TP lite objects It closely follows
the three-tiered object-oriented client/server architecture introduced earlier. It is divided into two major layers: the
interface layer and the access layer. The interface layer provides a mechanism for displaying data, while the access
layer provides data access methods to storage engines. The layers are separated by a data source protocol which
provides a generic object interface to data. The information which describes the mapping between the relational
world and the objects is stored in model files: In this section we bnefly descnbe the data source, the two layers,

and the transactional semantics of TP lite objects before we summanze two-taered versus three-tiered system’
architecture options’and trade-offs. .

4.1. Data Source

A data source is a protocol that has the ability to fetch, insert, update, and delete enterprise objects. tisthe
means by which the interface layer accesses stored data; from the perspective of the interface layer, how data is .
stored (whether in a relational database or a flat-file system, for exampie) is of no consequence. The interface |ayer
interacts with all data sources in the same way. '

4.2. Interface Layer

The interface layer contains a controller and the user interface objects themselves. The controller coordinates the
values displayed in the user interface with its enterprise objects. The user interface objects display data from
enterprise objects.

4.3. Access Layer

The Framework currently provides an implementation of an access layer which conforms to the data source R
protocol and which provides access to relational storage engines. Access layers to other storage backends (e.g., .
flat file systems, object-oriented database management systems, etc.) may be plugged into the infrastructure
provided by the Framework. Note that the classes in every component in every layer have public interfaces and

may be subclassed, adapted, and extended by the customers.

The access layer itself is comprised of two components: the access component proper and the adaptor component.
Adaptors provide data access to a particular relational database server. Adaptors for Sybase and Oracle are
bundled with the product. Adaptors for other database products (e.g., DB2, informix, InterBase, etc.) are provided
by third parties. The access component provides the translation from rela'uonal data into an object graph. It
implements transaction semantics onthe ob;ect Ieve[o

110 -

4.4, Transactional Semantics

The Enterprise Objects Framework uses snapshots to implement flexible and robust concurrency control - .

mechanisms. An update strategy determines how updates should be made in the face of concurrent changes by -

others. The default update methodology is optimistic locking which assumes that the data won't be changed by e
others, but checks this assumption before writing changes back to the database. The access component performs

this check by comparing the data in the snapshot with the data in.the database. An exception is raised if

differences for the relevant attributes are detected. The Framework also. provides for pessimistic focking and no-

locking (i.e., write back dirty data independent of conflicts). The user T may also declare that there are-no updates in:

that case the system does not take any snapshot at all. ' : -

The Framework also provides a flexible butfering mechanism that determines when changes in the user interface
are actually applied to the enterprise objects. The systemn keeps a stack of undo operations which may be applied.-
before the changes are actually committed to the database. The buffering mechanism coupled with the concurrency
control options provide flexible and powerful transactlon capabllmes [NeXT -EO .94] contalns a more thorough and e
comprehensive descrlptlon of some of these concepts S - :

Customers may choose to execute their enterprtse objects on the cllent side and use the database client library to

obtain access to the database (.e., fat client architecture). This: system archnecture is similar to most 4GL.or "~
OO04GL tools and scales with the database. There is no customer or object code running on the serverand =~

subsequently scalability becomes an issue. The appropriate SQL code is generated by the Enterprise Objects

Framework’s adaptor component.

Customers may choose to execute their enterprise objects on the server side and use OpenStep native distributed
object capabilities to communicate between client and server (i.e., fat server architecture). This system architecture: -
leverages the CPU power of the server by executing the business policies on the server side: The robustness (e.g., -
transactional transport, number of sessions, etc.) of the distributed object component has a big impact on the '
scalability of this system architecture.

Customers may choose to combine the above two models and can thereby leverage the distributed objects’

capability of migrating objects between clients and servers without changing any application code. Two-tiered

architectures are simple and well suited for simple distributed apphcatlons that do not require scalability beyond the: . e
database scalability.

4.6. Three-Tiered

In three-tiered architectures, customers decide to execute some of their business policies on dedicated or
specialized servers. TP lite objects leverage database technology and do not integrate with TP monitors.
Depending on the requirements, some of the enterprise objects can also execute on the client side or the database
server. Three-tiered architectures provide the most flexibility; but are harder to manage from an operational -
standpoint (e.g., security, dynamic ioad balancing, etc.): :

5. TP Heavy Objects

in order to provide high-end scatablhty for OpenStep objects, an tntegratlon with TP monltors needs to occur. The
goals of this integration are threefold: (1) to maintain all benefits of an object oriented development environment -
like OpenStep, (2) to maintain all benefits of Enterprise Objects Framework’s seamless integration of the relational
world into the object world, and (3} to leverage the scalability, distributed transactions and reliable queuing of a TP

monitor. In this paper we will show how to extend the current Enterprise Object Framework's capabilities to
achieve this. Following is a very short synopsis of the architectural approach.

The following three pieces of code need to be plugged into the existing architecture to achieve these goals: (1) a
TP Monitor Adaptor (for each TP Monitor), {2) a TP/DB Adaptor (for each database within each TP Monitor), and
{3) a DB Resource Service {for each database within each TP Monitor).

The TP Monitor Adaptor and TP/DB Adaptor link in with the TP Monitor client library either on the client side or on
the second tier. The TP Monitor Adaptor creates tx_calls based on the transaction policies specified within the
transactional objects. The TP/DB Adaptor creates dynamic SQL. The Resource Service knows how to evaluate SQL
and how to tetch results for a particular database.

This level of integration works with dynamic SQL. Performance gains can be achieved by creating stored
procedures and executing stored procedures instead of dynamic SQL. However, it is not advisable to bury business
policies into these stored procedures as one will loose the object-oriented advantages of application code.

6. Conclusion

We see a couple of trends in the industry that will bring object orientation and transaction processing closer
together. Relational database vendors are extending their products with object capabilities as well as process
management capabilities like a TP monitor. TP Monitor vendors will also extend their product offerings with object
capabilities in the future. Finally, object oriented vendors are putting some of the reliability and scalability
infrastructure attributes into their distributed object infrastructure and are learning how to effectively integrate

with legacy databases and transaction monitors.

The OpenStep product suite currently offers three-tiered object-oriented client/server computing. Transactional
objects can take advantage of TP lite as well as TP heavy based architectures in an integrated way.

7. Acknowledgments

The ideas expressed in this paper reflect the work of many people. The author wishes to thank all members of the
Enterprise Objects Framework project team, and particularly the members of the design and implementation team
for pioneering and developing the concepts and implementing the Framework. The main designers and
implementors are Craig Federighi, Linus Upson, Dan Willhite, and Richard Williamson. Jim Mynatt was instrumental
in expanding the implementation from TP Lite to TP Heavy.

References

[Date 95] Date C.J., "An Introduction to Database Systems”, Sixth Edition, Addison-Wesley, 1995.
[DD 95] Darween H., Date C.J)., "Introducing The Third Manifesto”, Database Programming & Design, January 95.

[NeXT-EQ 94] "Enterprise Objects Framework: Building Reusable Business Objects", White Paper, NeXT Computer, '

Inc., 1984,

[NeXT-DQ 94] "Interoperability Through Distributed Objects”, White Paper, NeXT Computer, Inc., 1994.
[NeXT-OpenStep 95] "Portable Distributed Objects (PDO): The NEXTSTEP/OpenStep Object Model", White Paper,
NeXT Computer, Inc., 1995.

NeXT, NEXTSTEP, OpenStep, ObjectWare, Portable Distributed Objects, PDO, and Enterprise Objects are
trademarks or registered trademarks of NeXT Computer, Inc.

111

| Memory—-Résident- Database -Syste'ms: |
A Look Back to 1985

Tobin Le'hma.n | '

IBM Airﬁaden Research .Center _
650 Harry Road (K55/801), San Jose, CA-95120

- HPTS Position Paper -

At the 1985 BHPTS I presented some new indéx algorithms for memory-resident database systems.. The
tone of the talk was futuristic—memory-resident DBMSs were not yet quite ready for prime time, but their
time was coming. Given the 1985 memory sizes (PC sizes 256k to 4 megabytes, medium and high end
machines 4 to 64 megabytes) and memory prices {(around 150 $/mb), the trend of memory sizes quadrupling
every 3 years (at a seemingly constant price per chip) suggested that memory prices would be at 1 §/mb by
1996.

The following table shows the (flawed) thmkmg Starting with the 256k by 1 bit chips at $ 4 each, using
9 of them to get 256k bytes of memory (with parity), it seemed clear that as long as the individual chip
prices remained relatively constant (let’s say we multiply by 50% for 3 years of inflation and other factors),
we’d be near 1 8/mb before the year 2000.!

I year l Chip Size J Chip Price I Total Cost per mb |

1985 | 256k bit $4.00 ¢ 142.00
1988 1m bit $6.00 § 54.00
1991 | 4m bit $9.00 $20.25
1993 | 16m bit $13.50 $7.60
1996 | 64mbit | $§ 20.25 $285
1999 | 256m bit $ 30.38 $1.07

At 1 §/mb, even the most basic business PC would have a minimum of 1 gigabyte or DRAM~—making
memory-tesident database systems not only possible but ¢common-place since most PC applications could
store all needed data in memory.

There was another interesting trend. It seemed that the disk drive folks were getting worried—they

weren’t sure if they could increase densities much more. Certainly the high-end drives, such as the 14 inch
IBM 3380’s, couldn’t spin any faster without breaking apart. At one time the price per megabyte differed
by two orders of magnitude, but the difference grew smaller every day. There was talk about the memory
price/performance curves and the disk price/performance curves crossing somewhere in the near future.
Such talk is not heard anymore. Today, the disk drive folks are happily planning for another order of

1 Granted, chips no longer work this way-—1 million bits by I—but you get the idea, Today’s chips would be configured more
like 4m by 3 or 4 bits.

112,

magnitude increase in density—giant magneto-resistive fields show great promise for incredible disk densities.
In contrast, the chip folks are getting worried. The current high-end chips are operating at line widths of .3
microns, and there is great concern over whether or not we will be able to break the .1 micron barrier. And,
interestingly, a snapshot of the current 1995 disk and memory prices:
$ 0.34 per disk megabyte
$34.00 per memory megabyte (sims).
shows that the old two orders of magnitude difference is alive and well.

In 1985 we didn’t consider the explosion of the PC and laptop markets. The need for 3 1/4 inch hard
drives pushed disk drive technology to the limits, without doing the same for DRAM. As aresult, a gigabyte
of disk space is a common minimum configuration on many business PC’s, whereas 8 to 16 megabytes of

main memory is still 2 common minimum configuration for business PC’s.

Now, in 1995, what does the immediate future hold for memory-resident database systems? | claim that
PC-based memory-resident database management systems are just around the corner for two reasons.

First, consider the popular Rapid Resume feature on PC’s. It maintains the current (volatile) state of
applications by saving all of the applications’ memory contents just before power-off, and then restoring
them on power-on. As users’ application and interface contexts grow more complicated, keeping the on-
going application sessions will become increasingly important. It will change from being a convenience to
a necessity—making data saving a regular on-line activity rather than something that is done immediately
before power-off. Also, as the application working space grows to hundreds of megabytes, the data saving
component will need to start tracking incremental changes to the application data, since a complete working
space dump to disk would not only take a bite out of the available disk space (since two full copies would
probably be needed) but it would also be time (and disk bandwidth) consuming to continually save the entire
memory contents.

Second, the need is growing for a common persistent information repository that can manage most of 2
user’s (and user’s applications’) assets. And, given the recent trends in application development, it is likely
that there will be a large amount of object data that will be stored in this :epos_itory, along with some
amount of traditional (administrative-like) relational data. -

The more advanced (and more expensive) forms of the rep051tory wou}d also be able to act as a cache
for data from even larger server repositories. The client object-relational DBMS (or CORD) could offer full
buffer pool-like services for both Relation and Object-Oriented data when attached to the server. However,
the CORD would also be able to “dock” with the server to checkout some a.mount. of data. and then run
stand-alone with that data. : o

Eventually, the CORD will become the new per51stent storage interface for all client data. Applications
will be able to do one-stop-shopping for any kind of persistent data, be it files, objects or tables.’

How long will it take to get there? Unknown. Although memory is still quite expensive, that doesn’t stop
people from loading their PC’s with 512 megabytes. Some server machines have as much as 36 gigabytes of
real memory (even though any one process can address only 2 gb of it). As the customer demand pushes

for larger memories to run the upcoming spectacular multi-media applications, the gigabyte memories will'

become common and affordable. Although memory will p_ro_bably never be cheaper than disk, soon it will
be cheap enough. ' '

112

Workflows Make Objects Really Useful

~ Frank Leymann
_ IBM Software Solutions Division _
German Software Development Lab (GSDL)
“Hanns-Klemm-Str. 45
' D-71034 Boblmgen
Germany

e-mail: frank_'_'Icy' at vnet.ibm.com

Abstract: One possible perceptzon of wor}cﬂow management systems is that of a
means to realtze advanced, distributed applzcatzon systems. An application developed
according to the workﬂow paradigm consists of a process model and a collection of
program granules. As a vesult, the application becomes flow independent, and its
encompassed program granules become subject of reuse. Since object technology
strives towards reusability too, the relation between both technologies is often asked
Jor: We show how workflow rechnology can be beneficially used Jfrom the very begin-
ning during object oriented ana[yszs and design, how transaction handling is eased, and
how workflow management systems can even enhance the reusability of objects.

Keywords: Busmess ob]ects business processes ob}ect technology, reuse, transaction
models, workflow technology.

1 Introduction

The WIMC (Workflow Management Coalition) is striving towards standardized
interfaces to enable both, interoperability of workflow management systems, and to
allow programs to be written is such a way that they can be used within different
workflow management systems [26]. The expcctauon is that the latter will stimulate
vendors to provide software components bemg reusablc across the variety of imple-
mentations of workflow management systcms "This in turn will allow to compose
applications out of these components via modcls of business processes.

Recent efforts of the OMG within its BOMSIG (Business Object Management
Special Interest Group) and its vertical industry SIGs show the increasing impor-

In: Proc. 6th Intk. Workshop on High Performance Transaction Systerns (HPTS) (Asilomar, CA, September 17 - 20, 1995)

114

tance of business objects as granules of reuse. A joint cooperation between OMG
and WIMC. is targeted. towards a standard- allowing the exploitation. of business
objects in workflows. The result will facilitate a straightforward composition of
applications out of business objects.

This meeting of the workflow paradigm and the object paradigm is very likely just
the initial step towards a mutual large-scale explmtauon of both technologies, espe-
cially within the area of component based” software construction: Together, the
advent of industry standards for models of busmess processes and those ready to use
“off-the-shelf” components will acce]erate the exploitation of workflow technology.
The graphical features for editing process models typically provided by workflow
management systems [10] will allow for an easy customization of the resulting appli-
cations. Inherent features of the object paradigm like polymorphic business objects
will make customization even more flexible. '

We show in this contribution that workflow technology is a powerful vehicle to
enable the widespread exploitation and reuse of objects (or components, respec-
tively): For this purpose we first remind the fundamental benefit of workflow tech-
nology, i.e. the enablement of ﬂow-mdepcndence and its consequences on application
structures is emphasized. Next, we discuss the dual role of a2 WFMS in an object
request broker environment namely as an application object exploiting object services
as activity zmplementanons and as an object service itself providing a framework
which allows the exploitation of objects in business processes. Various techniques
used in object oriented analysis and de&gn to depict dynamic behavior are
abstracted and it is outlined how the modelling features of WFMSs can be
beneficially used in these phases. We outline the different roles a WFMS can play in
terms of X;Open'’s reference model of distributed transaction processing and the ben-
efits originating from the provision of the resulting transactional services. Finally, we
sketch a transaction model which provides compensation based partial backward
recovery in WFMSs to support “business transactions”, and the benefits of business
transactions on objects. o o

2 Removing Flow Dependency

Nowadays, it is general knowledge within the information processing community
that the insight into the so-called data dependency. of applications and its negative
consequences {4] was the primary impetus for the wide-spread exploitation of data-
base management systems that can be reahzed today Apphcatxons are much more
flexible and less vulnerable against changes at the data organization level when
leaving data handling with a databasc management system and exploiting its accom-
panying features.

115

2.1 The Notion of Flow Dependency

Today, a similar observation can be made: It becomes more and more clear that con-
temporary applications are obstructions to change the business processes in which
enterprises serve their customers. Large application systems contain the code that
directly represents these business processes themselves. Consequently, changing a
business process (e.g. to become more competitive) requires changes of the affected
application systems. = '

While the algorithmic knowledge of how to perform a particular step of a business
process reflects a proper application functions, it is the knowledge of sequencing
these steps (i.e. the flow of control) and distributing them to the responsible organ-
izational units (i.c. the flow through the organization) together with the appropriate
information (i.e. the flow of data) what reflects the proper business processes ([13],
[14]). It is exactly the latter which makes the application vulnerable with respect to
changes of the underlying business processes: Applications are flow dependent.

2.2 Workflow Based Applications

The exploitation of workflow technology allows to separate algorithmic knowledge
from knowledge about business processes. The knowledge about the potential
sequencing of algorithmic parts and the technical details of their execution, distrib-
ution, and data exchange (the so-called process model) is left with the workflow man-
agement system, allowing to extract the corresponding code from an application,
consequently removing its flow dependency. What results is called a workflow based
application consisting of a process model and a set of programs. These programs are
implementations of the proper algorithmic components of the underlying business
process and directly support its basic execution steps (the so-called activities).

Within a workflow based application, required changes of the business processes are
easily achieved by adapting the associated process model. Most frequently, no
changes of the encompassed activity implementations (i.e. the basic execution steps)
are necessary, revealing that no code has to be modified to reflect the change of busi-
ness processes. The above mentioned lack of flexibility is removed, i.e. a workflow
based application is flow independent and thus morée robust.

As a remark only we mention that one can expect beneficial impacts on the produc-
tivity of a corporation’s application development staff from building workflow based
applications: Once the process model is defined, the interfaces between the programs
implementing the activities of the business process are defined. In principle, implicit
assumptions about data routing, program sequencing and states are removed. Thus,
parallel development becomes more effective.

116

2.3 Flexible Implementation Structure

The workflow based application paradigm immediately allows for a very flexible
1mp1emcntauon structure: Since the programs may be dispersed on different
machines, running in heterogencous environments it becomes a networked applica-
tion. Moreover, the binding of cach activity to its supporting program is dynamic,
i.e. it occurs at Tun time based on the definitions of the workflow [15}; in this sense
the locations where the various pieces of the applications are executed are trans-
parent and can be changed at run time. This is another aspect of increased flexibility
of applications exploiting workflow technology (“topology independence”). Because
the workflow manager does not assume any inherent structure of a program associ-
ated with an activity such a program may even be implemented as a client/server
structure; in this sensc, the client/server paradigm and the nctworked application
paradigm are independent from each other. '

3 Object Technology

Enterprises are investing today in object technology to improve the productivity of
their programmers and to enable even non-data-processing professionals to build
applications. Application building will become more and more component based. We
describe now the granules that can be used (i.e. ideally re-used) for application con-
struction, and how and when workflows can be beneficially exploited.

3.1 Granuies of Reuse

Based on object technology the most common granules of reuse are class libraries,
frameworks, parts, and design patterns. From a reuse perspective they differ as
follows (e.g. [8], [22]):

e Class libraries provide for reusc at the finest level exploiting especially sub-
classing, overriding, and overloading. The emphasize of reuse within class
libraries is on implementation, i.e. on code. Reusing class libraries typically
requires coding within a programming language.

e Frameworks allow for reuse at a coarser level by ignoring many details of the
underlying class library, externalizing only the aspects relevant to the subject
application area. Often, classes of the frameworks are used as implemented,
sometimes they will be subclassed, or frameworks encompassing abstract classes
have to be completed. What 1s_reu_sed.w_11h1n frameworks is a mixture of design
and implementation.

e Parts are used exactly as they arc provided, especially, they are already com-
pletely implemented. The rcuse of parts emphasizes a component based applica-
tion construction. Typically, this construction is performed via a scripting
language, i.c. a “usage language” (in contrast to the “implementation language” of
the parts themselves).

117

¢ Design patterns emphasize the reuse of design. A design pattern provides the doc-
umentation of a solution for a small architectural problem and explains the
intend, trade-offs, and consequences of the chosen design. Since its documenta-
tion is mdepcndent from a partxcular programming language, a design pattern
must be implemented each time it 1s used. Thus it cannot be embodied in code
and is only of help for programmers.

As described In (2.2), activity nnp]cmentatxons for process modcls are typically flow
independent and free of assumptions about their usage (with the consequence that
an external mechanism to establish transaction boundaries is required; see (4.1)):
Thus, onc activity implementation can be used in many different process models. If
both, the activity implementation and the workflow manager comply to the WMC
standard for “invoked applications” the activity implementation can be used in many
different WFMSs. As a result, the exploitation of workflow technology also stimu-
lates reuse of code, having activity implementations (i.e.. proper application logic) as
granules of code reuse. While the reuse of class libraries, frameworks, parts, and
design patterns is coupled with object technology reuse based on workflow tech-
nology is independent from it.

Beside the fact that activity implementations become subjects of reuse, the strong
demand for reusing process models themselves origins from users of workflow tech-
nology. For this reason, many WFMSs allow for activity implementations which are
again process models (subprocesses), thus enabling top/down and bottom:up model-
ling of processes especially stimulating the reuse of process models as subprocesses.
The meaning of this kind of reuse will be amplified by defining industry standards
for models of business processes typically performed in particular application
domains; these process models can especxaily be reused as subprocesses in enterprise
specific processes. g

Also, the application of object technology can be very beneficial in defining reusable
process models. For example, subtyping and polymorphism allow to define abstract
process models (e.g. a “disbursement” process).by -defining activities as method-
invocations on abstract classes (e.g. a WITHDRAW method of an ACCOUNT
class). The abstract process models are transformed into “concrete” process models
(e.g. disbursement for savings accounts or current accounts, respectively) by sub-
classing the ACCOUNT class with a SAVINGS ACCOUNT class and a
CURRENT ACCOUNT class with (obviously) different 1mp1ementat:ons of the
WITHDRAW method.

3.2 Removing Flow Dependencies From Objects

Some of the components built for application construction based on object tech-
nology will be business objects, i.e. objects which are immediate subjects of business
processcs (e.g. person, account, contract, business card, etc.). Especially, object tech-
nology will be exploited to build such components. Now, one of the underpinnings of

118

object technology is the insight that robust_n_css_s of a system is normally achicved by
encapsulating things which might become subject to changes. So, if the order in
which operations are to be performed can change, or if opcrations can be added or
removed, for example, the guidelines of object technology consequently recommend a
dedicated control object encapsulating operation scheduling. Thus, to achicve
robustness via encapsulation not only bchavior and data must be regarded (this is
what is usually done) but also “ordering”. - = o

If the last proposition is ignored, then following the encapsulation paradigm tends to
hide fragments of the proper business: processes in the implementations of the com-
ponents. - This means that not only the components themselves become flow
dependent, but transitively each component based- application as a whole t0o. In
addition, the business processes (having an-important value by themselves [14], [24])
are only partially explicitly described and externalized-to a broader community. As a
consequence, implementing components in a-way such that they become flow. inde-
pendent will result in much more flexible component based applications.

Figure 1. Workflow As Conductor Of Objects =~

3.3 Scripting

Building flow independent business objécts will cnforce a clear separation of the

more stable behavior of the business objects from the more dynamic behavior of the
business processes. A business process explicitly describes the rules of how, when and
by whom' the services provided by the various business objects arc exploited. An
activity within a business process may directly correspond to a method of a business
object (shaded areas in figure 1).

When the statics of a business (i.e. its business objects in our current scenario) is
split from its dynamics (i.e. its process model) the interaction between business
objects is defined by the process model. The process model may be perceived as a
script prescribing the employment of business objects to reach particular business
goals. At run time the workflow management system will manage the flow of control
and data between the business objects (figure 1). Even more, it will enforce that the
proper organizational units of the cnterprise will become responsible for utilizing the
services provided by the various business objects.

In order to allow for a direct exploitation of business objects as activity implementa-
tions within business processes the workflow management system has to support the
invocation of methods of the business objects. When the execution of an activity is
requested the workflow management system will directly invoke the respective

method. Note, that restricted to control flow C-- follows a similar philosophy: Pro-

grams written in C-~ in general consist of objects and procedural elements explicitly
describing the control flow between method invocations of various objects.

Because of the BOMSIG efforts of the OMG mentioned in the introduction it can be
expected that many business objects will become standardized and defined via 1DL
(Interface Definition Language [20]). These IDL defined business objects can be
implemented by using SOM (System Object Model) technology [9]. Then, by natively
supporting the invocation of methods of SOM objects the workflow management
system facilitates the exploitation of services provided by the corresponding business
objects as activity implementations. By further exploiting DSOM technology (Dis-
tributed SOM [9]), which is IBM’s CORBA [20] implementation) even the location
of these objects is irrelevant to the workflow manager and objects accessible via any
CORBA compliant implementation ‘can be used as activity implementations. In
CORBA terminology the - workflow ‘management ‘system (as a scripting feature)
would be an application ‘object exploiting object services or common facilities pro-
vided by business objects (figure 2).

Also, OpenDoc as well as OLE allow the composition of applications out of compo-
nents, more precisely out of parts (see 3.1). Especially, the joint presentation of the
interfaces of such applications as an integrated, composed document is supported.
By adding the mechanism of invoking OpenDoc parts to the workflow manager it
will be possible to exploit such parts as implementations of activities too. Vice versa,
OpenDoc parts representing particular workflow constructs may be provided. For
example, a part handler for activities may allow for including work requests in docu-

120

ments and to start the execution of work directly fro_rri the document. It is the former
that reveals that process models may also bc perceived as scripting language (in the
sense of 3.1) for using parts. .

Workflow as Script

- Application Objects - Common Facilities

~ Object Services

T ——— o — T

Workflow as Fremework
Figure 2. Workflow Management System And Object Réqaest Broker

Note, that we do not argue that workflows are a substitute for scripting languages
like REXX or VisualBasic. Instead, we would like to introduce the notion of “light-
weight scripting” and “heavyweight scripting™ - Lightweight scripting is performed
whenever a desktop application has to be composed for a single enduser perhaps by
the enduser himself; a “traditional” scripting language is used for this. Heavyweight
scripting is performed whenever an application has to be composed which requires
the collaboration of multiple people distributed in an enterprise; a process model exe-
cuted by a workflow management system is used for this. Heavyweight scripting
adds features like parallelism, - heterogencity, distribution, context dependent (i.c.
dynamic) resource allocation (e.g. staff resolution) to the notion of scripting. The
implementation- overhead inherent to these features is thc reason why we call this
kind of scripting “heavyweight” and. why two-different. categories of scripting have
their own right of existence. SRR . : -

12]

3.4 Object Oriented Analysis and Design

Object technology provide many methodologies to capture an application domain
during the analysis and/or design phase. The derived object models represent the
static representation of an application domain. In order to allow for an analysis of
the dynamic behavior of an application various techniques are proposed: Collab-
oration graphs [25], event flows [21], timing diagrams [1], interaction diagrams [11]
all show at thc abstract level a structure as depicted in figure 3 which can be called
most appropriately message flow diagram. Basically, such a diagram may be per-
ceived as a description -of the control flow between method invocations. Some
authors even associate additional conditions with the “arrows” describing the “control
flow” (e.g. [11]) revealing the workflow aspects in the sense of [13] of such message
flow diagrams.

Used Objects
object_1 object_2 object_3 oo ODject.m
! . 1 X i ’

<message>

System Boundary

Figure 3. Message Flow Diagram

In [12] use cases represent a business from an external point of view, i.e. by “actors”
representing the environment and who want to use thc business. Consequently,
structures not seen by actors are excluded from the use casc but the interactions of
the environment with the business is represcnted. A use case describes the flow of
events necessary to yield a certain result. Also, a coarse grained object model (as a
result of the analysis phase) accompanies the use case introducing the objects (of one

122

of the catcgory “interface”, “control” and “entity” [11]) necessary to run the business.
At a more detailed level (i.e. during the design phase) interaction diagrams show how
a use case is realized by communicating objects [12]. An interaction diagram shows
the stimuli that are transmitted bectween the objects, as well as parameters that
follow the stimuli. Here; the corrcspondmg message ﬂow d1agram contalns even data
flow aspects emphas1zmg its workﬂow rclatlon [14] '

Fork : . Stair.

Figure 4. Fork And Stair Diagrams

Bascd on the fact that message flow diagrams represent workflow aspects a funda-
mental observation has been made in [11] on the structure .of such diagrams: A
message flow diagram is in general composed of two basically diffcren{ structurcs
namely either a fork structure or a srair structure (see figurc 4). '

e Fork structures are implicd by centralizing responsibilities, i.e. when the global
control and data flow is placed in one object. The remaining objects are used for
enquiries, utilities, interfacing users etc... Using such a kind of “control object” is
an approach workflow purists will prefer.

e Stair structures are implicd by delegating responsibilitics, i.c. when each object
only knows a few other objects and how to exploit them. In such a kind of decen-
tralized structure the responsibility for the local control and data flow is with

10

123

each object itself; note especially that these objects are then flow dependent. The
delegation of responsibility is the approach object purists will prefer.

The proposition derived in 3.2 (namely that robustness achieved via encapsulation
must not only regard behavior and data but also ordering) is made manifest in forks:
A fork typically encapsulates ordering. In contrast to this, stairs express assumed
stability of ordering (or collections of strongly connected operations [11]). In general,
fork and stair structures will be used in combination to yield a stable and robust
structure.

It is one of the strengths of workflow technology to facilitate in an easy manner espe-
cially modifications of orders of operations. Thus, it is only natural to exploit
workflow technology for the implementation of fork structures, i.e. for encapsulating
ordering of operations: Simply, the controlling object itself becomes an instance of a
process model which in turn describes the control flow between the affected objects.

In [23] a methodology has been sketched that uses process models as representations
of control objects of use cases; additionally, a protocol is outlined that tights such
kinds of control objects together with the (appropriately behaving) other kinds of
objects (i.e. interface objects and entity objects) to result in a workflow application.
Since that approach requires the exploitation of workflow technology after the anal-
ysis phase we sense obstructions from object purists against this. Because of this, our
approach goes one step further: We allow modelers to stay in the object paradigm
also duringthe design phase ;ind we support them to map their design to workflow
based applications afterwards. '

The cnabling factor for this is our fundamental observation that (subdiagrams of)
message flow diagrams can be mapped to templates of process models (in terms of
[13]). Before applying the corresponding transformation we analyze a message flow
diagram and subdivide it into a collection of subdiagrams each of which is either a
fork structure or a stair structure. Fork structures typically contain control objects
which govern the behavior of the affected objects and are thus represented as process
models in a straightforward manner. Stair structures characterize stable delegation of
responsibilities and are natural candidates for modularization . (as programs or as
subprocesses).

The following sketches our proceeding in transforming a message flow diagram into
the control flow aspects of a process model. Since our intend is to show the basic
philosophy behind our transformation of message flow diagrams into templates of
process models we omit to show how data flows can be derived from message flow
diagrams. :

1. Identify all control dbjects:

11

124

Forks have a single control object. A control object. is dcfined as one sending
many messages out and recciving only “a few” messages back, thus the difference
of outgoing messages and incoming messages must be “high”. The real crux is to
tune this difference appropriately to identify control objects.

38}

. Build all fork structures:

All objects which receive a message from a single control object are included in
the associated fork. Objects receiving during their life-time messages from more
than onc object need a special treatment (not covered in this sketch).

3. Build all stair structures

Each connected component of the diagram which results when all outgoing mes-
sages of all control objects arc removed is considered to be a stair structure. Espe-
cially, a control object receiving a message out of a stair is (virtually) added to
the stair.

4. Transform forks into process models:

The target of a message sent by a control object becomes an activity the associ-
ated implementation of which corresponds to the invocation of the method speci-
fied in the subject message of the target object. If the target is a fork structure its
associated diagram is transformed into a subprocess. If the target is a stair struc-

ture and it has been transformed into a process model this process model
becomes a subprocess; otherwise, the stair is considered to be a single activity
with exactly the module as implementation which has been associated with the
stair.

5. Refinement:

Message flow diagrams in gcﬁcral hide parallelism. Thus, the resulting control
flow structures should be reworked to enhance the degree of parallelism.

6. Transform stairs:

A stair can be transformed into a process model too; from that source code can
be generated (sec below and [18], [19]). Otherwise, the diagram is transformed
into a program with whatever is available.

In 3.3 we madec the observation that C-- programs may bc perceived in general as
specifications of the control flow-between method invocations of servicing objects.
This in turn shows the desirability of a workflow compiler or source code genecrator
which will transform a process model having method invocations as activity imple-
mentations into C-- programs (or DSOM programs, respectively: see [18], [19]). This
is especially uscful if the subject process model shows a particular behavioral pattern
like for example being consecutively executed by a single person.

125

126

3.5 Coexistence

Object technology and workflow technology are two “orthogonal” technologies: One
can exploit the other in various ways resulting in synergies valuable for both
paradigms, but they can also coexist in the sense that each technology has its own
area of applicability without the other.

Coexistence can simply mean that the workflow manager executes programs written
in an object oriented programming language. The workflow manager’s mechanism of
starting programs bound with activities supports natively various invocation mech-
anisms, for example starting programs provided as EXE files, CMD files, or entry
points in DLLs, CICS or IMS transactions, message queue applications, and so on.
Since the way a program is constructed is irrelevant to these invocation mechanisms
— the workflow manager can start the corresponding programs regardless whether they
arc written in an object oriented programming language or not.

Used Objects

worklfow

object object__1 object_2 000 object_n

<message>

System Boundary

I-—l

Another form of coexistence results when treating the workflow management system
as a collection of object services accessible via an object request broker (workflow
framework, see figure 2 and figure 5). This will allow to let application objects to
participatc in workflows, especially those who will not adapt the workflow paradigm.

Figure 5. Workfiow Framework

13

For example, an application object which has been included into a process modcl
may use an ACTIVITY object of the workflow framework to communicate a partic-
ular state change which might be control flow relevant for the encompassing business
process. Such kind of a workflow framework is the expected outcome of the current
activities performed in the cooperation between OMG and WIMC. -

Business objects may be implemented in such a way that they are not externalizing
state information which is relevant for determining the flow within a business
process. Such a business object may wish to communicate in an object oriented
manner with the workflow manager in order to influence the navigation through the
business process the business object is tight in. A workflow framework providing the
corresponding services as objects will allow for that. Again, exploiting SOM tech-
nology for this may bc beneficial because of resulting in language neutrality and
binary compatibility. ' '

4 Transaction Support

With the increase of exploitation of workflow technology for apphcauon construction
workflow management:systems need to provide transactional services. Both, the
capability to bind activities into atomic processmg units 'is required (e.g. [6], [17]), as
well as the support of a transaction model for real-world business transactions [16].
This strategically positions workflow management systems from an application point
of view as the next generation of transaction management systems.

4.1 Atomicity

When components (c.g. business objects) are build for reuse it is a known proposition
from software engineering that their coupling should be weak, i.e. the number and
complexity of interconnections between components is to be minimized [5}. As a con-
sequence, when dealing with recoverable resources each single component must be
allowed to manage transaction boundaries as appropriate from its own local perspec-
tive.

For example, a business object ACCOUNT has a WITHDRAW and a DEPOS!T
method. Since a customer may sometimes wish to pay in money to his account, or
sometimes wish to withdraw money from his account, both, the DEPOSIT as well as
the WITHDRAW method will establish its own transaction boundary. Now, the
transfer of money from one account to another will reuse both, the DEPOSIT
method and the WITHDRAW method by invoking WITHDRAW on the first
account and DEPOSIT on the sccond. This reveals the necessity of a separate trans-
action boundary surrounding both method invocations [7]: In case the WITHDRAW
or the DEPOSIT method aborts as a subtransaction the whole transfer transaction
(as a superior transaction of the former transactions) must be aborted.

14

12

Thus, reusing components with separate transaction boundaries does require some
flavor of a nested or multi-level transaction model. This will allow for writing com-
ponents without any assumption on their use in other transactions. It has been
shown in [3] how this can be achieve by exploiting OMG’s Object Transaction
framework [2] which of course nicely matches with business objects. For the inte-
gration of applications in workflow management systems [6] proposes enhancements
of X/Open's DTP [27] and the introduction of dependency rules to WFMSs which
will allow for that. : .

In [17] 2 more conservatlve approach is taken It is suggested to exploit the existing
X/Open DTP protocol and use dependenmes nnphed by a simple and pragmatic
modelling construct called “atomic sphere to combine components into a unit which
provides for atomicity of the executlons of the collected components

Figure 6. Atomic Sphere

At the syntactic level an atomic sphere is a-set of activities of a process model where
each activity itself ensures ACIDicity. Moreover, consider the subgraph induced by
these “transactional activities” when representing a process model as a directed graph
defining the control flow between activities: All paths between two nodes of this sub-
graph must already be paths within the subgraph, i.e. it is enforced that the control
cannot Jeave the atomic sphere and enter it again (e.g. the activities collected via the

15

128

dashed line in figure 6). The semantics of an atomic sphere requests that either all
activities that have run within the atomic sphere committed or all:aborted; note-that
due to different heuristic' decisions of two- participants: this semantics cannot be
enforced. At the operational level it:is required -that-each implementation-of an
activity within an atomic sphere cxploits only resource managers in the sense of [27].

As a consequence, the workflow management system appears in different’ roles
thhm the structurc defined in the X/Opcn DTP reference model:

& As a resource manager part1c1patlng in the termmauon protocol of the coordl-
nating transaction manager: The WFMS regzsters itself as a resource manager
whenever it detects that the control flow enters an atomic sphere This registra-
tion is performed dynamzcal!y (i.e. via ax_reg() with the TMREGISTER flag set
in its xa_switeh_t structure) in environments with a low number of atomic
spheres; in other environment the registration is performed statically (i.e. via con-
figuration file). As a result of this registration the WFMS will be asked by the
transaction manager to join any global transaction started from that time on.
When a global transaction is joined the participation of the WFMS within the
two-phase-commit protoco] run by the transaction manager will basically allow
the WFMS to get information about the outcome of each activity within the
atomic sphere.

e As an application controlling the root tramsaction which represents the atomic
sphere: When the WFMS detects that the control flow enters an atomic sphere
the first time it starts a transaction which will be the superior transaction for all
activities within the atomic sphere. Thus, each activity implementation that runs
within this atomic sphere will become a subordinated transaction to the root
transaction. The WFMS will ensure that the control flow will not leave the
atomic sphere before all other activity implementations within the atomic sphere
have terminated or it is known that they will not become startable. In this case
the WFMS will end the root transaction appropriately and the usual processing
continues.

* As an application exploiting participating resource managers: The WFMS stores
persistent information of the exccution status of each instance of every process
model in a database. Each control flow relevant state change of an activity imple-
mentation and the associated recording of that fact in the WFMS’s database
system must be performed in an atomic unit. For this purpose, the transaction. of
the WFMS recording such a state change in its database runs as a subordinated
transaction to the acuvlty 1mplcmcntaucn S. transactxon (Wthh thus 1s trcatcd as
a superior transactlon) e : : o

4.2 Business Transactions

Due to the nature of business _procésscs,activi_ti_cs_arc in general long running (espe-
cially tolerating system shutdowns), must be thus interruptible, and often externalize

16

intermediate results. Obviously, the same is true for business processes themsclves.
Furthermore, a business process contains in general collections of activities which are
semantically coupled in the sense that either all coupled activities must be performed
successfully or the work -associated . with 'the activities must be backed out to allow
the business process to continue correctly. In this context the usual transaction
models (in general realized via mechanisms like locking etc.) do obviously not apply.

A transaction model that supports such “business transactions” is proposed in [16]:
Since the above mentioned semantical coupling of activities is in general not
expressed via control flow dependencies or data dependencies we allow arbitrary sets
of activities to be coupled into so-called spheres of joint compensation (or compen-
sation spheres for short). In case a compensation sphere has to be aborted compen-
sation activities are scheduled by the WFMS automatically in an order which is
reverse to the order in which the proper activities within the compensation sphere
have been executed. For this purpose, activities must be specified as pairs consisting
of the implementation of the proper activity and the implementation of the compen-
sation activity. -

Many different parameters effect the actual behavior when backing out a compen-
sation sphere (refer to [16] for all the details): For example, it can be specified
whether after compensation the work within affected process branch(es) should con-
tinue at the entry points of the compensation spheres to be backed out, or whether
some admipistrative actions have to take place, or whether the control flow simply
has to continue at the entry points of the compensation spheres without performing
any compensation.” Furthermore, compensation spheres can become a target of cas-
cading backouts, and backout cannot only be performed “discrete” by running the
compensation activities associated with the proper activities but also in an “integral”
manner by simply running a compensation activity (which can again be defined as a
process model) which is d;rect]y associated with the affected compensation sphere
itself.

Interesting features result when atomic spheres and compensation spheres are com-
bined. For example, an atomic sphere can also be defined to be a compensation
sphere too. When it is detected (e.g. by specifying a ‘true’ report_heuristics parameter
of the commit-operation of the TERMINATOR interface {2]) that a heuristic deci-
sion (which differ from the consensus outcome) has been taken by a participant
represented by an actmty within the atomic sphere the abortion of the associated
compensation sphere can be initiated. Thus, appropr;atc actions can be immediately
and automatically scheduled, for cxample the checkmg for integrity violations, or
the cleansing of inconsistent data

4.3 WFMS-Based Transaction Management

A workflow manager can be perceived as a means to couple applications togcther

17

130

even if they are developed without having the other applications in mind. The
common context often needed for such a coupling may be provided by the dataflow
facility of the workflow manager especially providing-for persistence of the required
context information. What results is an application system providing added value to
its user when compared with its encompassed discrete applications. For example, the
correct sequencing of discrete applications in order to achieve a business goal paying
regard of each particular business situation is automatically provided, idiosyncrasies
of the various invocation mechanisms are hidden, information is- automatically
passed from one application to the otheretc. ~ -~ o

"WEMS Build Time

S - e — e ™
:—*; IT-Resources ﬁm;cm Log
S A ‘T‘ ks — Programs ~ Forward
.“_ : — Machines . : - Back‘wa.rd
L ~ A S A : N Atomicity -
%___W___‘_ _____ Lo . — i______, e i‘“*""'
WFMS ' Run Time ' Y
i —kkik Add—
! -' [L _ .
TP—Monitor Address Y DBMS . |
Space . P] : : . :
Invoked mvoked g - B 5;
Application Application v . |
— Stered |
Procedure .

DBMS DBMS

Figure 7. WFMS-Based Transaction Management

In addition to the context and state of such a'n' integrated application itself the
history of the executed discrete applications, t_h_eir order, and_ their local context can
be tracked and made persistent. In case crroneous situations occur which require to
compensate already finished applications the system can -based on this persistent
data- automatically schedule formerly defined “compensation steps” to correct the
situation. What results is a feature that supports partial backward recovery intro-
ducing a compensation based semantic transaction paradigm for applications inte-
grated via a workflow manager (see 4.2).

18

131

Also, a workflow manager can provide a common transactional context for applica-
tions with transactional behavior, and can manage and control the atomic outcome
of collections of such transactional applications (see 4.1). By this, a workflow
manager facilitates a certain flavor of multi-level transactions.

Figure 7 depicts that the coupled applications may run under the control of various
transaction monitors, as native operating system programs, or as stored procedures,
they may be transactions or non-recoverable units, they may run locally or distrib-
uted in heterogencous environments: The' workflow management system ties them
together in the sense sketched above revealing the middleware aspects of workflow
management. With atomic spheres and compensation spheres workflow management
systems can be perceived as the base for future transaction management.

5 Summary

We have shown that workflow technology is a powerful vehicle to enable the wide-
spread exploitation and reuse of components: The inherent potentials of workflow
technology like the enablement of - flow-independence, forward and backward
recoverability of workflows, transactional workflows, etc. in conjunction with its
embedding in object request broker environments and its exploitation in object ori-
ented analysis and design allow for both, a seamless use of prefabricated compo-
nents, as well as a seamless build for reuse of components.

Acknowledgements: 1 am gratefu) to Dieter Roller and Jirgen Uhl for discussing with me many of
the subjects covered in this paper.

6 References

[1] G. Booch, Object oriented design with applications (Benjamin/Cummings, 1991).

[2] E.E. Cobb et. al., Object transaction service, OMG Document TC 94.8.4 (1994).

[3] E.E. Cobb, The impact of object technology on commercial transaction processing, Technical
Repart, IBM Santa Teresa Lab (1995); submitted for publication.

[4] R. Elmasri, S.B. Navathe, Fundamentals of datobase systems (Benjamin/Cummings, 1989).

[5] R.E. Fairley, Software engineering concepts (McGraw-Hill Book Company, 1985).

[6] R. Gunthdr, S. Jablonski, Transaction-based application integration in workflow management
systems, Technical Report, University Stuttgart (1994); submitted for publication.

[7] J. Gray, A. Reuter, Transaction processing: Concepts and technigues (Morgan Kaufmenn Pub-
lishers, Inc., 1993),

19

132

[8] E. Gamma, R. Helm, R. Johnson, R. Vlissides, Design patterns: Elements of reusable object-
oriented software (Addison-Wesley Publishing Company, 1995). :

[9] SOMobjects: A practical introduction to SOM and DSOH, Document number GG24-4357-00 (IBM
Corporation, July 1984). T

[18] IBM FlowMark for 0S/2, Document number GH19-8215-01 (IBM Corporation, March 1994).

[11] I. Jacobson, M. Christerson, P. Jonsson, 6. {ivergaard, Object-oriented software engi-
neering: A use case driven approach (Addison-Wesley Publishing Company, 1992).

[12] 1. Jacobson, M. Ericsson, A.Jacobson, The object odvantage: Business process reengi-
neering with object technology (Addison-Wesley Publishing Company, 1995}. :

[13] F. Leymann, A meta model to. support-the modelling and execution of processes, Proc. 11th
European Meeting on Cybernetics and Systems_Rese;rch EMCR92. (Vienna, Austria, April 21-24,
1092), World Scientific 1592, 287 - 294. ' ' . '

[14] F. Leymann, W. Altenhuber, Munaglng business processes as information resources, IBM
Systems Journal 33(2) (1994) 326 - 348.

[15] F. Leymann, D. Roller, Business process management with flowMark, Proc. COMPCON Spring 94
(San Francisco, CA, February 28 - March 4, 1994) IEEE Computer Society Press 1994, 230 -.234.
[16] F. Leymann, Supporting business transactions vig portial backward recovery in workflow
management systems, Proc. BTW'05. Databases in O0ffice, Engineering and Science, {Oresden,
Germany, March 22-24, 1995), Springer 1995. '

[17] F. Leymann, Transaction concepts for workflow management systems (in German), in:
J.Becker, G.Vossen, GeschiftsprozeBmodellierung und Workflows (Thomson Publishing, 1995).

[18] D. Roller, F. Leymann, Method and computer. system for generating process management com-
puter programs from process models (Patent Application, January 1995).

[19] D. Rolier, F. Leymann, Methodology to generate C++ programs from Process Models with SOM
Objects methods as activities, (Patent Application, May 1995). '

[20] Object Maragement Group, The Common Object Request Broker: Architecture and Specification
(OMG, Framingham, MA, 1992).

[21] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorenson, Object oriented modelling and
design {Prentice Hall, Englewcod C1iffs, 1991},

[22] D. Tkach, R. Puttick, Object technology in application development (Benjamin/Cummings,
1894}.

[23] K. Walk, Object oriented development of workflow menagement applzcatzons, Technical report
{1BM Austria, 1994).

[24] T.E. White, L. Fischer (ed.), New tools for new times: The workflow paradigm (Future
Strategies Inc., Boak Division, 1034). o

{25] R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing object oriented software (Prentice-
Hall, 1990). - - o _

[26] Vorkflow Management Coalition, The workflow reference model, Document Number TCOO-1803,
1994, '

[27] X/Open Guide, Distributed Tronsaction Processing Reference Model (Version 2), X/Open
Company Ltd., U.K., 1993. ' C

20

133

Shared-Everything versus Shared-Nothing:
Why Hybrids Will Win in the Marketplace

Charles Levine
.=+ Tandem Computers Inc. .
_ 10555 Ridgeview Ct., 1.OC 252-10 .
7 Cupertino, CA 95014
" levine_charles@tandem.com . - -

While the debate over shared-everything versus shai'é,d#ndthi'ng goes on, inarket forces are
driving the industry to the realization that hybrids are the answer. Hybrids consisting of
shared-nothing collections of commodity SMPs are going to win. These will look like:

~High speed network interconnect .-

. [
4 or 8-way SMP .
. commoc{ity CPUs 4 or §-way SMP 4 or 8-way SMP
« shared memory .
-+ commodity disks

... Shared everything domair.i.. s e N
. : Shared nothing domain. -

The figure above depicts a shared-nothing cluster of SMPs. I refer to this as course-
grained shared-nothing, in that the shared-nothing components each have substantial
CPU, memory, and I/O capacity. By contrast, in fi ne—gramed shared-nothing all CPUs -
are loosely-coupled. '

The following factors strongly favor shared-nothing clusters of SMPs:

« Economic - SMPs with 4 or 8 CPUs are the sweet spot on the price/performance curve.

Ever more of the hardware support necessary to tightly couple CPUs is being integrated
directly into commodity microprocessors. In the near future, chip manufacturers will sell
SMP modules just like they sell microprocessors today.: The economic advantage of
SMPs will be overwhelming versus fine-grained shared-nothing.

+ Hardware - Only off-the-shelf hardware is needed today to do course-grained shared-
nothing. Previously, the need for specialized networking hardware increased the entry

C. Levine HPTS ‘95 Position Paper

134

cost o build shared-nothing systems. Today, software s the only fundamental
differentiator. R FAES ;

« Scalability - Shared-nothing scales the best, particularly for BIG systems. Clearly, the
ability of SMPs to scale well is improving. The largest SMPs today typically have 8-12
CPUs compared to 4-6 CPUs a few. years ago. It appears that this trend toward larger
SMPs will continue. Nevertheless; SMPs have inherent bottlenecks which limit their
scalability. Today SMPs provide one order of magnitude scalability, whereas shared-
nothing has proven two orders of magnitude scalability with the potential to grow well
beyond that. When the largest SMP is-too small, shared nothing can provide two to three
orders of magnitude of further scalability by using SMPs as nodes in a shared nothing
cluster. ; =

« Architecture - The merchant databases are being redesigned for shared-nothing, usually
under the banner of distributed database. Informix, Oracle, and DB2 offer this today;
NonStop SQL (Tandem) has since day-one (1987); Sybase and Microsoft are not far
behind. The key point is that share-nothing capable DBMSs are running today on your
choice of commodity hardware. |

« Programmer convenience - The SMP model is simpler for the programmer, if for no
other reason than because most programmers have grown up with the shared memory
model. In practice, it is easier for Joe Cobol to program an SMP than a fine-grained share-
nothing machine. In a shared-nothing cluster of SMPs, though, the hard programming
problems are pushed down into the DMBS and transaction monitor, leaving the familiar
SMP environment for the more prosaic programming tasks.

« Availability - Large systems typically require high availability and/or fault tolerance.
Shared-nothing is better for isolating fault domains and increasing availability.
Consequently, the market requirements for high availability favor shared-nothing.

« Management domain - Pure shared-nothing is harder to manage than equivalent shared
everything environments because there are more logical components and, consequently,
more management domains. The management ovethead is proportional to the number of
nodes. The overhead is relatively minor in a large system with a few nodes, which favors
shared-nothing clusters.

« Load balancing - Load balancing is easy in shared everything and hard in fine-grained
shared-nothing. The difficulty of load balancing in shared-nothing is proportional to the
number of components. In a shared-nothing cluster of SMPs, the number of shared-
nothing components is small compared to an equivalent number of fine-grained shared-
nothing CPUs. So load balancing is easier using SMPs as the building blocks in a shared-
nothing cluster. S : S o

C. Levine HPTS ‘95 Position Paper

The Case for Log Structuring in Database Systems

David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond, WA 98055

1 Introduction and Background

The notion of a log structured file system (LFS) {6, 9] evolved from earlier efforts using similar techniques [8, 2]
as a means to improve write performance of file systems. Other benefits include faster metadata operations, e.g.
file create and delete, But there is controversy about the the utility of LFS for database systems, especially in
light of the critique in [10]. This position paper argues that LFS has wonderful potential as the underpinning of a
database system, solving a number of problems that are known to be quite vexing, and providing some additional
important benefits. These include atomic writes, system management and scalability, storage efficiency, and
recovery system performance.
There are three inter-related ideas in LFS.

e LFS virtualizes “tml;é”placement of files on disk. Every write to a file dynamically relocates the data being
written. Thus, a write must also update the data structures involved in this relocation mapping.

o Because data is dynamically relocated, it 1s possible to combine the writes of {logically) widely separated
data inte a large batch, hence replacing a number of separate smaller writes with a single larger write.
Large contiguous file writes can be written contiguously.

« LFS must garbage collects old versions of the data that has been re-written. LFS partitions the physical

disk space into a number of large (e.g. 256KB to 2MB) “segments” into which the batched data is written.-

A relocating garbage collector (CLEANER) reclaims complete segments, hence permitting file activity to
continue indefinitely.

In this short position paper, I first list the advantages of LFS system. Then T examine the negatives and
discuss how they can either be minimized or avoided. The final section contains some not unexpected conclusions
based on this discussion.

2 Advantages of LFS

2.1 Write Performance

LFS can greatly reduce the I/0 accesses needed to support a database. This reduction has a beneficial impact
on a number of system performance parameters.

o it reduces the amount of time that a disk spends seeking, and hence improves effective disk bandwidth.

it reduces the number of executed instructions per page written. LFS batches the writes and hence the
number 1/0 interrupts equals the number of batches (segments) written, not the number of pages written.

e it reduces arm contention on the disk by consolidating the writes.

This performance gain is the traditional and obviously important reason for being interested in LFS. The ad-
vantage is not uniquely to database systems.

136

LFS works particularly well when combined with RAID disks [7]. RAID5 disk systems have a problem
supporting OLTP applications that involve a large number of small writes. These single page writes each result
in four 1/0’s, (i) read the old data page, (ii) read the old parity page, (iii) write the new data page, and (vi)
write the new parity page. LFS can turn a RAID3 disk array into a RAID3 disk array at no increase in write
cost over RAID3. One sets the segment size to be some multiple of the RAID stripe size (could be set equal).
When this is done, small writes are batched so that an entire stripe is written (with parity). The small write
penalty for RAIDS then disappears.

2.1.1 Storage Efficiency

The fact that LFS writes into very large containers(segments) readily permits variable size pages to be stored
on disk. By that I mean, the system caches a fixed size page (e.g. of 8KB) for ease of cache mangement and
system simplicity, but this can be represented on the disk with a variable size unit within a much larger segment
that can contain many such units. The mapping table tells LFS where each page starts, which could be a block
boundary, but doesn’t have to be. ‘

Variable page sizes on the disk permits storage optimization of two sorts.

Compression Compressing data written to disk and uncompressing data read from disk with LFS was suggested
in {1]. Compression of 2:1 is commonly achieved in this way, effectively doubling the disk capacity.

Selective Writing One need not write an entire page if only part of it is used. For example, B-tree pages are
typically only 70% utilized. Writing only the part in use makes the utilization effectively 100%. This might
be regarded as a special case of compression, but is especially useful and inexpensive.

2.2 Managability and Scalability

Two ways of handling disk storage allocation are extent-based and inode-based. Extent-based file systems usually
perform better because of disk page contiguity. Inode-based systems are more flexible in that pre-planning is
not usually required, but contiguity is lost. LFS allocation is a hybrid. It is dynamic like inode-based systems.
but the granularity, i.e. size of a segment, means that contiguity is frequently preserved. On large contiguous
writes, it is indeed preserved. And data written with large granularity can be read with large granularity. So
managability of disk storage is very easy, like inode-based systems but with better performance.

In addition. LFS scales uniquely well. The addition of more disk storage immediately means that /0
performance improves because the CLEANER runs less often when the disks are lightly utilized. And. of course.
data "flows” to the new disks as the segments are exploited by LFS, without any explicit direction.

2.3 Atomic Writes

Database systems need to have high confidence that certain disk writes are either atomic, or have a high probabil-
ity of being atomic. An atomic write failure in most dbms’s requires media recovery which is a very expensive. It
requires restoring from a backup at least part of the database, and then rolling that part forward using the media
log until it is current. Finding the backup for the invalid part of the database can require operator intervention.
Also, the media log is typically MUCH longer than the crash recovery log. The expense of such a failure causes
some dbms’s to write pages twice, first to a dedicated work area on the disk, then back in-place. That avoids
atomicity failures, at the expense of double writing during normal operation.

LFS does not update in place. Rather, when it writes, until after the write is complete, two versions of the

data being written are available (essentially, there is a "shadow” version until the write is complete). Should
the write fail in the middle, the old version of the data is still ok. Thus, a page(which ecould be multi-block) or
group of pages is either written or not- it is not corrupted by a write failure. This eliminates atomicity failure
as a source of media failures.

2.4 Recovery and Availability

But there are additional gains from larger units of atomicity. Modern recovery techniques employ physiological
logging {3, 3]. These techniques permit logical operations but the operations are restricted to affect exactly

137

one disk page so that atomic installation of the operation’s updates can be assumed. LFS permits multiple
discontiguous pages to be installed atomically via its low cost shadowing. This frees recovery systems to log
more encompa.ssmg operations, and hence to move toward logical operations [4]. This can lead to reduced
log size, i.e. one logical operation instead of a number of physiological operatlons that require the logging of
substantial state. It may also lead to greater concurrency because the logical operations have weaker conflict
orders compared to read/write operations.

In LFS, all recently written data is present in the recently written segments. This makes rebuilding the
actively updated part of the cache very fast ‘as entire segrnents can be read sequentially into the cache. In
addition, pages with high read frequency can also be recovered quickly by writing them from time to time,
hence relocating them near the hot update pages: This gives a database system layered on LFS many of the
attributes of a main-memory database system w1th respect to how stability is achieved, and what performance
and availability can be expected.

2.5 Backup and Archiving
LFS provides at least three advantages when moving data from' on-line to near-line storage as is normally done
for backup and archiving. :

o while the cleaner traverses the ﬁle contents reclalmmg space, it can also move data to near-line storage.
The better cleaners segregate hot from cold data, and could migrate cold data to archival storage.

o recently written data is separated from previous data. This optimizes the performance of incremental
backup as only the recent changes need be backed up.

o the nwapping index, already present in LFS, permits newly migrated data to be integrated easily with
previously migrated data. Hence an existing LFS mechanism provides a framework for both near-line
storage and for on-line storage. This mapping index could provide integrated access across the storage
media, thus supporting incremental archiving. .

3 D1sadvantages of LFS and what to do about them
3.1 Reading Cost

In extent-based systemns, contiguous reads are usually done in a single 7/0 access. Likewise for LFS when read
granularity is smaller than or equal to write granularity. This covers most reads, in fact, even ones that appear in
“scans”, e.g. B-tree scans. However, large granule reads following small granularity writes will not be contigous
but will require a number of separate I/O accesses. This may be a problem for decision support and batch
applications. Let us look at two usage scenarios and to determine an effective response.

» There are a large number of writes to data between its reads. In this case, one has substantial savings in
those writes, which have all been batched. Some of the write performance gain is given back with poor
read performance. :

o Few writes occur between reads. These writes are sufficient to destroy contiguity but LFS only produces
modest savings from these writes. This is the essence of the LFS problem.

One possible response is to simply write back data that has been read when the data request results in a
number of discontiguous reads. This restores the contiguity of the data at the granularity of the read. And the
cost of the read has already been paid- no separate re-organization cost is incurred for the read, only for the
write. Such a strategy will not have much of an impact on the high write-frequency case, but should significantly
improve read performance for the low write frequency case.

An additional! complication arises when systems plan parallel execution of queries. Careful placement of data
reduces 1/0 access interference among parallel tasks. But careful placement requires planning and can force
particular parallel decompositions. Random placement of data does not perform as well as well-tuned careful
placement. but can be more robust with respect to dealing with a large number of possible parallel execution
strategies. LFS writes approximate random placement of the data. This is frequently a good approach to load
balancing of the disks as well. '

138

3.2 Cleaning and Mapping

Cleaning and mapping are intrinsic parts of an LFS. These mechanisms are more complex and costly in perfor-
mance than their counterparts in more traditional file systems. However LFS gains are sufficient to justify these
costs. .

Analysis confirms that the cost of cleaning is sufficiently modest that it only slightly reduces the gain in write
performance unless disk utilization becomes dangerously high (greater than 90%). Only the impact of segment
writing and cleaning on read response times might be of some concern. But I/O throughput is clearly improved.
Read response time needs to be watched, but in an era when caching becomes increasingly effective because of
increased cache size, this should not be a major concern.. . L

The size of the mapping table, which is basically an index to all data on all pages of the file system, can be
quite large. The critical parameter is the ratio of mapping table size to file size. For large pages. e.g. 8KB. with
a mapping entry of 8 bytes, the ratioc of index to file is 1000 to one. This should be tolerable in a well balanced
system. given todays prices of 30-50 to one between disk and main memory.

A final issue is recovery of the mapping table when the system crashes. LFS's data placement approximates
a sequential log and permits us to identify recent changes in data placement. Using page writes themselves as
log records means that the pages of the mapping table can be written relatively infrequently. One treats the
mapping table as a database whose transactions are the atomic writes to LFS. That is quite straightforward
and very effective. (This is important as a naive implementation would require re-writing the entire path in the
mapping index.)

3.3 Margo Seltzer’s Thesis

Seltzer’s dissertation [10] threw some cold water on LFS, suggesting only minor gains for LFS and only under
some circumstances. This critique was particularly oriented toward transaction systems, including databases.
However, I do not trust her results for a number of reasons, including-

¢ Her comparison of embedded transactional LFS to user-level transactional system layered on LFS (con-
ventional DBMS style) did not factor in cleaning(the cleaner was not on). The conventional system writes
much less data and so cleans much less frequently. She concluded that the embedded system performed
better, which I believe is false.

o She then used the embedded LFS for subsequent comparisons with conventional file systems which had
been extensively tuned. But, as noted above..the embedded LFS was a poor choice compared to the
lavering of a conventional DBMS on top of LFS.. .. _ -

4 Conclusions

My bottom line is pretty clear. LFS offers not only write performance improvement, but also managability,
scalability, and storage efficiency. Perhaps most exciting is its support of larger atomic writes, which can be
a boon for improving database recovery- and may permit the merging of log based recovery with an integral-
shadowing based scheme. ' R ' T

Finally. for those applications where careful placement of data might have an advantage, it is not irnpossible
to envision an LFS in which some segments are managed using in-place updating. But I would argue that one

should first explore whether small optimizations to LFS might reduce those cases to no more than marginal.

importance.

References

[1] Burrows, M., Jerian, C., Lampson, B., and Mann, T. On-_l_i.ne data compressin in a log structured file system.
Proc. 5th Int’l. Conf. on Architectural Support for Programming Eanguages and Operating Systems, Boston
{1992)

[2} Gait, J. The Optical File Cabinet: A Random-Access File System for Write-Once Optical Disks. IEEE
Computer 21,6 (June 1988) 11-22.

138

(3] Gray, J. and Reuter, A. Transaction Processing: Concepts and Technigues Morgan-Kaufman (1993)
[4] Lomet, D. and Tuttle, M. Redo Recovery after System Crashes. (Feb. 1995) (submitted for publication.)

[6} Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. on Database
Systems 17,1 (March 1992) 94-162. '

[6] Ousterhout, J. and Douglis, F. Beating the I/O Bottleneck: A Case for Log-structured File Systems. Technical
Report UCB/CSD 88/467 (Qct. 1988).

{7] Patterson, D., Gibson, G., and Katz, R. A Case for Redundant Arrays of Inexpensive Disks (RAID). Proc.
of ACM SIGMOD Conf. Chicago, IL (June, 1988) 109-116.

(8] Reed. D. and Svobodova, L. SWALLOW: A Distributed Data Storage System for a Local Network. Local
Networks for Computer Communications, North Holland (1981) 355-373.

(9] Rosenblum, M. and Ousterhout, J. The Design and Implementation of a Log-Structured File System. ACM
TOCS (Feb. 1992)

[10] Seltzer, M. File system Performance and Transaction Support. Ph.D. Dissertation, University of California,
Berkeley {1992)

Contents
1 Introduction and Background 1
2 Advantages of LFS 1
2.1 Write Performance 1
2.1.1 Storage Efficiency 2
2.2 Managabhility and Scalability 2
2.3 Atomic WIHES L L e e e 2
2.4 Recovery and Availability 2
2.5 Backup and Archiving L 3
3 Disadvantages of LFS and what to do about them 3
3.1 Reading Cost e 3
3.2 Cleaning and Mapping o o o 0 e e e e 4
3.3 Margo Seltzer's Thesis o0 L. e 4
4 Conclusions 4

140

QPR—iB—iBQS_I:j'-Ii'l:IB NOVELL TUXEDOD YUy D22 bbaZg F.og

141

Enterprise Client/Server Computing: At the Center of Merging Technologies.

M. Randall MacBlane
O SummitNILOTSOY

Enterprisc computing is dramarically changing in a world where distributed computing is becoming
more pervasive, The office is becoming mobile as the network infrastructure becomes more
widespread and gets integrated with wireless communications technologies. Desktop, groupware,
object, clicnt/server, and TP technologies are converging to create the dynamic environment required
for enterprise-wide computing and clectronic commerce. Some people may argue that distributed
object technology already provides the infrastructure required for this environment but the reality is
that this technology is still evolving and far from providing the foundation required for mission-critical
applications.

‘Within an enterprise, client/server computing spans a wide variety of applicaton models from
well-defined mission critical applications to groupware style messaging and task scheduling to loosely
defined networks of cooperating entities. Distributed object computing (DOC), in particular CORBA
and compound documents, is just one component of a computing solution that also includes
transaction processing monitor and groupware messaging/task scheduling technologies.

Although the CORBA 2.0 shows good progress in standards, there s still a long road to be paved
before ORBs can take a primery role in the mission-critical applications commonly associated with

 transaction processing monitors.: CORBA implerentations have been lacking of key TP elements like
dynarmic load balancing, prioritization, replication of services, fault tolerance and high performance,
as well the administrative tools and services designed to provide the control necessary for the support
of mission critical applications.

The Object Transaction Service approved as part of the CORBA 2.0 specification is a good step

“toward the integration of TP concepts with object-oriented concepts. The Object Transaction Service

~ -allows applications to be designed using transactions to insure tobustness and failwe control.

- However, there is much more than just transactions. ORBs should be able to scale up and deal with

thousands of clients and objects to provide a performance of transactions per second. They should

be able 10 provide an administrative environment that controls the deployment of the services

provided by objects, prioritize requests, insure high availability by allowing replication, improve in
outing techniques, and provide fanlt tolerance.

However, neither TP monitors nor distributed object technologies are the complete answers to
enterprise computing. Groupware technology is also a key component. This technology includes
storc-and-forward messaging, scheduling, task management and loosely coupled non-performance
crirical client/server capabilities. Integration of compound document technology with Groupware will
create “live” documents that evolve as they migrate from desktop to desktop. The integration of

Groupware workflow technologies with the transactional queuing and event management provided
by TP monitors can create the environment vequired for reliable delivery in electronic commerce.

RPR IB.’QS 87:57 S@3 522 6632 PAGE. 882

APR-18-1995 11:10 NOVELL TUXEDO 9e8 522 6632 P.@3

142

Woxkflow is likely 1o besome the basic model for mobile enterprise computing. -

mmmmmmicmsﬁnpmmmmtmmmdﬂymm
of an enterpmise. R:lhbkandmmbusiwssmacﬁonsms:bepossiblcviathis communications
technology. Communications technologies coupled with visualization techniques and compound
documcnttechndogywmphyamndammlmbm&ewonicmmmc!nmu The

E tnchnologi:s'pmvided-byMosaic.andepcshquld;volye_nphecmmteinmgratedwiththe
enterprise conputing. Catalog browsing, or orders initiated from desktops may feed the TP monitor

- op workflow subsystem in charge of automatically processing these requests.

o Emerpiss

L 'I‘h:rc are componentsof mtcrpnse chent/sewa comPunng that are supported by each of the three
- application models discussed; distributed object computing, transaction processing monitors and
 groupware. The interscctions of these technologies provide the reliable and flexible environment
" required by emexprise and inter-enterprise computing, The mave toward “business objects™ will be
- fully possible when products offering this integrated environment appear in the marketplace.
References: o | '_ : | R _
1, Object Management Group, The Comnon Object Request Broker: Architecturc and Specification,
2. Object Manage:ﬁcﬁt Group, CORBA Sgn_ric_:_c__s_:' Ccrmmon Object Services, Drafc. March 1995,

o | | . TOTAL P.€3
APR 10 '95 @7:58 98 522 6632 PAGE . 003

Large-Scale SMPs. No End to the Parallehsm
Debates

A Pos:t:on Paper

John McPherson

Almaden Research Ceriter

650 Harry Road '

San Jose, CA 95120 . L
johnm@almaden.ibm.com .

Introductidn’ |

In recent years, many RISC hardware vendors have introduced symmetric multiprocessor (SMP)

systems. Today, 4-way to 12-way systems are common either in real products, or in announced
producl plans, with larger systems also av ailable from some vendors. There is much talk, however,

of much larger systems with 100's of processors from the hardware architecture community. These
systems, offenng cache coherence access 1o any location in common address spaces across all

processors, will have non-uniform memory access (NU JTMA) characteristics such that access 1o data
physically closer to the processor domg the accessing 1s faster, by an order of magmitude or mors,
than to data that 1s stored "near” other processors.

The promise of the hardware architects is that these NUMA machines provide the same program-

ming mode] as much smaller SMPs, so will be much easier to develop applications on than either '

the shared disk, or shared nothing machines currently available. .Many people are starting 10 argue
that in the long run, SMP hardware architectures will dorminate the industry. However, the non-

uniformity in memory access means that database developers cannot treat large scale NUMA ma-.

chines the same way they treat SMPs. 1 believe we cannot sunply have a single shared buffer pool
that is shared by all processors, but must consider multiple bufter pools 10 maintain locality.. This

means that shared everything database architecture may not be appropriate and either a shared disk = -

or shared nothing database architecture may be more appropnate.. SMPs may end the hardware
debate (thought I doubt it); but I do not -believe they will end the database architecture debate -
they will only start a new round of debate about the "best” paralle] database architecture.

The Database Avchitectures

The database community has settled on a taxonomy of paralle] database architectures consisting
of share evervthing (SL), shared disk (SD1)), and shared nothing (SN) configurations. SL databases
have a single buffer pool, lock table structures, and uniform access 10 all disks in the system by all
database processes. SID databases have multiple buffer pools, usually one for each processor, but
each process can share data from all the disks. Thus a disk page can reside in any one of the buffer
pools, and there may be multiple copies. SD architectures must deal with cache consistency, and
locks must be obtained at a global level (with optimizations for local acquisition of locks in many
cases). The SN architecture also has multiple buffer pools, again, usually one per processor, but
the SN architecture also partitions the disks so that each disk page can only appear in a single buffer
pool. This avoids the need for cache consistency protocols, and it also means that most Jocks can

Large-Scale SMPs: No End to the Parallelism Debates ' B L

143

be obtained at a single processor. One must be careful to separate parallel database architectures
from machine architectures, since, for example we can simulate shared disk architectures on shared
nothing hardware.

Mapping an SE paralle]l database to a NUMA machine with a single buffer pool, single lock table,
single set of buffer pool control bocks, etc. will certainly produce a functionally correct database
solution. However, performance will be disasterous for every shared structure if the hardware is
busy maintaining consistency of shared processor cache lines. The first step in tuning such a system
would be to logically partition the data and database processes, so that database data and processes
execute together on the same processor, One has to make the immediate decision about what to
do when a process needs data’ in' a non-local partition.’ Does one do function- shipping or:data
shipping? Also, this may alleviate contention for buffer pool pages, but one must redesign buffer
pool control blocks, for example, so that an operations such as fixing a page which may require
searching buffer pool control block hash chains, does not inadvertantly result in walking across
control blocks that are not local to the processor. This will happen if the function used to partition
the data is not the same as used by the buffer pool to hash: buffers containing disk pages to buffer
pool hash chains (its unlikely the mappings would be the same.).

Tuning a SE parallel database architecture for a NUMA machine will require considering every_. : o
shared control block in the system, and invention of many new techniques 1o pariition these contro]l

blocks. Modeling, sirnulation, and prototyping will be needed to determine the correct tradecff
between function shipping and data shipping, and many other aspects of the design. I believe it is
likely that a conclusion that will be drawn is that it will be easier to map a SD or SN parallel da-
tabase architecture to NUMA machines 1o get good scaleup. It is likely that NUMA machines
will be implemented with local clusters of 2 - 6 processors that behave like today’s SMPs with
uniform memery access.. In this case, the preferred database architecture will be a hybrid. solution
with SE parallel database technology used for these clusters and either SD or SN technology used
between the clusters.

Regardless of the paralle] database des:gn decision that 1s ultnnater made,; I believe NUMA ma-

chines will not live up to the promise of providing a simple programming model to the database

system implementor. Performance is too important to tgnore orders of magnitude differences in

access time to various memory locations. The debates about shared everything, Versus shared dxsk

versus shared nothing will not end, they will just take on a new chmens:on

About the Author

John McPherson is the Manager of the Exploratory Database _Systems Departmem at the IBM_ e

Almaden Research Center. The department is engaged in a variety of exploratory and applied re-

search activities. We work very closely with IBM’s Software Solutions Division on the delivery of -~
Version 2 of DB2 for AIX, 08/2, and other platforms. ‘We are developing data mining technology-

to discover patterns in huge masses of data, we are exploning new ways to provide innovative query.
and browse capabilities to diverse, heterogeneous repositones in an enterprise or across the internet, -

we are exploring new transaction p_aradigms for use in workflow products, and we are investigating
many other exploratory database problems. - Before managing the' Exploratory Database Systems
Department, John worked on a parallel database prototype, he designed and implemented the
buffer pool manager, data manager, and query evaluation system in the Starburst extensible data-
base system, and he worked on a high performance communications hardware prototype John
obtained a Ph.D from the University of Wisconsin - ‘\/Iadlson

Large-Scale SMPs: No End to the Parallelism Debates N 2

144

An Overview of the Exotica Research Project on
Workflow Management Systems®

C.Mohan G. Alonso ‘R. Giinthér M. Kamath B. Reinwald

IBM Almaden Research Center, San Jose, CA 95120, USA
http -//www.almaden.ibm.com/cs/reports/workflow/exotica_home_page.himl
mohan@almaden.ibm.com, alonso@inf.ethz.ch
Roger.Guenthoer@znformatzk.um-stuttgart.de, kamath@freya.cs.umass.edu
reinwald@almaden.ibm.com

1 Introduction

Workflow is probably one of the most exciting areas of research that has emerged in the past few years. Workflow
concepts and ideas have been around in one form or another for a long time: computer supported cooperative work,
forms processing, cooperative sysiems, office automation, etc. However, only recently the technology and know-
how required to implement commercial systems have become available. In general, workflow management systems
(WFMSs) are used to coordinate and streamline business processes. These business processes are represented as
workflows, i.e., computerized models of the business processes [13], which specify the individual activily steps,
the order and the conditions in which the activities must be executed, the flow of data between activities, the
users responsible for the execution of the activities, the tools to use with each activity, etc. A WFMS is the set
of tools that allow the design and definition of workflows, their instantiation and controlled execution, and the
coordination and integration of heterogeneous applications within the same workflow [13]. Users interact with a
WFMS by accessing their individual worklists, where they can find the activities for which they are responsible
without necessarily being aware of the higher level processes to which the activities belong. A crucial point
to understand workflow management systems is their dependency on a variety of technologies, from databases
to distributed processing.” When designing a WFMS, the challenge is to build a feasible and common working
environment in which all these technologies are integrated in a flexible and easy to use fashion. This integration
aspect is precisely what has made WFMSs so elusive to date and explains the limited success of earlier attempts
to provide support for cooperative work. With the first generation of commercial WFMSs [12], there are still
many integration issues that remain to be solved, but there is no doubt that in the future WFMSs will be
pervasive in large corporations.

In this paper, we present the Exotica research project currently in progress at the IBM Almaden Research
Center. One of the goals of the project is to bring together industrial trends and research issues in the workflow
area. It is for this reason that we have focused ona particular commercial product, FlowMark, IBM’s workflow
product [15, 16, 19, 20]. However, our results are easily generalized to other WFMSs since FlowMark’s model
is similar to that proposed ‘by the Workflow Management Coalition [13]. In particular, the rest of this paper
contains a high-level overview of our research in six specific areas that are not product specific. The list of
these areas is not, by any means, exhaustive. There are still many issues that remain open. We also discuss the
relationship between WFMSS and transaction processing monitors.

*This work is partially support.eci by funds from IBM Hursley (Networkmg Software Division), and IBM Boeblingen and Vienna
{Software Solutions Division). Even though we refer to specific IBM products in this paper, no conclusions should be drawn about
future IBM product plans based on this paper’s contents. The opinions expressed here are our own.

2 Large Scale Workflow Systems

Before discussing workflow management, it is necessary to put in perspective the applications addressed by
such systems. Some of the common goals of a WFMS are to achieve better performance of business processes,
better quality, enhanced effectiveness, enterprise wide coordination and monitoring, etc. As we believe it is the
case with most WFMSs, FlowMark addresses the coordination of large scale business processes. With respect
to this, there are certain similarities with DBMSs. Small DBMSs for perscnal computers have an undeniable
value. However, interesting research and industrial strength products relate to issues such as query optimization,
performance, data caching, data mining, schema evolution, or triggers, which only become interesting in large
DBMS scenarios. For small applications, it is possible to obtain similar or even more benefits by using a less
sophisticated cooperative tool rather than a full-fledged WFMS. However, when the size of the application grows,
and the number of users, sites, and processes increases, only a WFMS is suitable for the task. It remains to be
determined how “large” is a large application. To give an idea of the magnitude of the problem, consider some
of the studies that have been done with FlowMark. In one instance, the number of business processes to be
executed concurrently during the course of a month is 300,000. In another case, the problem is to link together
more than 4,000 sites geographically distributed over an entire country and coordinate the work taking place over
heterogeneous platforms at those sites. A third example involves more than 100,000 users working concurrently
on the completion of processes. With these figures, issues that were not previously considered as related to
workflow become key aspects to the success of a commercial system. Failure handling, continuous availability,
navigational flexibility, and replication, to name a few, are no longer nice features but crucial components of the
overall system. It is within this framework that our research is inscribed.

3 Research Issues in Workflow Management-.

The Exotica project started out focussing on six major research areas. Each of them reflects a distinctive need
for WFMSs but, in most cases, they are related to each other and successful solutions will have to integrate
aspects from all of them. The list of these areas is by no means exhaustlve there are many other issues that
remain open. :

3.1 Failure Resilience in Distributed WFMSs

Given its goals, the architecture of a WFMS is necessarily distributed in the sense that its components will reside
in different and heterogeneous machines. Furthermore. given its relevance in the control of the business processes
of a corporation, the system must be continuously available. Hence, each component must be able to deal with
local and communication failures, and the design must be robust. enough to avoid stopping the execution of
processes even in the event of failures. Such requirements define a wide range of failure handling capabilities
that the system must support to be commercially viable. Part of our research has been to analyze the possible
failure scenarios and design methods to handle them [1, 2, 18].

In the first place, the execution of an activity within a process involves several components: the database
server where the workflow-process-related data is stored, the workfiow server that determines where the activity
is going to be executed, the client interacting with the user, and the client interacting with the actual application
performing the activity. All of these components interchange information before, during and after the execution
of the activity. This information should not. be lost, since this may imply that the results of the execution are not
recorded, or that the command to start executing the activity never reaches its destination. Hence, some form
of coordination proiocol must be used amongst all these components to guarantee that all agree on the status of
a particular activity. In general, the DBMS in which the data is stored is transaction based. In FlowMark, for
instance, the data is stored in ObjectStore, an object-oriented DBMS. ObjectStore does not provide either hot
standby support or a prepare-to-commit interface, which makes it complicated to reach a point in the execution
where data is guaranteed not to be lost. Moreover, the applications invoked by the WFMS may not be aware
of the WFMS's existence, thereby becoming uncooperative and committing work regardless of the state of the
WFMS. We are studying several approaches to these problems: using a persistent message mechanism, providing
stable storage in each of the components, and designing a handshake protocol that ensures that information is
almost never lost.

146

A second aspect of failure resilience is the possibility that a component fails while it is executing part of a
process. If the failed component is the DBMS, replication can be used to minimize the impact of the failure, as
discussed below. If the failad component is part of the WFMS, means must be devised to allow other components
to reroute their operations to components that are still available. This implies using multiple connections among
components. We have designed a new architecture for WFMSs in which the notion of clusters of servers is used
to provide enhanced availability of the system [2, 18]. By using several clusters, each of them attached to a
separate database, the impact of failures on overall performance and availability can be reduced. Since each
cluster’s database contains the same schema information such as process templates, role and staff assignments,
and organization definitions, process instances can be run at any cluster.. Thus, failures will affect only a subset
of the process instances and will not prevent the users from starting new instances. The problem that still
remains is how to handle the instances that were running in a failed cluster. This particular issue is addressed
below when discussing replication in WFMSs. :

3.2 Compensatlon and Nawgatlon in Workﬂow Networks

A workﬂow network, or-a process,’is t,he representation of a business process Its instantiation for execution
is a process instance. Any process instance usually encompasses a wide range of activities and those activities
involve several participants in the form of computer programs and individuals. ‘At any given moment in time,
there may be several instances of the same process being executed simultaneously, with possibly each one being
at a different stage of progress.:Since processes are defined in advance, it is not possible to evaluate all possible
exceptions and error conditions beforehand. A WFMS must provide means to cope with such situations. Similar
ideas are found in advanced transaction models [9] such as Sagas [10, 11] for backward recovery, i.e., how to
undo the effects of certain operations, or in Flex transactions {7, 22, 31] for forward recovery, i.e., how to select
different paths of execution. However, in WFMSs, there are certain errors that may force the user to abort the
execution of a process instance, and therefore to lose work that has to be performed again when the process is
restarted.

Forward recovery is guaranteed in FiowMark in the sense that 1f there are failures, the process is guaranteed
to make progress. However, semantic failures are more difficult to address, unless the designer of the process
was able to foresee them and introduce the appropriate checks in the flow of control. For backward recovery,
FlowMark is being enhanced to provide a form of compensation that ailows the user to specify spheres of
compensation [21] to determine the scope and extent of compensation in case of failures.

Qur current research is focused on how to provide a flexible mechanism to navigate through the flow of control
of a process in either direction, i.e., forward progress or compensation, and aiiowmg to switch dlrecmons several
times as necessary during the execution of a process.

3.3 High Avallablhty through Replication

High avallablhty is a key requirement of a WFMS Failures should be transparent to the users and should have
minimal impact on the normal functioning of the organization. This can only be achieved through replication
of the process instance information. As in DBMSs [25], we use a primary/backup architecture in which process

instances run on a primary server, while all actions are also recorded at the backup so that if the primary were

to fail, then the backup server can take over the execution of those same instances. As in DBMSs, replication
has a high cost in terms of synchronization and lower throughput. Given the large number of processes involved
in the application, replication of every single process instance may not be cost effective. Hence, we define three
priority levels with respect to replication. A hot stand-by process is fully replicated, i.e., all changes to its data
are performed both in the primary and in the backup databases. A cold stand-by process is also replicated,
but the backup:contains only the messages with the information regarding the different steps taken in the
execution of the process. ‘When the backup needs to take over the execution of the process, it must first replay
those messages to bring the process state up-to-date. .This will delay resuming the execution but it reduces
the overhead of maintaining the replicated copies. Finally, a normal process is not replicated at all. The only
guarantee FlowMark provides for these processes is forward recovery, i.e., when the server comes up again,
execution will be resumed from where it was left off. -

As in DBMSs, besides the replication scheme, it is also necessary to deal with additional problems such as
dynamic configuration of the system, incorporation and exclusion of new servers without interrupting the system,

147

message duplication, and so forth. We have addressed all these issues and proposed a replication mechanism for
~ WFMSs that greatly improves the availability of the system while avoiding excessive overhead {18].

3.4 Mobile Computing

WFMSs must coordinate users distributed over a wide geographlc area. The basic idea being that the processes
to be executed are defined and controlled in a centralized server, while the users: can execute parts of these
processes at remote clients. Each step of a process can be executed anywhere in the system, but after its
completion, the results are communicated to the server which in turns prepares the. next steps for. execution.
This is the most common approach in existing systems, and simplifies many problems such as synchronization,
concurrency and monitoring, but forces the users to remain connected 1o the server while performing multiple
tasks. An increasingly large set of users may not be satisfied with this mode of operation, given the widespread
use of portable computers and home computers for office work.

For these users, the common way of operation is to load data in their laptops or desktops by briefly connecting
with a server in the office. Then they disconnect from the server, work on that data and, after a few hours or few
days, reconnect to the server to transfer the results of their work. This has been identified as one of the most
common modes of computing that will occur in'the future [17]. Note that this includes not only mobile terminals
but also desktops or any other computer type connected to the server only occasionally via a modem. Mobile
or nomadic computing greatly expands the scope of an organization’s distributed computing infrastructure.
However, from the workflow management point of view, it becomes more difficult to coordinate the work of
many users. Also, note that while WFMSs are tools for cooperatlon portable cornputers are generally viewed
as tools for individual work.

To address this problem, we have proposed a design; called Exotica/FMDC, for disconnected client operation
based on FlowMark [3]. Among other constraints; the design had to provide support for disconnected clients
with minimal changes to the semantics of a business process and its implementation, effectively allowing users
distributed over a wide geographic area and working with heterogeneous resources to cooperate, while preserving
their mobility and independence. In particular, we define the semantics of loading. work to a mobile; discon-
nectable computer by introducing the notion of locked activities and the user’s commiiment to eventually execute
them. Locked activities stay within the user’s machine unless they are unlocked. The feasibility of our approach
was initially proven by outlining the 1rnpiementatlon issues’ for FlowMark V\re have more recently completed
prototypmg Exotica/FMDC. : : - BT B

3.5 Distributed Coordination

To further enhance the availability and failure resiliency of a WFMS, it is possible to design it entirely as a
distributed system. This implies that processes are transferred from site to site as their execution progresses,
without a centralized server keeping all the relevant information. There are two possible approaches. One is to
make a large package that contains all the information pertaining to the process and its execution and circulate
this package across the different sites. This approach has several problems; mainly the size of the message and
the need to maintain multiple copies of it if the system were to allow concurrent activities to take place. The
other solution is to precompile the process definition to determine at which sites the different activities are
to be executed. Once this has been done; the only information that gets transferred from site to site are the
results of previous computations and the process state. Using this approach; failures can be made transparent
by rerouting a process to different nodes. It also eliminates the potential bottleneck created by a centralized
database and server. Exotica/FMQM [1] proposes a similar architecture in which persistent storage is replaced
by persistent messaging. For persistent messaging, IBM has defined an application programming interface (API)

standard called Message Queue Interface (MQI) [14], and a family of products called MQSeries that SUpports

MQI [23]. MQSeries products operate on IBM and non-IBM platforms and they support the architected MQI.
Communication takes place through named queues that do not require all participating programs to be available,
i.e., up and running, simultaneously. Moreover, MQI is not sensitive to network transport protocol differences.
The system we propose, Ezotica/FMQM, FlowMark on Message Queue Manager, is a distributed WFMS in which
a set of autonomous nodes cooperate to complete the execution of a process. Each site functions independently
of the rest of the system, the only interactions between nodes being conducted through persistent messages which
inform about activity completions. This approach, while enhancing the availability and resilience of the system,

148

has the problem of needing more complex mechanisms to monitor and audit the overall execution since there
is no centralized server where this information resides. It also requires enhancements to the MQI to be able to
assign an activity to more than one user but let only one of the users actually execute it.

3.6 Adv_ance'd "Transaction Models

The goal of most advanced transaction models is to-eliminate the constraints imposed by conventional DBMSs
on new applications. The requirements of such new applications are completely different from the traditional
data processing applications targeted by standard DBMSs. Hence, conventional DBMSs are unsuitable in these
new environments. Several advanced transaction models have been proposed [9] but, to this date, most remain as
theoretical constructs which have not been implemented. A reason for this state of affairs could be that advanced
transaction models are ahead of the available technology and their time is yet to come. We believe, however, that
the reason why these models are not-being implemented has to do more with their inadequacy to operate in real
working environments than with the available technology or application demands. Advanced transaction models
are too database-centric, which provides a nice theoretical framework to work with but limits the possibilities
and flexibility of the models. Since they tend to remain theoretical models with no implementation, there are a
number of important design issues that are generally not discussed in the literature [24]. _
Paradoxically, WFMSs are tools to support distributed, heterogeneous environments very similar to those
targeted by transaction models. However, the models being used are workflow models instead of transaction
models. Compare the more than 70 vendors who claim to have WFMSs’ [12] with the almost absolute lack of
commercial products supporting advanced transaction models. Workflow systems bear a strong resémblance to
advanced transaction models both in their goals and modeling approach, yet they are quite different in that they
address a much richer set of requirements than existing transaction models. As part of our research, we have
analyzed the characteristics of workflow models and the notion of business processes by comparing them with
existing transaction models [2, 4]. It is possible to show that the semantics of workfliow models are, in general,
richer than those of advanced transaction models and more apt to be used in commercial products. Hence,
workflow models can-be used to implement advanced transaction models. For instance, we have used FlowMark
to implement Sagas [10] and Flexible Transactions [31]. Our basic goal was to provide synergy between advanced
transaction models and workflow models, an interaction from which both sides may benefit. In doing so, we have
developed a better understanding of the inherent limitations of the so-called “advanced models” and identified
many points for improvement of WFMSs. Our approach is not another attempt to merge different transaction
models into one or to provide a general framework to program advanced transactions [5]- Transactions are used

as the accepted currency in the database community, but our goal is to show the expressibility and power of -

workflow models compared with what is currently available in the research literature [8].

From a purely advanced transactions point of view, our proposal differs from previous ones in that we usé an
existing commercial product that runs across different platforms to implement different transaction models. This
allows us to draw conclusions from direct experience implementing such models in real, working environments. We
see workflow models as the the next step after advanced transaction models. They complement many aspects
of the latter and address an entirely new range of issues (role and staff assignment and resolution, worklist
management, interaction with manual activities, etc.) that make them 'more suitable for building applications.
As has been widely recognized, there is a lack of tools to scale from individual transactions to complex applications

.[30]. One reason being that advanced transaction models will never reach their technological maturity until they

are interpreted in a much broader context. As we show in our research, business processes constitute such a
context and workflow models are the tools required to support complex applications.

4 TP Monitors and Workflow Systems

A WFMS is a tool to control the execution of business processes based on representations of the organizational,
informational, and functional aspects of an enterprise. In its origins, closely tied to office automation, workflow
management was geared towards the system-enforced organization, processing, and automation of well structured
cooperative work. However, automation efforts were, at the time, limited by the lack of appropriate technology.

Nowadays, advances in the state of the art; such as new desktop operating systems or more sophisticated DBMSs

and networks, have allowed the incorporation of many new technologies into the workplace. The result has been
the partition of the enterprise into islands of automation that do not necessarily communicate with each other.

149

150

In this situation, WFMSs are seen as the key element to bring together all these technologies and provide an
integrated cooperative environment in large organizations. This would explain the interest aroused and successes
enjoyed by the first generation of commercial WFMSs.

Transaction processing monitors, TPMs, on the other hand, are a well established technology that has been
around for almost 20 years [6]. The first generation of TPMs, e.g., IMS/DC and CICS, were single monolithic
systems used in proprietary mainframe environments to achieve high transaction rates in applications such as
airline reservations or finance handling. The second generation of monitors, e.g., ACMS, Encina, and CICS/6000,
are more open and able to talk to heterogeneous resource managers under certain restrictions {such as support
for standard commit protocols, for instance). In general terms, TPMs are very mature with regard to concurrency
control and recovery and have solid foundations in the notion of ACID transactions as well as in high-end load
balancing and failure handling. - S ' o :

In spite of addressing similar problems, the characteristics of WFMSs and those of TPMs are almost comple-
mentary. Workflow management lacks a clear transactional concept, and has problems with scalability, reliability,
and failure handling. It provides, however, modelling of inter-application relationships (i.e., business process mod-
elling), and persistent forward execution. WFMSs permit the invocation of applications operating:in different
execution environments with parameter passing between them. o g

TPMs are essentially specialized operating systems. Applications execute in the context: provided by such
environments. This makes it very difficult, if not impossible, to let applications of one TPM type invoke applica-
tions of another TPM type. WFMSs, on the other hand, are not like operating systems. Notions well known in
the transaction processing area like backward recovery, atomicity; or compensation are non-existent in current
WFMSs. TPMs provide some of these capabilities since they are especially designed for reliability, but they lack
the notion of persistent forward execution, and the ability to coordinate the execution of related but indepen-

~ dent activities. While the Workflow Management Coalition is proposing standard APIs for interoperability of
WFMSs, no such standard APIs exist for TPMs. ' o B '

" In recent years, the deficiencies of the ACID transaction model have lead to the proposal of numerous
advanced transaction models that extend or relax the ACID properties of classical transactions-[9]. Common to
most transaction models is the idea of supporting additional capabilities to control the interactions of groups of
activities and provide relaxed ACID properties to groups of transactions instead of to. individual transactions.

It is our belief that the existing ideas in the field of advanced transaction models will be implemented in
WFMSs rather than in TPMs. The goals for the next generation of both WFMSs and TPMs are very similar. -
Since TPMs already support ACID transaction, the question arises whether TPMs are not better suited to
meet the customers’ requirements for advanced transaction models. However, it is more likely that, if advanced
transaction models are finally going to make it as a viable commercial technology, this will happen in the workflow

~arena for, among others, the following rea{sons: o ' S : ' :

e WFMSs are designed to operate in modern information environments: distributed, client/server, hetero-

geneous, and with multiple applications: -~ - = S

- » New and existing applications.can be easily incorporated into a workflow environment without major
modifications to either the workflow system or. the application itself.

¢ WFMSs provide multiple key features that do not exist in other systems: coordination facilities, monitoring
and auditing capabilities, abilities to reflect the organizational structure; and high level programming
languages for the definition of processes. o e : ' .

¢ WFMSs incorporate users into the system. This is a first step towards a cooperative tool. Moreover,
WFMSs provide support for defining individual users, grouping them into logical entities (roles) and as-
signing activities to particular users or roles. ' ' '

» WEMSs reflect the organizational model and work environment in which they are used. They can be easily
tailored for different environments. B SRR I SR

. However, with regard to advanced transaction models, the implementation of such. models in WFMSs is not

Straightforward. There are many areas open to research. Some of the issues that need to be addressed are the
- following: ' ' :

o Current WFMSs lack facilities to extend the ACID properties to groups of activities. The semantics of
many operations such as recovery, rollback, compensation and undo are still uridefined in WFMSs There
are many possibilities, but it is not trivial to evaluate their advantages and drawbacks.

® Legacy applications are here to stay. Better means must be devised to incorporate them in a workflow
environment. As these applications need to be treated as’ biackbox a.ppluatlons ‘specialized wrappers are
required to interoperate with existing applications.

¢ Although it is much used, the notion of transactional workflows [29] is still unclear. There is a wide
gap between research advocating transactional workflow and what is being implemented in commercial
systems. It is not clear, for instance, what are the requirements of WFMSs in terms of concurrency
control and recovery. The Workflow Management Coalition, on the other hand, seems to be reluctant to
incorporate the notion of transactional processing in its standards. Thxs m:ght be a problern of finding a
common language.

¢ There is no single advanced transaction model that meets the requirements of all customers and appli-
cations. WFMSs will incorporate concepts rather than particular implementations: savepoints, nesting,
coordination, compensation, invariants, dependencies, etc. and combine them into more flexible constructs.
However, the exact semantics of such constructs are yet to be defined.

e There are many options to define the failure semantics for complex workflow processes. What should
" happen to a parallel branch if one branch fails? What should happen to the results of a sequence of
activities which need to be reexecuted? Are they compensated for and in which order? How can a specific
order of compensation steps be specified? All these questions need to be solved before solutions can be
proposed.

s The workflow definition language is likely to end up providing a large set of primitives to specify transac-
tional behavior. This set of primitives will be much richer, more complicated and clumsier than the ACID
transaction primitives.

5 Conclusions and Future Work

The importance of WFMSs in large corporations cannot be stressed sufficiently. There is a high demand for such
systems, but successful sclutions will have to integrate many technologies and approaches. The challenge lies in
providing systems capable of dealing with very large, heterogeneous, distributed and legacy applications, while
providing an acceptable degree of reliability and availability. The research areas briefly discussed in this paper
point towards some of the issues that need special attention in the design of WFMSs. These issues apply to the
vast majority of existinig systems, since they are not constraints imposed by a particular architecture but generic
demands of the working environment targeted by these systems. In our case, we have focused on FlowMark
since this is an IBM product and we have access to its code and developers. However, the solutions we proposed
can be easily extended to other systems given that FlowMark’s model {and architecture) closely resembles the
generic model proposed as part of the Workflow Management Coalition standarization effort [13].

With the recent merger of IBM and Lotus, we have started exploring how to establish more synergy between
Lotus Notes and FlowMark, taking advantage of the strengths of the two products. Some of the issues under
consideration are: document-centric versus process-oriented workflow, structured versus ad hoc workflows, object
orientation, external event handling, agent technologies, etc. Since the send model of workflow in Lotus Notes
is similar in many ways to distributed workflows as we have discussed here, we have recognized its limitations
based on our Exotica/FMQM work. We are in the process of doing further analyses.

Acknowledgements Part of this work has been done in collaboration with Amr El Abbadi and Divyakant
Agrawal of the University of California at Santa Barbara while they were visiting IBM Almaden Research Center.
References

[1] G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan, R. Giinthér, M. Kamath, Ezotica/FMQM: A Persis-
tent Message-Based Architecture for Distributed Workflow Manegement, Proc. IFIP WGS.1 Working

151

Coaference on Information System Development for Decentralised Organizations, Trondheim,
August 1995. Also available as IBM Research Report RJ9912, IBM Almaden Research Center, Novem-
ber 1994.

[2] G. Alonso, M. Kamath, D. Agrawal, A. El Abbadi, R. Glinthér, C. Mohan, Failure Handling in Large
Scale Workflow Management Systems, IBM Research Report RJ9913, IBM Almaden Research Center,
November 1994. See also http://www.almaden.ibm.com/¢s/reports/workflow /exotica_papers.html

[3] G. Alonso, R. Giinthdr, M. Kamath, D. Agrawal, A. El Abbadi, C. Mohan, Ezotica/FMDC: Handling
Disconnected Clients in a Workflow Management. System, Proc. 3rd :International Conference on
- Cooperative Information Systems, Vienna, May 1995.

[4] Gustavo Alonso, Divy Agrawal, Amr El Abbadi, Mohan Kamath, Roger Giinthér, C. Mchan, Advanced
Transaction Models in Workflow Contezts, IBM Research Report RJ9970, IBM Almaden Research
Center, July 1995. See also http://www.almaden.ibm.com/cs/reports/workflow /exotica_home_page html

[5] A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, K. Ramamritham, ASSET: A System for Supporting Ez-
tended Tramsactions, Proc. ACM SIGMOD Interpnational Conference on Management of Data,
Minneapolis, May 1994, pp. 44-54.

{6] U. Dayal, H. Garcia-Molina, M. Hsu, B. Kao, M.-C. Shan, Third Generation. TP Monitors: A Database
Challenge, Proc. ACM SIGMOD International Conference on Management of Data, Washington,
D.C., pp. 393-397, May 1993. .

[7] A-K. Elmagarmid, Y. Leu, W. Litwin, M.E. Rusinkiewicz, A Multidatabase Transaction Model for Interbase,
Proc. 16th International Conference on Very Large Data Bases, August 1990.

(8] D. Georgakopoulos, M. Hornick, A. Sheth, An Overview of Workflow Management: From Process Modeling
te Workflow Automation Infrasiructure. Distributed and Parallel Databases, Vol. 3, No. 2, pages 119-
153, April 1995.

(9] A.K. Elmagarmid (Ed.), Transaction Models for Advanced Database Applications, Morgan-Kaufmann, 1992.

(10} H. Garcia-Molina, K. Salem, Segas, Proc. SIGMOD International Conference on Management of
Data, San Francisco, May 1987.

[11} H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem, Coordinating Muitzatmnsactwn Activities,
Proc. IEEE Spnng Compcon, San Francisco, 1991.

[12] C. Frye, Move to Workflow Provokes Business Process Scru_i_z'ny, Software Mégazine, April 1994, pp.
77-88. : '

[13] D. Hollinsworth, The Workflow Reference Model, Workflow Managernent Coalition, TC00-1003, December
1994. Accessible via: http://www_alai.ed.ac.uk/WIMC/

[14] Message Queue Interface: Technical Reference, IBM Document No. SC33-0850-01, April 1993.
(15] FlowMark: Managing Your Workflow, IBM Document No. SH19-8176-01, September 1994.
[16] FlowMark: Programming Guide, IBM Document No. SH19-8177-01, September 1994.

[17] T. Imielinski, B.R. Badrinath, Mobile Wireless Computing: Solutions and Challenges in' Data Management,
Communications of the ACM, Vol. 37, No. 10, October 1994,

[18] M. Kamath, G. Alonso, R. Giinthor, C. Mohan, Providing High Availability in Very Large Workflow Man-
agement Systems, Research Report RJ9967, IBM Almaden Research Center, July 1995.

[19] F. Leymann, W. Altenhuber, Managing Business Processes as an Information Resource, IBM Systems
Journal, Vol. 33, No. 2, pp. 326-348, 1994.

152

[20] F. Leymann, D. Roller, Business Processes Management with FlowMark, Proc. 39th IEEE Computer
Society International Conference (CompCon), February 1994, pp. 230-233.

[21] F. Leymann, Supporting Business Transactions Via Partial Backward Recovery in Workflow Management
Systems, Proc. Gl-Fachtagung Datenbanken in Biiro Technik und Wissenschaft - BTW’95,
Dresden, Germany, March 1995, Springer Verlag. ;

[22] S. Mehrotra, R. Rastogi, A. Silberschatz, H.F. Korth, 4 Transaction Model for Multidetabase Systems,
Proc. International Conference on Distributed Computing Systems, June 1992, pp. 56-63.

[28] C. Mohan, R. Dievendorff, Recent Work on Distributed Commit Protocols, and Recoverable Messaging and

Queuing, Bulletin of the IEEE Technical Committee on Data Engineering, Vol. 17, No. 1, March
1994, pp. 22-28.

[24] C. Mohan, Advanced Transaction Models - Survey and Critique, Tutorial presented at the ACM
SIGMOD International Conference on Management of Data, May 1994. Available at
http://www.almaden.ibm.com/cs/reports/workflow /tran.models_tutorial sigmod94.ps.Z

(25] C. Mohan, K. Treiber, R. Obermarck, Algoritkms for the Management of Remote Backup Data Bases for
Disaster Recovery, Proc. 9th International Conference on Data Engineering, Vienna, April 1993.

[26] R. Obermack (Ed.), Special Issue on TP Monitors and Distributed Transaction Management, Bulletin of
the Technical Committee on Data Engineering, Vol. 17, No. 1, March 1994.

[27] M. Hsu (Ed.), Special Issue on Workflow Systems, Bulletin of the Technical Committee on Data
Engineering, Vol. 18, No. 1, March 1995.

[28] B. Reinwald, Workflow Management, Tutorial handout, 13th IFIP World Computer Congress, August
1994.

[29] A. Sheth, Rusinkiewicz, On Trensactional Workflows, Bulletin of the Technical Committee on Data
Engineering, Vol. 16, No. 2, June 1993.

[30] B. Salzberg, D. Tombroff, A Programming Tool to Support Long-Running Activities, Technical Report
NU-CCS-94-10, College of Computer Science, Northeastern University, Boston, 1994.

[31] A. Zhang, M. Nodine, B. Bhargava, Q. Bukhres, Ensuring Relazed Atomicily for Flezible Transactions in
Multidatabase Systems, Proc. SIGMOD International Conference on Management of Data, May
1994.

153

DataLinks - Linkage of Database and FileSystems

Inderpal Narang, Bob Rees
Almaden Research Center
650 Harry Road, San Jose, CA 95120, USA

Abstract

Datalinks is a research prototype being developed in the IBM Almaden Research Center.

The goal of the Datal inks project is to provide linkage between data stored in the database and the external
filesystems. There is a class of applications where large objects, such as, video, image, graphics, etc.
would be stored in the external filesystems. The reason is that they are captured in the filesystem, and the
development tools work with the file paradigm. There is no need for physically bringing such data in the
database since their raw content is not used for the database query1 . However, the file data is related to
the database tuples. A relational database system provides referential integrity for the data which it stores.
So the question arises, "Can one provide referential integrity for the data which is linked with the DB data
in the exterpal filesystems?" The answer is yes, by using the Datal.inks technology. Datalinks makes the
file linkage of the database tuple a first class citizen. That is, the link would be robust from integrity, access
control, and recovery standpoint, as if the file is stored in the database (but actually it is not).

In-order 16 accomplish the robust linkage it'is proposed that we add a new datatype in the relational .
database system. This datatype is referred to as the externa| file reference (efr}. P

The SQL call interface for the efr datatype involves an efr-data-structure. The -application -provides the
server-name and the filename of the file in the efr-data-structure which is associated with the efr column in
the SQL call. Likewise, the database system would return the server-name and the filename in the efr-data-
structure in the SQL SELECT call.

The behavior of the efr datatype is that the DBMS would issue fink-fife (unlink-file) operation to the
appropriate fileserver for the specific file when the application issues SQL insert/update (delete/update)
calls2. The link-file operation results in, for example, ‘making DB as the owner of the file and marking the
file as read only. Note that ali this happens in the transactional scope. The rationale for changing the owner
is that the file can no longer be deleted by normal users of the filesystem; the rationale for marking the
file as read-only is that indexes may be created on the file which are stored in the database for search.

DataLlinks would prevent deletion or rename of a file by a normal filesystem user if such a file is linked with
the DB data. It would also provide access control to the file as an option. Note that all this requires no
modification to the filesystem where the file is actually stored. The added functions are implemented in a

1. Typically, a user extracts features of an image or a video and stores them in the database for performing
search on the extracted features. An example of the features which can be gxtraf:te'd of an image are, color,
shape, and texture. IBM's Query By Image Content (QBIC) supports extraction and serach on such features..

2. This is in contrast with the middleware approach where the middieware is cognizant of the database and
the filesystems and provides the linkage. We believe that time has come to formalize the database linkage with
the filesystems so that middleware software may not be needed.

154

s
[

155

layered approach. For example, using the DataLinks technology; the files stored in the video server can be
linked with the database data without madifying it.

With Datalinks, an application uses standard APIs for the database access and the file access. The

application uses SQL for the database access and standard filesystem calls (e.g., Open, Read, Close) to ««««««
access files. We believe that this is one of the strengths of the Datal.inks technology, i.e., no_new AP,
An application scenario goes as follows. An appllcatlon issues SQL SELECT to search on the business
data and the extracted features of the image stored in the database. The query returns its results which
includes filenam=/server-name as normal column data in the efr data-structure if an efr column is selected
in the query. The application can then use the standard filesystem protocols (such as, open, read, close)
to access the relevant portion of the file.

DataLinks does not come in the data-path of the file access. It only interposes itself in the file open, rename,
delete type of calls. Therefore, DataLinks can be used with the stream servers (e.g., video servers) and
prowde the value add of robust Ilnkage Wlth DB data.

Datalinks imposes no data model of its own: for apphcatlor';s2 The data model is whatever can. be .
supported by the relational mode! (or other database management systems in future). .

Datal.inks technology interoperates with the IBM's ADSM space management technology to provide .

‘storage hierarchy transparently to the ﬁlesystem as an optxon That is, the mesystem is not modified to
' support storage h:erarchy SRR _ B _ _

The system configuration as shown in Figure 1 is possibte when large objects are stored in a filesystem
but are linked by database tuples. The database can be a centralized index for searching across the
enterprise-wide data which has both business data and extracted features of the non-coded data, and the
large objects can be distributed among several fileservers. Such a configuration can save network costs
since the large objects can be stored close to the end-users and hence can be delivered over shorter
distances. Note that such a configuration is not possible if the large objects were stored in the database.

Database T Standard :
File Systems
SQL Table IR Server
flensras ____# Fienaumne
s "--“ N q A c:.
SRR File [
BB EIVE VY B) i T : _
Fienamae ;
’ Flle E
. Servern ' s

Figure 1. Cenralized database with several distributed fileservers. The SQL table has a column of datatype

- called external-file-reference (efr). The efr column contains server-name/filename which provides the

location of the file.

1. This is in contrast with the middleware approach which may have its own APL
2. This is in contrast with the middleware approach which may impose a data model of its own.

Currently, Datal inks is being developed as a research prototype in the IBM Almaden Research Center.
However, in order to develop applications today where a customer may want to store large objects in
filesystems and link it with DB data, itis possible to make such applications "DatalLinks Ready". We would
provide a few macros which if incorporated in the application wouid make these applications "Datal.inks
Ready". This would not have any impact on the performance of the application. When DataLinks becomes
available in the product, such applications only need to be re-compiled with new macros and they would
have the full functionality of DataLinks, i.e., referential integrity, access control, and storage hierarchy
support as options.

156

- Temporal Data Manager

) Greg Hope, Chlef Archxtect Paul Oeuvray, VP Systems Design;-
o ' "Paul Miniato, Senior Consultant :
Prologlc Corporation
. ...100-3851 Shell Road |
Rlchmond B.C. V6X 2W2 Canada =
Phone: (604) 278-6470 Fax: (604) 278-5206
Internet: hope@prologic.ca -

4 transaction processing application design often contains master tables and associated
transaction tables. Each row'in a master table represents the current state of some
object, and each row in a transaction table represents an event that affected the object in
the master table. An apphcatzon of this type often has complex requirements relating to

the treatment of time.:

The automated implementation of these crucial
application requirements is provided in a
consistent application-wide manner by the
Temporal Data Manager (TDM), a component of
PROBE’s Unified Application Framework
{UAF).

The TDM includes the following functionality: -

* recording and miaking available all user -
: _updates for rfeview by auditors

e using ume-dependent busmess rules to e
_specify the effect a transaction has on its -
master .

» using t1me—dependent'business rules to -
specify the effect the passage of time has on
- the master

e ‘recreating data 4s of some time in the past or
predicting data into the future -~~~

» applying transactions out of sequence
(backdated transactions) if they arrived later
than their effective time.

Human error is inevitable and the application
must facilitate detection and easy correction:

+ users of a transaction processing system will
make mistakes in transaction entry

¢ information systems staff (developers and
operators) will also make mistakes in
programming business rules or database
maintenance,

Ultimately, while meeting the complex
requirements of the application and managing
unavoidable human error, the application must
guarantee the integrity of the master and
transaction tables containing the data that
represents the heart of the business.

Implementation of these features in an
application normally requires enormous effort,
both as a result of the volume of programming
required, and of the very complex problems that
can arise from maintaining the integrity of time-
sensitive data and business rules. Typically, the
complexity forces compromises in application
requirements (for example, manually recalculated
backdates). Errors in this type of data are not
uncommon and require time-consurmning
diagnosis and correction; they could even remain
unnoticed until a customer compiams

The TDM anticipates human error and delivers
commplete integrity for this eritical data without
additional programming effort.

Temporal integrity is PROBE’s unique patent-
peniding feature within the Temporal Data
Manager that guaranteés the result of the
transactions will equal the current master row,

The TDM delivers to transaction processing
applications a dramatic increase in complex
functionality while reducing programming effort
and guaranteeing data integrity.

157

Time relationships

Master %

Figure 1: Time relationship concepts.

A time relationship is a one-10-many relationship
between a master table and a transaction table in

which each row of the master table is related to a
set of rows in the transaction table.

Applications usually support two ways of
describing the time the transaction happened.
The entered time is used for audit purposes and
records the actual time the transaction was- "
entered into the database. The effecrive time -
records when the transaction is to take effect for
the purpose of applying the application’s
business rules.- - : S

Encapsulation of time-related business
rules o U

To complete the time relationship, the =
application supplies two sets of business rules
defined by the activity and periodic triggers. The
first rule describes the effect a new transaction or
“activity” has upon the master (such as adding a
transaction amount to an account balance), and
the second describes the effect the “periodic”
passage of time has upon the master (such as the
accrual of interest on the balance): These two
business rules always work on the premise of
moving forward in time, regardless of whether a
transaction was input in sequence or inserted into
the past. L
Encapsulation of business rules into these well~
defined triggers provides two main benefits. The
business rules are guaranteed to be consistently

- executed regardless of whether a new transaction
is initiated by user input, batch utility, or batch
application program. Specifying business rules in

Transactions . -

- K

. one place forces a reduction in programming

effort by eliminating the possibility of duplicated
or scattered business rules across the application.

Automati._r;.éalculation of a past or future

" master row “as of” a given time

- An application often requires the ability to
* inquire into past or future states of the database.

The TDM delivers this without additional

programming.

MASTER
TALCULATION

¥

N Master

Transactions

LA

Figure 2: Creating snap;hots and'updat_fng the
master as time passes.” A

The TDM keeps a copy of each initial master,
and as time passes and transactions are inserted,
additional copies of the master are made
periodically. These copies of the master through
time are called snapshots. Using these snapshots
and the application’s business rules, the TDM is
able to efficiently recalculate the master for any
exact point in the past. As illustrated in Figure 3,
the periodic and the activity wiggers (the
business rules) are invoked one after another for
each transaction between the prior snapshot and
the desired “as of” time. A final invocation of the
periodic trigger caleulates the master from the
effective time of this last transaction up to the “as
of fime. e e

15¢

B &\\\‘é‘

time.

The TDM can project a future master starting
from the current master and using only the
periodic trigger.

Automatic audit trail of master changes

Any change a user is allowed to make directly to
a master is automatically recorded as a
transaction. Because this manual change is
recorded as a transaction, it is considered when
recreating a master in the past. The TDM
supports this feature even for tables other than
time relationship master tables, enabling a user to
see a consistent application-wide audit trait of all
changes to the database—all without any
programming.

Automatic error correction with
backdated transactions

Because users of an application will make
mistakes, the ability to make corrections is
required. The correction could involve a change
to any colurmn(s) on the transaction row, but
usually a PROBE application supporting non-
destructive updates only allows changes to the
built-in colurnn called reversed (and its
associated audit trail colurmns). When 2 value is
entered into the reversed colurnn, it indicates that
the transaction row has been canceled and it will
now be ignored by the TDM. This leaves a
record of all canceled transactions for audit
purposes. If required, a replacement transaction
then is inserted.

In the case of errors of omission or transactions

received late from other systerns, backdating
allows transactions to be inserted out of

sequence. These are two examnples of a
backdated transaction. Supporting backdates
often becomes a large and complex part of an
application particularly when the time or
sequence of the input has an effect on the
business rules.

The TDM automatically provides the ability to
allow backdates, delivering an application-wide
consistent ability to make comections or insert
transactions that arrive late.

SR
N
X

NS
R By
N \\\\\\

Figure 4: Updating the master after inserting a
transaction into the past. '

To apply a backdated transaction, the TDM
recreatés the master row just prior to the
backdate using the same technique as in the “as
of” exariiple, The TDM applies the application’s
business rules to the backdated transaction. Then
in ascending éffective time order, the TDM re-
executes the business rules for each transaction
after the backdate. The resulting new master
incorporates the backdated transaction.

A manual change to a master (recorded asa
transaction by the TDM) autornatically is
allowed to be a backdate.

Temporal intégrity (patent pending)

Traditional systems tend to avoid storing
calculated columns because there is no way to
guarantee the integrity of these columns over
time. Without storing these columns, it is
necessary to calculate them repeatedly through
time, which significantly reduces performance. If
calculated columns are stored, and performance
is increased, the system is difficult to build and
maintain because a significant amount of

159

program logic is devoted to ensuring integrity. In
many cases backdates simply are not supported.
The most common cause of an integrity violation
is a change to a business nie intended only for -
transactions in the future, but applied to all
transactions. Now the existing transactions do..
not add up to the current master row.

The net result of errors due to developers
specifying business rules incorrectly or operators
performing incorrect database maintenance
operations is a loss of data integrity.

TEMPCRAL Transaction
. CALOLATON

3 AR ;\\\Q\‘\\‘\\\\ -‘

Figure 5: Temporal integrity checking during
the new master calculation _

To maintain integrity, the TDM ensures that
business rules are always properly time- =~
sensitive, The TDM similarly protects against a.
loss of integrity due to corruption of data or
direct update of the master or transaction table.
With the TDM, master rows and snapshots
{copies of past master rows) contain calculated
information derived from the initial master row
plus the total effect of each transaction according
to the business rules. Temporal integrity is—
PROBE’s unique patent-pending feature which-
guarantees that this calculated information
always correctly corresponds to the transactions.
The TDM checks for temporal integrity in two
situations. While performing a new master
calculation, the TDM checks the existing
temporal integrity of the current master and its
ransactions. As shown in Figure 3, the temporal
integrity calculation ignores the new backdated -
ransaction and verifies existing temporal
integrity only. A batch utility program also can’
be used to test all masters and their transactions
for integrity.

In summary, PROBE’s Temporal Data Manager
delivers to transaction processing applications a
dramatic increase in complex functionality while
reducing programming effort and guaranteeing
dataintegrity. o 0

160

161

DSS Performance is Now More S:gmflcant
“than OLTP Performance

Position Paper for HPTS-SS
; " _Pat O'Neil
UMass/Boston
ponerl@cs umb.edu

The thesis of this | paper is that update transactional performance of OLTP systems has been a
solved problem for some time now, with most database system vendors implementing appro-
priate algorithms to avoid well-understood bottlenecks, while data mining queries of the kind -
used in'Decision Support Systems are still poorly understood with tremendous variation in
performance between commercial products. Although the amount of money spent on OLTPis
probably 90% compared to 10% for DSS, the large variation in DSS query performance implies
that greater savings are probably possb!e for DSS, and |t is argued that the industry should
now concentrate its efforts on this area. _ _

OLTP Benchmarklng

From an historical standpolnt the DebitCredit benchmark [ANON] focused the attention of the
Database industry on a number of OLTP bottleneck prob!ems and their standard solutions: -
writing logs to disk at a high'rate (group commit), inserting new rows at a htgh rate to a se-
quential History file (row locking rather than page locking), 170 of different size tables (good
memory buffering of disk pages), and contention on a small number of Branch records (row
locking). . Because of the early publicity the benchmark received and the customer demand for
objective measures, vendors began to feel they needed t6 publish Debit Credit results even when
the results were relatively embarrassing. * (See [FTSN-69], May 1988: “Cullinet evidently
also tried to emulate the Sybase test . . . but only got 14 TPS [running IDMS/SQL Release 1.0 on
a VAX 8850] for its trouble . . . there were 3 direct 1/0s per transaction, strongly suggesting
that Cullinet's memory buffermg scheme (|f any) is entirely ineffective. ”) This led to an
immediate focus in many vendor shops to improve performance and remove the embarrassment
(FTSN-74, in October 1988, reported | new Culhnet IDMS/SQL resuits of 27 TPS on a VAX
8850 w:th thelr newest ReEease 1.2)..

The Transaction Processmg Performance Council (TPC) vendor consortium was founded by _
Omri Serlin to creaté standard benchmarks for the industry, starting ‘with the DebitCredit re--
placement (TPC-A) and the TP1 replacement (TPC-B, the batch version of TPC-A with no
terminal costing). Their specification and a large number of validated results appear in The
Benchmark Handbook THANDBOOK]. it is noteworthy that since the TPC was formed, no other
benchmarks created outside the process have reached prominence requmng recognition by the
industry. At the same time, a number of vendors have included clauses in their licenses that
make it an actlonab!e breach of contract to measure the:r product and report the results wrthout
permlss;on o :

When Deb|tCredrt was modrfred to create TPC—A two major changes mcorporated were: these

(1) the elapsed time allowed for the 90th percentile of response was increased from 1 to 2
seconds; '(2) the think time between transactions on a terminal was reduced from 100 seconds
to only 10 seconds. The increase in response time seems reasonable, an attempt to allow Iess
expensive machines to satlsfy criteria‘for inclusion. Probably very few customers would -
refuse this minor increase in response time if promlsed some ‘cost savings. ‘However the drop in
think time is more questionable, since ten seconds seems an unreasonably short time between
order entry commits. The shortened think time stemmed from the belief that terminal and
network costs in Debit-Credit were too large a percentage of the total cost for a transactional -
system. Such large extraneous costs seemed to trivialize the importance of the transactional

“1-

system software which the TPC was formed to measure. This consideration gained significance
as transactional measurements improved. As mentioned on the inside front cover of the
[HANDBOOK] where TPC-A results from 1991 and 1993 are compared, the average $/TPS
numbers from 1993 were well below the best results of 1991,

Possibly because of this improvement, the extremely Ilghtwesght property of the TPC-A
transaction logic became controversial. In 1995, TPC-A and TPC-B were decommissioned, and
the council will no longer validate results. To replace them, the TPC-C benchmark was created
to be a better representation of what really happens in a medaum—suzed transactional applica-
tion system. In TPC-C, several different kinds of work were performed on muitiple tables, and
the average transaction was much more heavyweight than it had been in TPC-A. (See . =
[HANDBOOK] for.a. complete description.) One of the aims in creating this benchmark was. to
make it clear that for real OLTP work transaction system software was an important cost factor
compared to terminal and network costs. . However, the TPC-C benchmark assumed a ‘somewhat
more sophisticated terminal than TPC-A (not unreasonable in real practice), and as a result the
cost of terminals and communication networks remained h:gh about 2/3 of total costs. Most
recently, the TPC has dropped from the TPC-C specification the requirement to cost terminals,
making the significance of these costs less visible.

From this history, the lesson seems to be that for several state-of-the-art database systems
available today, the cost of CPU.and I/Q in OLTP processing is so low as to be relatively in-
significant compared to other costs of building such a system.. (None of the benchmarks men- .
tioned ever attempted to a55|gn acostto developlng and supporting apphcations, for example.)y
What this probably means is that system acquisition decision should give large weight to other
factors than TPC-C performance results — factors such as a helpful application development
environment and effective sets of utilities. To a great extent, the lessened importance of trans~
action performance is a vindication of the original DebltCredrt benchmark, which focused
vendor attention on transactional bottlenecks and brought performance to a pomt where OLTP
transactions can be vrewed asa commodlty : _ _

Query Performance - and Compansons to OLTP

There are three benchmarks that deal with query performance |nc!uded in the [HANDBOOK}, the
Wisconsin Benchmark, the AS3AP benchmark, and the Set Query benchmark. More recently,
the TPC has developed its DSS benchmark, TPC-D [TPC-D], to a point where it is near release.
All of these benchmarks have certain deficiencies from a standpoint of properly measuring
Decision Support System performance, but even so we can learn a number of lessons from
considering results that have been obtalned We outhne two important ones. '

{1) Individual guerles wnthm the DSS g g ets have much Iarger resgonse tlme on the av-
erage than tyglca! ugdate transactrons L

The TPC-D benchmark can- b_e_ thought of_. as executing queries to produce. repor_t;s._on the kind .of .
data produced by TPC-C. In the introduction to the TPC-D benchmark, Decision Support sys-.
tems are said to execute queries that, “Are far more complex than most OLTP transactions”. If
we consider.transactions profiles in TPC-C, the data accessed (including index).is usually quite
limited, only what is needed to locate rows for update, and usually only a few rows. Jim Gray
(pg. 10 of the [HANDBOOK]).characterizes the weighted average of the five transaction profiles
from the TPC-C benchmark as being about ten times “heavier” than TPC-A, and the units re-
ported are in transactions per minute {tpm-C) rather than. transactions per second (tps-A).
But many of the sixteen.DSS queries of TPC-D potentially reference all the data collected over a
fong span in several large tables: for example Q6 considers all the lineitems shipped in a given
year, and lists the amount by which total revenue would have. increased if certain discounts had
been eliminated. The extent to which a DSS can avoid looking at all data involved often depends
solely. on the sophistication of the indexing capability of the underlying system. While no per-

-2-

162

163

formance results frofn'TPC—D have been made public at the time of this writing, it should be
noted that the units reported for TPC-D are based on-a queries per hour rate. As a separate
indication of the relatively long response ‘time for Queries, recent measured resuits from the

-Set Query benchmark provide ‘an average measure of about 1 query per minute on a platform

that provides about 50 TPS on TPC-A, implying a ratio of about 3000:1 in resource use for
queries, compared to TPC-A transactions, - = oo . '

Notice that the tremendous resource requirement of an average DSS query means that it takes _
only a moderate number of workstations to keep even a very powerful server busy compared to
a typical OLTP system.. This observation matches well with experience, since a small number of
analysts typically drive large Decision Support system. "~ - - R '

(2) Perfbrmance bf individual queries within the DSS query sets depend on a large set of de-
tailed performance features in the underlying database products: with the current state of so-
phistication, this implies extremely disparate performance between different products.

The Set Query benchmark can be used to distinguish urderlying performance features of _
database systems by examining measurements of a number of the distinct single-user queries.
In the [HANDBOOK] Set Query article, two database products were compared on a single platform
with identical hardware, giving ultimate Query Per Minute (QPM) ratings of .6267 (for DB2
V2.2) and 2.697 (for M204, i.e. MODEL 204, V2.1), a ratio of 4.3. The $/QPM rating was
3.735. Measurements on more recent releases of both products (DB2 V2.3 and M204 va.2)
showed a new QPM ratio of about 3.3 on 3 somewhat faster CPU platform, illustrating a number
of performance improvements by DB2. To compare OLTP measures, one can examine the TPC-A
benchmark results from Appendix A of [HANDBOOK], tabulated January 4,:1993; these show a
total of 6 different pairs of measurements for distinct database systems on identical computer
models (three different database system products were involved: INFORMIX V5.0, SYBASE
V4.8.1, and ORACLE?7). The maximum ratio between any two products in $/TPS ratings was
©.173. The fact that these ratings are so close serves to confimn the earlier conclusion that
transactions have become a commodity, while the much larger ratios for query performance
illustrates point (2) above, the disparate query performance of different database products,

But even this ratio is misleadingly small from a standpoint of an ideal amalgamation of the
features of the two products. DB2 and M204 actually have quite different strengths. M204 is
superbly efficient at combining indexed filter factors of multiple predicates in a where clause,
S0 as to achieve a small RID list of rows to retrieve, This capability is based on efficient bit
map use and is not properly accounted by traditional query optimization theory, in that it is 50
or so times as efficient as the method used by DB2. But DB2 has extremely sophisticated ability
to perform efficient multi-page 170, using sequential prefetch and list prefetch to greatly

seems not to be properly accounted in query optimization theory. There is evidence too that DB2
teads all other products in multi-page 1/0 capability, as well as in efficient Jjoins using RID
lists. A benchmark performed in 1992 for a large insurance company, with a pPreponderance of

ciency of DB2 1/0 and CPU processing, and held in spite of the relatively high IBM hardware
prices of that time. The much better utility performance available on DB? (loads were much
faster) clinched the acquisition decision in their favor, Since that time, multi-page reads have
improved on many products, but not to a sufficient extent, while IBM prices have come down a
great deal, so a benchmark of today would continue to be of interest.

S

Summary

Decision Support System query performance needs are relatively poorly understood and not well .
implemented in most database systems of today. There are a large number of detailed features

-3

that seem to define. the. stete of the .ert in quefy performanee,' many of them not yet properly

reflected in commonly understood theory of query optimization.: As a result, no product seems to

have made correct architectural decisions to mplement all these features, and indeed different
product. mplementattons seem extremely scattered in this regard. Because of this, there'is a
wide disparity in measured query performance between database systems. Since querles take
large amounts of hardware resources, this disparity results in surprising differences in costs
between different DSS platforms. Because OLTP price-performance seems to be converging on
the different platforms, and DSS purchases are probably rising, we can expect query perfor-
mance to be an important distinguishing feature between database systems of the near future.
Note that the ability to provide intra-query parallelism will not address this need, since par-
allelism can only hope for linear speed-up, and will not actually :mprove query cost-per—
formance. o . . . L PR L

References_'_'f

[ANON] Anon et al., A Measure of Transaction Processmg Power, .originally pubhshed in .
Datamation, February 1985, appears in Readings. in Database Systems (both in the Flrst and
Second Edltlons). M. Stonebraker (Ed), Morgan Kaufmann 3 :

[FTSN-69] FTSN (Fault To!erant Systems Newsletter) 69 13 May 1988 pg 10 ITOM
International, Los Altos CA S

[HANDBOOK] The Benchmark Handbook For Database and Transaction Processing Systems
Second Edition, Jim Gray (Ed.), Morgan Kaufmann, 1993, Contains numerous benchmark de-
scnptlons as cated here together wsth TPC-A TPC B, and TPC-C resuits in Appendlx B.

[TPC-D] Available from TPC contact Shanley Pubhc Relatlons San Jose, CA
tpc@cup portal com.

16

Towards Implementing Extended Transaction Models
on Conventlonal Transaction Processing Monitors

_Roger Barga . . Calton Pu

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
P.Q. Box 91000
Portland, OR 97291-1000

email: {barga,calton}@cse.ogi.edu

1 Introduction

The last five years have witnessed the introduction of numerous extended transaction models [Elm93].
Despite their popularity, there are no commercial transaction processing (TP) products or prototypes that
incorporate extended transactions, and relatively little has appeared in the literature on implementing
extended transaction models. We present the Reflective Transaction Framework, a practical and modular
framework that can be used to implement a wide range of extended transaction models on conventional
TP monitors [BP95]. We achieve -modularity by applying the Open Implementation approach [Kic92],
also known as meta-object protocol [KdRB91], to design the reflective transaction framework. We achieve
practicality by basing the implementation of the reflective transaction framework on the well documented
ideas of the TP Monitor architecture [GR93], which is widely applicable to many modern transaction
processing systems.

Our proposed implementation introduces transaction adapters, add-on modules built on top of exist-
ing commercial TP components that extend their functionality to support extended transaction features
and semantics. We further demonstrate practicality by incorporating transaction adapters within Encina,
a commercial TP facility. This modular and practical design enables us to implement a wide range of
extended transaction models on a commercial TP monitor, and we demonstrate this with the imple-
mentation of two independently proposed extended transaction models for collaborative work [BP95]
(split/join model [PKH88] and cooperative groups [MP92, RC92]).

2 The Reflective -Ti'ansaction.- Framework

Classic transactions are brackéted by the control operations Begin-Transaction, Commit-Transaction
and Abort-Transaction, while extended transactions can invoke additional operations to control their
execution, such as Split-Transaction, Join-Transaction or Join-Group. A particular transaction
model defines both the control operations available to transactions that adhere to that model and the
semantics of these operations. For example, whereas the Commit-Transaction operation of the standard
transaction model implies the transaction is terminating successfully and that its effects on data objects
should be made permanent in the database, the Commit-Transaction operation of a member transaction
in a cooperative transaction group implies only that its effects on data objects be made persistent and
visible to other member transactions. To capture this distinction, we first separate the programming
interface of the transaction facility in order to keep the basic function of a transaction independent of the
advanced operations required for extended transactions, and to control implementation level concerns.

To design the reflective transaction framework, we first apply the Open Implementation approach [Kic92]

to separate the programming interfaces to extended transactions, and identify modular functional com-

165

ponents required to realize_t__hié separation. Next', we proceed to_é_xterid.the underlying transaction pro-
cessing facilities to support these modular functional components via transaction adapters. We outline
these steps below, and their complete description is available in the full version of this paper [BP95].

2.1 A Separation of Interfaces

The Reflective Transaction Framework separates the programming interface to transactions into distinct
levels, where each level presents a different view of transaction functionality. This separation follows the
Open Implementation approach [Kic92], in which the functional interface is separated from the meta
interface, and the purpose of the meta interface is to modify the behavior of the functional interface. In
our separation of interfaces, presented below, Level 1 and Level 2 are functional, subdivided for clarity
only. Level 3 is the meta interface that modifies the semantics of the transaction functional interface
{Levels 1 and 2).

Level 1 The transaction demarcation interface: begin-E-transaction, commit-E~transaction, and
abort-E-transaction. The addition of letter E in front of transaction indicates that these operations
extend transaction semantics beyond ACID. : '

Level 2 The extended transaction interface (operations defined by each. extended transaction model):

e For the split/join transaction model, it is Split-Transaction and Join-Transaction.

e For the cooperative group transaction model, it is Begin~Group, Join~Group, Commit-Group, and
Abort-Group.

Level 3 The meta-transaction interface: extends the implementation of the TP monitor to support the
extended transaction interface (Level 2). For the extended transaction models considered in this paper,
the operations needed are: instantiate, reflect, delegatelp, delegateLock, formDependency,
and noConflict. o o o B e

The transaction demarcation interface (Level 1) exports the basic transaction interface. When used
alone (Level 2 and Level 3 not involved) it provides classic ACID transaction semantics. The eztended
transaction interface (Level 2) exports a model-specific transaction interface when extended transaction
functionality and semantics are required. Finally, the meta-transaction interface (Level 3) exports a mod-
ifiable interface to the underlying transaction proceésin_g facility fb_r implementing extended transaction
models. ' ' o '

Realization of extended transaction models is facilitated through the careful design of the meta-
transaction interface and its implementation. The design of the meta-transaction interface was inspired
by the ACTA framework and readers familiar with ACTA will recognize that it supports many of the
ACTA basic building blocks for describing extended transaction models. On the design side, the meta-
transaction interface is close enough to ACTA to obtain modularity and applicability to a wide range of
extended transaction models. On the implementation side, it is close enough to standard TP monitor
architectures to support a practical implementation on top of commercial software. This design and
implementation of the meta-transaction interface is captured in transaction adapters.

161

2.2 Implementation Through Transaction Adapters

Transaction adapters are modules built on top of an existing transaction processing facility that ex-
tend the underlying functionality. Each transaction adapter provides a representation (model) of the
underlying transaction processing compenent for use by the meta-transaction interface, mechanisms for
reasoning about and with such a representation, and a set of commands for controlling both the repre-
sentation and the underlying transaction facility. This set of commands is referred to as TRACS, for
TRansaction Adapter Command Set.-TRACS expose features such as operation and lock delegation,
dependency tracking between transactions, and relaxed definitions of conflict, as explicit commands by
which extended transaction models can be implemented. Thus, instead of applying operations in the
meta-transaction interface directly to the underlying transaction system, we base them on an abstract
and enhanced description of the underlying transaction system provided by transaction adapters.

TRACS TRACS TRACS TRACS

Transaction Mgr.| Lock Conflict | Log -
Adapter Adapter | Adapier | Adapter

=

Transaction Mgr. Lock Mgr. Log Mgr.

OLTP System

Figure 1: Transaction Adapters in the Reflective Transaction Framework.

Transaction adapters and their associated TRACS, as illustrated in Figure 1, are built on top of and
use existing transaction processing services. For practicality we base their design on the TP monitor
architecture, and are currently exploring their implementation via Transarc's Encina OLTP system.
This way, TRACS provide similar reliability to mature OLTP systems software and minimize overheads
often associated with increased flexibility. In fact, overhead associated with extended transactions is
incurred only when the extended facilities provided by transaction adapters are used, and since an ACID
transaction uses only the transaction demarcation interface (Level 1), it is executed without additional
overhead.

2.3 Realizing Extended Transactions

In the Reflective Transaction Framework, a ‘transaction is simply a partially ordered set operations on
data objects, with calls to operations in any of the three leévels of interfaces. Users are not limited to a
predefined extended transaction model, which may or may not be appropriate for their application, nor
is a transaction restricted to a single set of extended semantics and properties. Instead, a transaction de-
clares its intention to use extended transaction properties and semantics via the instantiate command
prior to beginning execution. The effect of this command is the creation of entries in the transaction
adapters to represent this transaction, effectively creating a metatransaction. The meta-transaction com-
mand reflect assigns extended semantics to the metatransaction and supports the further refinement
and extension of transaction properties during execution. For example, the sequence of transaction con-
trol operations presented below first creates a metatransaction for transaction 77, assign it the semantics
of the Split/Join transaction model [PKHS8], and begins the execution the execution of transaction T;.

167

instantiate (Ti); // create metatransaction
reflect(Ti,Split-Join); // assign split-join transaction semantics
begin=transaction{Ti); // begin execution of extended transaction

A transaction with semantics beyond ACID properties is referred to.as an E-transaction. When an
E-transaction invokes a transaction control operation, the metatransaction is responsible for determin-
ing which function is actually executed based on the extended semantics of the transaction. Figure 2
illustrates the processing when the E-transaction I; invokes the Split-Transaction control operation.
Thus, from the system point of view, we consider the metatransaction as an object that supplies the
extended transaction model semantics, separate from the application programmer’s view of transactions.

vald mp)itletdud (D) {
- :
H
Emplementation-level

o)

Bexin
-

miicirae

=
iy

Mcta-keve] Trnsaction Basc-jevel Transacgion

Figure 2: Transaction management method execution redirection.

The transaction systems programmer can define and specify the implementation of E-transaction op-
eration by defining another metatransaction a,nd ‘then subst:tutmg it. In th1s ‘sense, a suitable grouping
of E-transaction operations form an extended transaction model. The sequence of metatransaction com-
mands presented below specify the 1mplementat10n of the Split-Transaction control operation. Meta-
transactions are thus realized through both the metatransaction interface and the transaction adapters
and their associated TRACS.

E_splitMethod{
instantiate(T2); // inatantiate new transaction.
reflect (T2, sj.model); // add transaction semantics through reflection.
delegate_lock{(T2, DelegateSet); // delegate locks related to objects in the DelegateSet.
delegate op(T2, DelegateSet);: // delegate operations related to cbjects in the DelegateSet..
begin(T2); // begin execution of the nev transaction.
return; // return contrel te invoking tramsaction

3 An Encina Implementation .

One of the salient features of design of the reflective transaction framework is its compatlblhty with the
TP monitor architecture, Wthh is widely apphcab]e to many modern transaction processing systems.
One major advantage of this compatibility is the ease for 1mplementation of the reflective transaction
framework. Instead of starting from scratch, we can extend an existing OLTP system through the def-
inition and implementation of the transaction adapters. Concretely, we are currently implementing the
Transaction Manager Adapter, Lock Adapter, and Conflict Adapter (Figure 1) on Encina, a commer-
cial OLTP system distributed by Transarc. The full version of this paper [BP95] contains a complete
description of the implementation details. .

168

The goals of our implementation effort are to: (1) demonstrate the practicality of the reflective
transaction framework and transaction adapters, (2) evaluate extended transaction models in a real
environment, (3) determine how easy it is to implement 2 wide range of extended transaction models,
and (4) facilitate eventual technology transfer to real users.

4 Summary

We have presented the reflective transaction framework as a practical and modular framework to im-
plement extended transaction models on conventional TP monitor software. Using the framework, we
outlined an implementation method for extended transaction models based on transaction adapters,
add-on modules built on top of existing commercial TP components, such as Encina, that extend their
functionality to support extended transaction features and semantics. Qur early experience [BP95] shows
that the framework is general enough for a wide range of extended transaction models. Although the
implementation details were product specific (Transarc’s Encina), our framework was designed in the
context of the TP Monitor Architecture, so it is applicable to many modern commercial TP monitors.

While the importance of extended transaction models has been known for many years, their use
in real-world applications has been hampered by the lack of practical implementations. Furthermore,
since most extended transaction models have been merely theoretical constructs, there are a number
of important design issues that have generally not been discussed in the literature [?]. Qur hope is
that the reflective transaction framework will remedy this situation, providing a clear migration path
to incorporate research advances in extended transaction models into commercial TP monitors. This
will enable us to draw conclusions from direct experience in applying extended models in real, working
environments.

References

[BP95] Roger S. Barga and Calton Pu. A practical and modular method to implement extended tramsac-
tion models. In Proceedings of the 21st International Conference on Very Large Data Bases, Zurich,
Switzerland, September 1995.

(Elm93] Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Morgan
Kaufmann, 1993.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Pub-
lishers, 1993.

[KdRB91] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT
Press, 1991.

[Kic92] Gregor Kiczales. Towards a new model of abstraction in software engineering. In Pro-
ceedings of the IMSA’'92 Workshop on Reflection and Meta-level Architectures, 1992, See
http://wuw.xerox. com/PARC/spl/eca/oi html for updates.

[MP92] B. Martin and C. Pederson. Long-lived concurrent activities. In Amar Gupta, editor, Distributed Object
Management, pages 188-206. Morgan Kaufmann, 1992.

[PKHS88] C. Pu, G.E. Kaiser, and N. Hutchinson. Split-transactions for open-ended activities. In Proceedings of
the Fourteenth International Conference on Very Large Data Bases, pages 27-36, Los Angeles, August
1988.

[RC92 K. Ramamritham and P.K. Chrysanthis. In search of acceptability criteria: Database consistency
requirements and transaction correctness properties. In Amar Gupta, editor, Distributed Object Man-
agement, pages 212-230. Morgan Kaufmann, 1992.

[RP91] K.Ramamrithanand C. Pu. A formal characterization of epsilon serializability. Technical Report CUCS-
044-91, Department of Computer Science, Columbia University, 1991. To appear in IEEE Transaction
on Knowledge and Data Engineering, June 1996,

5

169

13Million TP HA!

T.K.Rengarajan' & Rabah Mediouni?

Abstract : On April 12, 1994, Oracle Rdb 6.1 set the world record for TPC-A perfor-

~mance at 3692 tpsA at $4873/tpsA running on a 4 node 7000-650 AXP VMScluster using
~ ACMS 3.3 transaction monitor and OpenVMS 6.1 operating system. This is about 13 mil-

lion TPC-A transactions per hour. In this paper we describe the technical problems

'encountered and solutlons used during the benchmark.

1.0 Introductlon

On April 12, 1994, Oracle Rdb 6.1 set the world record for TPC-A performance at 3692
tpsA at $4873/tpsA running on a 4 node 7000-650 AXP VMScluster and OpenVMS 6.1
operating system.

In this paper we describe the technical problemis encountered and solutions used during
the benchmark. Included are tuning considerations, hardware configuration, Rdb enhance-
ments incoporated based on cxpectations as well as actual problems found dunng the
benchmark analysis.

2.0 System setup

The intial goal of thc bcnchmaikmo cffort was to 1each 3000 tpsA in an effort to far outdo
the tpcA record at the time for relational databases, which was at 1079 tpsA.

The back-end consisted of a VMScluster(ref?) of 4 nodes. Each of these 4 nodes was a
multi-processor with 5 Alpha AXP 21064 processors (ref?). The processors had a clock
rate of 200 MHz. Each of the nodes had 512MB of memory. The 4 nodes were connected

- to each other and to a set of 9 HSJ40 disk controllers by two Cluster Interconnects (ClIs).

About 220 RZ28 and RZ74s were hooked up to these disk controllers and load balanced.

- The controlters and disks werc physically placed in StorageWorks cabinets. The front ends

were VAX machines. They were connccted on etheimet segments which were then con-

- nected to the backend via an FDDI conncction.

1. Sybasce Ine, ranga@sybase.com
2. Oracle Ine, mediouni@.nova.cnet.dee.com

April 10, 1895 1

170

171

3.0 Benchmark issues

3.1 Partitioned Lock Trees .

With Rdb, each tpcA transaction did 2 lock operations, one to acquire and the other to
release a transactional page lock on the account page. Since we had configured 2 Cl inter-
connects for the cluster, we did not expect 6000 lock operations per second to be a band-
width problem. However, we had a solution called Partitioned Lock Trees (PLT)
implemented in Rdb 6,1.

All the lock resources for any Rdb database are arganized in one logical tree. This organi-
zation provides naming convenience as well as necessary hooks into OpenVMS to provide
a simple recovery scheme on node-failure. PLT is a database-wide option. It splits the lock
tree for the database into many trees, one per database area. OpenVMS migrates lock trees
dynamically in the VMScluster based on load. With PLT, any application partitioned by
areas 1s expected to perform only local lock requests. In the case of TPC-A, each branch,
teller, and history tables was accessed only from one node. The account table also had this
property except for the 15% remote requests required by the benchmark. Such partitioned
access was ensured by routing of transacions by the ACMS transaction monitor.

PLT had the effcct of eliminating most of the lock traffic from the CI. It also eliminated
some of the code path in the VMS lock manager bo avoiding remote lock requests as well
as saved some context switches for remote locks. We could not afford the time to precisely
measure the impact of PLT.

3.2 Reduced size of db pages e

One CI has a maximum bandwidth of 10Mbits/s(?). Digital folklore put the realistic limit

on CI bandwidth at 5 Mbits/s. Each account page was 1KB: All disk:I0 in the cluster has
to go via the CI. Since the CI bandwidth may become a bottleneck at 3000 tpsA, we chose

to configure the cluster with two CI interconnects. Higher number of CIs were known to

work with OpenVMS, but were not certified and hence was out of question for the bench-

mark.

In addition to configuring two Cls, we also wanted to reduce the size of the account page
to 0.5K, since this was a tunable parameter in Rdb. The account table for range partitioned

into multiple arcas and then hashed with cach area for:1 JO access. This had a bad effect

on space utilization for account pages. To work around this, we used the “modulo hash

function” feature of Rdb. This hash function simply places the account rows in round

robin order from the first to the last page of the areas. This function climinated all random-

ness and gave us precise control over sizing the account areas to fill each database page to

the maximum. In addition to reducing the CI bandwidth requirements, this also reduced

the disk arm movement for accounts.

13Miilicn TP HA! Aprit 10, 1995 2

3.3 Database load performance

We realized early on that the time to load the database of 50GB was going to be signifi-
cant. The load time determined the extent to which we could try different physical organi-
zations. Data was generated in a program and stored intothe database via insert
statements, The account rows were generated such that all rows that were placed on page
1 were gencrated first, followed by all rows that were placed on page 2 and so on. The use
of the modulo hash function cnabled us to precisely determine the target page for any
account row with a specific account_id. This algorithm guaranteed sequential loading of
data into cach partition of the account table. We wrote a number of parallel load programs

‘that loaded all the partitions in parallel. When we started all the load programs in paratlel,

we ran out of cpu. Therefore we scaled back the number of concurrent loaders, while
keeping the 20 cpus completely busy. The load procceded in big batches: each batch
loaded a number of arcas. The account arcas were all sized the same and there was no
trouble with Joad balancing. Incidentally, this is the load that was used as a benchmark of
generalized parallel load in [Gray94].

3.4 Memory shortage!

In spite of having large amount of memory 512 MB, we ran into paging problems when
we ran the final benchmark. We cncountered this cven though we had sized the Rdb buffer
pool to be fairly small, since TPC-A does not benefit from large buffer pools. We attrib-
uted this to the large page size (8K) of OpenVMS on Alpha AXP. This can be explained
by an example. Let usa say Rdb touches 1000 clusters of memory locations during a TPC-
A run. On a VAX with a page size of 0.5KB, Rdb required 500 KB per process to elimi-
nate paging. However, on Alpha AXP, Rdb required 8MB (8K * 1000) per process. This
eight-fold increase in memory requirements going from VAX to AXP probably causcd the
memory problems.

3.5 VMS buffer ;'obj'ects

OpenVMS 6.1 included an innovative mechanism to-share memory management responsi-
bilities with its applications. It is called the buffer object. An application is allowed to
declare a certain range of virtual memory as a buffcred object. This makes the range of
virtual memory non-pagcablc. Thereafter, every IO in the buffer object was executed via a
faster code path that did not have to check for pinning pages to physical memory for the
IO duration. VMS buffer objects was a perfect match for Rdb buffer pool. Rdb imple-
mented this fcature that allowcd customers in tum to declare Rdb buffer pool as a VMS
buffer object.

3.6 Rdb code path improvements

Many many arcas, code path cxpansion due to # of areas, 10% code path cut duc to new
algorithms.

13Millios TP 1HA! Aprl 10, 1993 3

172

The database design for 3k tpsA required about 1000 (?) areas. One of our early experi-
ments was to determine if Rdb could handle the large number of areas. This was deter-
mined not to be a problem, but a different issue surfaced. The large number of database
arcas changed the cpu profile of the tpcA transaction considerably. We used DEC Perfor-
mance and Coverage Analyzer (PCA) for our cpu profiling. In fact, Rdb was rupning sig-
nificantly (?) slower on one processor against the larger database sized for 3K tpsA,
compared to our previous results.on a database sized for 350 tpsA.

We completely changed our algorithms to make the code path independent of the number
of areas. By this time in our work on Rdb performance, quite a number of unexpected
places in the code started to hit the top of the cpu profile list. The code fragment that ini-
tialized a 2KB log buffer to zeroes showed about 5% cpu usage. We explained this as
memory latency for the 300MHz processor. So we changed the code to avoid needless ini-
tialization! After all the talk about memory latency here was a concrete example where it
hurt performance. In another instance, looping through all the buffers in a process’s allo-
cate set to reset a flag (to indicate undo logging was no longer necessary) was found to be
expensive. We changed this algorithm too to limit the looping based on LRU buffer man-
agement.

Allin all, Rdb tpcA code path was improved by 10% over previous releases, in addition to
handling the slow down due to the large # of areas.

3.7 HSJ firmware limit |

In the Storageworks disk configuration, we had configured one HSJ40 controlier for ?
disks. However, we ran into 10 response problems for IOs to the account disks. This
resulted in greater stall time per transaction and required more processes to fully utilize
the cpu. The additional overhead of more Rdb processes decreased the tps. We performed
a number of experiments with an IO exerciser for VMS called I0X and also used the tool
called VTDPY and determined that we were saturating the IO controller. Fortunately, a
new version of the IO controller firmware was being developed that promised savings in
controller cpu cycles. This indecd got us over the hump with this JO bottleneck.

3.8 Client network problem.

During the benchmark analysis phase, we tested to make sure each node with 6 cpus could
execute more than 1000 tpsA. Once we started the test on all the nodes, we could not even
reach 3000 tps. The transactions were not reaching the back end. The network turned out
to be the problem. The ethernet segments were utilized to their practical maximum, about
53Y%. This forced us to understand about the configured network topology, various nct-
work components and the LAN analyzer.

3.9 Solid State Disks & ACE

ACE feature. [0 to ACE took 100 long; last thing we expected: One 30K [0 to SSD took
longer than mag disk. Turns out to be 2MB/s throughput limit to the SSD. All SSD perf #s

i3Million TP HA! Aprit 10, 1995 4

173

done with 512 byte I0s! Mag disk stripc set? Stripe the SSDs? Log IOs larger than 32K,
Small stripe size, VMS stack oveflow!

Rdb has a special feature called AlJ Cache on Electronic disk (ACE) to exploit solid state

~ disks for transaction processing. We fully inténded to use this featurc for the big bench-
_mark since it provided significant 1mprovemcnt in the results. However, when we tried the
- ACE fcature on, the performarice did not improve at about 3000 tpsA. The 1O to the solid
~_ state disk took too long, about 10 ms. This was due to the size of log 1Os at high tps. The
. :log 10s kept increasing in size with tps per node such that we had to increasc our limit to
64K (from 32K) for the size of onc log writc. We were running into a 2MB/s throghput

bottleneck for the solid state disk. It turns out that all response time ratings werc based on
0.5K 10 sizes. Striping the SSDs three-ways yielded some improvement in response time,
but increascd the cost. Thus, our novel algorithm to cxploit SSDs could not be used.

3.10 New goal : beat mainframe (3503 tpsA)

We had gone through a Jot of troubleshooting and Rdb changes when we reached our goal
of 3000 tpsA. We reckoned it is hard to get another opportunity to assemble such hardware
in one spot to be put to test. Therefore we went after the 3500 tpsA number set by the TPF
system on thc IBM mainframe. It was not only the world’s best current TPC-A number,
but also represented the ultimate airline transaction processing system,

Since we were able to reach 3000 tps with only 16 processors, we were not short of cpus.
However, we were short of disks and controllers. Since we could not assemble the neces-
sary additional disks and controllers, we decided to double up on the existing disks for the
account areas. We created a stripe set of 3 disks each using hardware striping from the
HSJ40 controller and used it to hold 4 account areas. This worked well and helped us
reach our new goal. :

- 3.11 The Audit

"The actual audit’ waq itsclf an experience to remember. The auditor was fnendly and had

very flexible hours worked around the clock. Our Isolation test was coded in Cobol and

~could not be run since a Cobol compiler was not installed on the benchmark machines.

This required us to show isolation tests by hand using interactive SQL scripts and pro-
voked a lively debate. The system failure test took almost all night. The recovery took a
long time in spite of parallel recovery processes recovering independent sccount disks.
Counting the history records after every performance run was made cven possible by the
asynchronous pre-fetch (APF) feature in Rdb. Otherwise we could not have complcted the
audit in time for the announcement. One of the performance runs showed too high tps
numbers and required creative sclection of the steady state window to bring it in line with
the other results.

13Millien TP HA! April 10, 1995 3

174

4.0 Conclusion

TPC-A is a deceptively simple test. However, it has taken almost a decade for all commer-
cial RDBMSs to do well in this benchmark. The benchmark experience forced us to
understand all components of the system, i.e., Alpha AXP processors, OpenVMS operat-
ing system, ACMS transaction monitor, StorageWorks disk subsystems, Digital’s mag-
netic disks, Digital’s network components. It provided us with a whetstone against which
we could test Rdb and extract lessons that could be generally useful to many applications.
It also provided us with an example of a system where the shared-disk hardware and parti-
tioned application can work well together. Besides, this was about the only way to get
roses for our wives from an authority on transaction processing who shall remain anony-
mous! '

5.0 References -

1. Original DATAMATION article

2. [GRAY94] Jim’s db load paper

3. Our DTJ paper on ALS, ACE etc

4. Qur old paper on Rdb commit sharing
5. Rdb doc st . |
6. Alpha AXP reference -

6.0 Acknowledgements

This world record was a very big team effort that stretched over many years. A number of

people have contributed over the years that culminated in setting this world record. These

include Rick Anderson, Wael Bahaa-¢l-din, Mike Brey, Jay Banerjee, Arun Gopalan, Jim

Gray, Steve Hagan, Paul Houlihan, Ashok Joshi, Steve Klein, Walt Kohler, Richie Lary,

Gigi Lirot, David Lomet, Drew Mason Ray Pfau, Peter Spiro, David Walrath. We apolo-
gize for the omissions of other names. = . R o

E3Million TP HA! Apnb 10, 1995 6

175

Indexing for Aggregation

Betty Salzberg * Andreas Reuter
College of Computer Science Institute of Parallel and Distributed
Northeastern University High-Performance Systems (IPVR)

Boston MA. 02115 Breitwiesenstr. 20-22

D-70565 Stuttgart, Germany

1 Introduction

In decision support applications, very often aggregate values over several variables (using
GROUP BY in SQL) are of greatest interest. These can be calculated each time they
are needed using a standard SQL query.” However, if the same values are used often,
it may be wise to store them rather than recalculate them. In this case, they should
be clustered so that likely subqueries involving ranges of the variables can be answered
rapidly. This would imply that a muitivariable index such as the R-tree [Gut84] or the
hBM-tree [ELS95, £S93] be used to store the aggregate values.

In addition, the aggregate values being calculated may come from a relation other
than the one(s) used for grouping. We have in mind a SQL query such as the following:

Select type-of-business, type-of-part, state, sum(amount)
from Customer, Parts, Sales-0Offices, Sales

where Customer.CID = Sales.CID and Parts.PID = Sales.PID
and Sales-0ffice.DID =Sales.0ID

and (state = Massachusetts or state = California) -

group by type-of-business, type-of-part, state

In this example, the Sales relation contains information about each sale: an identifier
of the customer, the objeci sold (the part), the -office where the sale takes place, the
dollar amount of the sale and other information. Each customer record lists the type of
business the customer is in. Each sales office record contains the location of the office, in
particular the state. Each part lists a type identifier as well as the part identifier. Many

“This work was partially supported by NST grant IRI-93-03403 and by the IPVR.

176

parts will have the same type. The grouping is done by type-of-business, type-of-part
and state. none of which are in the sales record. Without further support, this query
would require three joins. _

For discussion, we shall use the following more abstract formulation of such a query:

Select D1, D2, D3, sum(Q)

from R1, R2, R3, S

where Ri1.K1 = S.K1 and R2.K2 = S.K2 and R3.K3 = §5.K3
and D1 > 43 and D2 < 56

group by D1, D2, D3

Here. as pictured in Figure 1, the relation S contains the value Q which is used for
the aggregate, just as the Sales relation contained the amount attribute. The grouping is
done by D1, D2 and D3. which are attributes which are not stored in S. Instead. foreign
keys in S enable one to find in relations R1. R2 and R3 the corresponding D1. D2 and
D3. There should be many different Ki corresponding to a given Di in general. That
15. D1 to N1 1s a one-to-many relationship for each i. {So, for example, a state will have
many sales offices.) The Ki's are keys in the relations Ri for each i. {So, for example,
each Sales-Office record is uniquely identified by an OID-—an Office Identifier.)

R1 R2 ' R3
K1 D1 | other K2 D2 other K3 D3| other

foreign keys

S
S-key K1 K2 K3 Q other attributes of S.

Figure 1: Relations R1, R2, R3 and S

In Figure 2, we show a multiattribute indexing structure [which can be used to
produce answers to the query above. The leaf level contains records with Di. D2 and D3
attributes, and for each triplet, the aggregate value(s) (sum, count, max, etc) wanted.
We expect ranges of D1, D2 and D3 to be used in Lhe quenes so that the clustering in
pages is in terms of the D values

2 Use of the aggregate index for the “cube”

As another example of a possible application of such a clustering index 1s the “cube”
construct suggested in [GBLP95]. In the cube. group aggregation is done over n attributes

2

177

/N \
-

sm@Mﬁﬁﬁlemm '. mm®%mLmBh@m2 sum(Q)s for D1, D2, D3 region 3

Figure 2: The three dimensional space for attributes D1, D2 and D3 is indexed by a
multiattribute index I. Stored in the data pages at the leaves of the structure I are the
aggregate sums of Q for each tuple D1.D2,D3 belonging in the space described by the
upper levels of the index for that page.

by grouping by any k attributes from the n attributes when 0 <= & <= n. Thus, for
example, the answers to the following SQL queries would be among those included in the
response:

Select D1, D2, D3, sum(Q)
from Ri, R2, R3, S

where R1.K1 = S.K1 and R2.K2
group by D1, D2, D3

S.K2 and R3.K3 = S.K3

Select Di, D3, sum(Q)

from R1, R3, § _ .
where R1.K1 = S.K1 and RZ.K3
group by D1, B3

5.K3

2.1 Calculation of Super-Aggregates from [

The index shown in I'igure 2 is fine for the cube because clustering of data in leaf pages
is fairly distributed among all attributes. Here, to calculate the result for two attributes
(such as D1 and D3), the sum of all the stored values for a given D1 and D3 tuple
would be made. That is, for less than n attributes. calculating aggregates of stored
values would be necessary. (This requires a little extra information for some aggregates
such as average. which can be calculated from the count and sum or froin the count and

178

individual averages, for example and it cannot be done for some aggregate values such
as median, or middle value [GBLP95].)

2.2 Storing Super-Aggregates

An alternative is to store as well all the super-aggregates—the sums for each two at-
tributes and each one atiribute and so forth. If there are n attributes, this has the
property that 2" updates must be made when a new tuple is inserted in the database.
If n is relatively small, this may be all right. For example, if n is 3, as in our example,
8 changes must be made to stored aggregates and super-aggregates when a record is
inserted. This may be acceptable if calculating super-aggregates from simple aggregates
requires many disk accesses from the leaves of I (so that calculation of super-aggregates is
expensive) and/or if the super-aggregates can be kept in main memory (so that updating
them is cheap). Then the savings on querying the cube would make the extra cost of
updating worthwhile.

3 Data Structure for Updates

The use of a multiattributeindex 7 is straightforward if queries only are made and updates
are never made. But when updates are made. the problem becomes more complicated.

When updates are made, by adding a tuple to S, the values of D1, D2 and D3 which
correspond to k1, K2 and K3 are not known. Without adding another data structure,
one could look up these values in the relations R1, R2 and R3 and then use them to
update the index /.

However, in the case that such a tuple already exists in the database and only the
value of the aggregate need be changed, it would be faster if there was an additional
index I’, which would find the correct data page in I and the correct record in that data
page for a given tuple K1, K2, and K3. Such an index I’ would not cluster the data.
I' would contain individual references to records in leaf pages of I. The index I’ would
probably be implemented efficiently as a hash table. This is pictured in Figure 3.

If a tuple was inserted in S which had values K1, K2 and K3 which did not already
exist in the database, I’ would only be able to indicate that this was the case. Then it
becomes necessary to do a join with R1, R2 and R3 to find the corresponding Ds. If a
new ([D1,D2,D3) tuple corresponds to the new (K1,K2,K3) tuple, a new record in [is
created. If not, an update is made in I. In both cases. a new entry is made in I'.

3.1 Splitsin [/

If I' contains disk page addresses for the leaves of I, and record slot numbers, there
is a problem when the leaves of I split. Then all of the moved records are incorrectly
addressed in [’ and a very expensive update is required to change this. Normally, there
will be many references in I’ to one record in the leaf page in /. This is because for

17¢

each value of the attribute Di for each i, there may be many values of the attribute Ki
corresponding to it.

On the other hand. if the key for I, (D1, D2. D3), is used as a reference in /' instead
of the disk page address,] must be traversed to find the correct aggregate record in the
leaf page to be updated. In addition, the size of I’ may be large (because the tuples (D1,
D2, D3) may be long).

In addition, at a certain point in time, there is some reason to believe that almost all
tuples (D1.D2,D3) which will ever exist are already represented in /. In the example we
used to begin this paper, (D1,D2,D3) was (type-of-business. type-of-part, state). Once
most of the business types had been sold most of the part types in most of the states.
this would be the case. At this point, very few insertions in I would be made, and
consequently very few I-leaves would be split.

3.2 Our Proposal

We propose therefore, that I’ is not constructed until we are reasonably sure that most
I entries are present, and that disk page addresses and record slots be used in J’. We
show how updates to J’ resulting from I-leaf splits can be done lazily by detecting in an
I’ search that a split has been made.

First suppose the records in the hash table buckets of I’ contain only the (K1,K2,K3)
tuples and the corresponding page address and record slot number for a record in 7.
Without more information, there is no way to tell without doing a join, which (D1,D2,D3}
tuple corresponds to a given (K1,K2.K3) tuple. So a moved tuple in an I-leaf could not
be detected by looking at the contents-of the I-leaf.

To solve this problem, we shall assign to each (D1,D2,D3) tuple a unique identifier
and store it both in I and also in each reference to this tuple in I”. When a search from
I' is made and the identifiers do not match, that indicates that a split has been made.
But then where is the correct (D1,D2,D3} tuple?

We also store in each page that is split the number of times it has been split and a
pointer to the page which most recently split from it. A new sibling copies the pointer
from the page it split from and has split count zero. With this information, we will know
how far to go to find the new position of a record which has been moved.

Split counts are actually only needed if we allow deletions of (D1,D2,D3) tuples when
their count attribute is zero. If such deletions are allowed, they are distinguished from
moves when the tuple cannot be found by the end of the search.

Since this proposed structure follows linked lists. it only makes sense if it is used
nirequently. So the condition of knowing that there are unlikely to be many splits in
I-leaves is important. There are two other alternatives: (1) have no I’ and update using

joins and (2) use the (D1,D2,D3) tuples as references in I’ and follow I to find the tuple

to update. These are both slower in the anticipated usual case when there are few splits
of I-leaves.

fuin |

180

// . \
S SN D

sumQ)s for Di. D2, D3 region 1 sum{Q)s for D1. D2. D3 region 2 sum(Q)s for DI D2, D3 region 3

‘ hash table I

A:-;h function

Figure 3: Hash table access for updates. Addresses in the hash table give the page
acddress. slot number and unique identifier for a (D1,D2.D3) tuple in an I-leaf.

4 Discussion

Maintaining indexes always takes system resources. An index for group-by queries
takes space. Every separate (D1,D2.D3) tuple requires an entry in I. Every separate
(KI.K2.K3) tuple requires an entry in I’. Insertion requires updating at least I and,
when the tuple is a new one, both / and I’. But this buys time in query processing. In
the example we have looked at, if no index is kept, the group-by query would require
accessing four relations and making three joins. Using the index I should be much faster.

Even for the cube query. only the index I and not the relations needs to be accessed
if super-aggregates are calculated each time from simple aggregates. (Super aggregates
can also be stored, with the penalty that an insertion (or delete or update) of a data
record will require 2" updates where n is the cube dimension.)

The separate update index, I', saves time only when tuples are inserted (or deleted)
and only when the grouping tuple already exists in J. The alternative to keeping I' is
finding the values of (D1, D2, D3) using the relations R1, R2 and R3. We have suggested
a variant of I’ using page addresses, slot numbers and unique identifiers and involving
lazy updates of I’ when there are splits in [-leaves. _

We think there will be many circumstances where keeping both the index 7 and the
update index /" is worthwhile. We hope to have performance results soon to support this
conjecture.

181

References

[ELS95] G. Evangelidis, David Lomet. and B. Salzberg. The hB-H-tree: A Modified
: hB-tree Supporting Concurrency, Recovery and Node Consolidation. Inter-
national Conference on Very Large Data Bases, September 1995.

[ES93] G. Evangelidis and B. Salzberg. Using the Holey Brick Tree for Spatial Data in
General Purpose DBMSs. [EEE Database Engineering Bulletin, 16(3):34-39,
September 1993.

(GBLP95] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab, and
sub-totals. Dreft, February 1995.

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of ACM/SIGMOD Annual Conference on Management of Data,
pages 47-37, Boston, MA, June 1984.

-1

182

(DSS)2

Decision Support Services for Decision Support Systems
Christiane Reuter, Tandem Computers Inc., HPRC

Summary
Decision Support Systems require a different set of services than the ones
provided by today s relational data base systems. Continuous decline of
hardware pnces makes customers think about huge DSS data bases, which
keep a growing history of facts and a number of descriptive data around it.
In general. all the programming budgeted for decision support systems goes
into loading the data base only. Business users are expected to use one of the
query, reportm g or analysis tools, which are available on the market today.
These tools more or less provide SQL as the only language to access the data
base. They typically sit directly on top of the SQL catalog

In order to be able to effectively work with: the DSS data base the business

user needs a combination of the two features:

» a description of the data in such a way, that he/she recognizes the
business entities

» aquery language, which is closely related to the business problem

In addition, a decision support service should map the business data modei
into the logical model of the relational data base. It also should translate the
business query into the SQL query to be executed by the underlying
relational data base. These services should be provided by the data base
system, which hosts the DSS data. In the long run, this is-the only way to
minimize data model maintenance. Also, the more knowledge is kept in the
business data model, the better the chances for the data base system, to do
things like materialized joins automatically.

Current Situation
Customers, confronted w1th the need for bulldmg, anew demsmn support
system, regularly come up with nicely structured, but complex data models.-
When asked to write a "medium"” complex SQL query against this model. in
most cases they are not able to do this comrectly. An SQL expert will usually
come up with a 2 to 3 pass query, each having at least half a page of a where
clauses, to solve the business problem. Any other person than this guru will
give up reading this query after the first.page, because he/she does not
understand what it means in business terms. Unfortunately, customers think
they are building a system to be used by their business users and not by SQL
gurus.

183

To illustrate this situation, figure 1 shows the main entities of a 52 table
logical DSS model. The size of the data base is about 250 GB for the pilot,
with PDF_2 being the main contributor of more than 50% of the size of the

data base.

Dim_PM1

- Dim_A

Figure 1: Main entities of 52 table DSS model
Figure 2 shows a graphical presentation of an arbitrary query against the
above data base. This picture does not cover the additional complexity,
which comes from a combination of inner and outer joins required to return

the full list of an attribute combination. Figure 2 does also not cover the
additional comp}exny commg Irom multi- dlmenswnal queries to be coded in

ANSI SQL.

Looking at figure 2, there is no doubt about that, that an average business
user will not be able to correctly construct a query like this from the business
terms. He/she will at most be able to pick the set of attributes. he/she is

Dim_PDMZ |

interested in, from the full attribute list of this join.

184

HDim_2

 [Dimronz]

IDim__A !

F; gure 2: Graph]cal representatlon of an example query . '_ |

De-normahzatlon is a common techmque to 51mp]1fy SQL queries and to
provide reasonable host performance at the same time. In some cases, de-
normalization might be the only way to execute a query at all. Custoners
often express a strong resistance against this de-normalization plan, because
the de-normalization process wipes out the nice data structures, they are so
familiar with. This issue is usually raised by the customer's data base
representatives. Presumably, the business user's view will be different. But
even he/she will need some kind of structured information on top of the
logical data model, which is closer to the business view of things.

To illustrate this, lets have another look at the above example data model.
From the known query patterns, CM and CD as well as PM and PD are
candidates for a major de-normalization. Each pair could be collapsed into
one table named CMD and PMD respectively. Table-1 shows the number of
attributes for each of CM, CD, PM and PD. Taking this into account, the
customer's initial resistance against the de-normalization does not seem to be
too far fetched. Small PC screens usually do not do a good job in displaying
long lists of table attributes. And the only "structuring” technique, SQL
offers today, is a naming comnvention for attribute names.

PD
48

87 .

Tab]e .1: Number of attributes for'CMﬁ,i'.3CD,--PM and PD

The trend among query. reporting and analysis tools is to provide some
dictionary extensions. Mostly, they supply their own names dictionary to
allow for business area dependent attribute names. Some go beyond this and

185

18¢

offer a mapping mechanism between business entities and data base entities.
This mapping mechanism, however, is limited by the complexity of the SQL
statement, which has to be executed for the business query. It usually gets
build by the tool from its understandmg, y of the business query and its
knowledge of the business entmes .

The two major tasks of a DSS query is to select and to aggregate. The

support for aggregation within standard SQL 1s very limited. Some client

tools extend the standard function set with their own offer. This works for

relatively small result sets for the pre-aggregated query only, because

- usually, the client's aggregation is executed in main memory. Often, the
aggregates only exist for that one query and cannot be re-used. In general, it

does not seem like a good idea to make the data travel. The function should

come to the data not the other way round. A data base engine, doing all -
required aggregation itself, could help both the business users and the overall '
system performance. This requires to extend the DSS data base system by
user defined abstract data types. The' SQL compiler should check the correct
usage of these data types within an SQL query the same way as
programming languages handle strong typing. This feature will help the
business user to write correct queries from his/her business point of view,
because an mvahd operanon vnll Qet rejected by the system.

Proposal ' S '
To overcome today's deﬁmencws as descnbed abowe a DSS data base
management system should offer additional services on top of a relational
data base system; which is proven to handle big data bases.: This means both,
good support for loading and' querying a data base of greater 100 GB. Figure
3 shows a proposal for components to be added to the relauonal database
system for better support of DSS G :

« The DSS DBMS should hold both the busmess data mode] and the
logical data model, as well as a map between these two. DSS client tools |
should be able to query the content of the business data model and
present it to the user in any sultable form. This presentatlon mtght be
different, dependlng on: . -
+ the user's task, e.g. spreadsheet work or multi- dnnen51onal 'malysm
+ the user's role: data model specialist, business data analyst

In general, data attributes of the business data model as well as of the
logical data model shall be of user defined abstract data types.

1 SQL with DSS
y extension

Figure 3: Proposal of a DSS data base management system

The DSS client tool might pick any query language, suitable to help the
business user write his/her queries. This can be structured natural
language, full graphical or you name it. The client will pass the query in a
standardized format to the data model map. The communication protocol
between the client and the map requires further investigation still.

The map is the hard of the query engine. It makes sure, that the user's
query gets mapped correctly onto the logical data model, e.g.: it
constructs all required joins, not the business user. It keeps statistics of
common business query patterns. This information might be used later on
to propose materialized views. To simplify the generated SQL queries,
e.g.: proposals like Jim Gray et al.’s cube by operator should be added to
the SQL language. ;

User defined abstract data types will introduce that much programming
into the DSS DBMS, as is required to insure that

« data is used correctly from a business point of view

+ aggregation is done as close to the source data as possible

-

187

Performance Prediction and Optimization in
- Workflow-based Applications

" Dieter H. Roller
German Software Development Laboratory
IBM Germany Development Inc.
Hanns-Klemm-StraBe 45
D 71034 Boblingen
droller @ vnet.ibm.com

1 Int_mduction

Two key factors, among others, determine whether an application can live up
to the expectations: the system on which the application runs must be able
to handle the system load generated by the application programs and database
access activities, and the people must be able to handle their assigned workload.

System performance is determined in terms of CPU utilization, transaction
rates, and database accesses [?, ?], people performance in number of people re-
quired to perform the activities in a given time frame. Typically the estimates
for system performance and people throughput are quite inaccurate. Several
reasons contribute to this:- (1) the {ransaction rates and number of data ac-
cesses are usually guessed by a system administrator, as business analysts know
nothing about transactions and SQL calls; they deal with processes, activities,
business objects, and critical success factors, (2) the number of required people
is quite often estimated without considering that the same person performs ac-
tivities of different processes, and (3) the system and pecple performance are
not correlated as is the case when an activity can not be completed in the es-
timated time due to the system not being able to process the user interactions
fast enough.

This paper shows how the above situation can be enhanced in workflow-
based applications. It proposes a consistent approach of building and designing
business processes, where metric information is supplied during the various de-
sign phases, process simulation and database tuning is performed based on the
collected information, the results of the actual execution are measured, and
the results are compared with the supplied metrical information and simulation
results.

A prototype has been implemented for IBM FlowMark for 0S/2[?]. Flow-
Mark’s process model is that of a directed, acyclic, weighted, colored graph,
where the nodes of the graph represent the activities to be performed and the
edges the control flow between the activities.

188

2 Development Approach

The implementation of workflow-based applications may be performed as shown
in figure 77. The whole process is iterative by its nature; if the results of a par-
ticular phase are not satisfactory, the process is restarted from a previous phase
with modified assumptions, for example, when the average process execution
time exceeds the goals set, one may restart by re-analyzing the designed busi-
ness process. C

Business
Procasses
Workflow
Bulidtime Program [) .
Pevelo, nt. ' i -
PR worktiow , Business
.! Runtime | Process
Business : v | Performance] 0 - Process
Modetlling . . Pt 77| Monttoring)
Business D;;s‘?;:a
Objects Database .
System ' patabase N
Performance |- -
Monitoring Data

Figure 1: Development Phases

During business modelling the essence of the business process is captured:
the process goals describing the envisioned properties of the process such as
process duration or customer satis{action, the top-level structure of the process
with the most important business actions, and the business objects upon which
the business actions operate.

The top-level process structure is refined via the Workflow Buildtime by
breaking the business actions into sub-processes until the business actions are
refined to a stage where they are implemented as programs. As business pro-
cesses are exhibiting the behaviour of business transactions, spheres of joint
compensation [?] are defined during this phase.

During Program Development the activity implementations are created or
located, depending on whether they are new or existing programs. These pro-

- 190

grams can be, for example, OS/2 programs and CICS or IMS transactions. The
implementation may be as a single program or as a client-server application. It
may be an ACID transaction or no transaction. The workflow manager invokes
these programs when the process is executed. The process thus constitutes a
federated networked application. L

o The business objects are input to the Daiabase Designer as local conceptual
schemes, which integrates these local schemes into a global conceptual schema,
transforms the global schema into a logical schema, and turnes this into a phys-
ical schema. _ o . o _

Workflow runtime manages the creation of process instances, the routing of

the process instance through the network, the dispatching of tasks to users, the
allocation of resources, and the generation of audit trail entries.
e The Process Performance Monitor, through analyzing the audit trail, helps
to obtain process performance relevant information, such as the average pro-
cess duration, idle time for activities, or excessive notifications as work is not
performed timely. - _ e o

The Database Performance Monifor component can be used to determine,
for example buffer pool usage, number of SQL calls, and 1/0 activity.

3 Metrical Information Collection

The base for performance predictions and database optimization is metrical
information, which is determined for most parts of the process model. The
information is collected for the enterprise level, the process level, and the activity
level. ' _
o The enterprise level information is determined from enterprisé information
sources, for example payroll, systern management informaticr, and database
management systems for things like types of computing resources, people’s
salary, and database sizes.

The process level information is usually provided by the business analyst :
the number of processes started, the probability that a certain branch is taken
in the process, the probabilty that an activity is repeated, and the size of the
process input and ocutput containers.

For the activity, the business analyst provides the process-related informa-
tion such as the average time required to perform the activity including idle
- and wait time, and the averages size of the input and output containers. The

program implementor provides the program related information which includes
the SQL statements executed and the number of instructions executed.

4 Analysis

o Analysis is performed in two categories : Analytical simulation and discrete
' simulation.

4.1 Analytical Simulation.

Analytical simulation is used to calculate the required people and computer
resources. If this turns out to be insufficient, any furthér analysis is superflous.
The sufficiency of computer resources is evaluated by determing the CPU load on
servers and clients, the network traffic caused by server-to-server communication
and data passed from one activity to the next, and the transaction load on the
database and the TP monitors. People resources are calculated by determining
the amount of time required to perform the activities. The information derived
for a process is then combined with the resource information derived from other
processes. oo ' ' '

4.2 Discrete Simulation

Discrete simulation is used to determine the impacts of multiple process in-
stances competing for the same resources. Input to the simulation are scenarios
describing which process models should be used in the simulation. The sim-
ulation component uses this information to drive the navigation engine of the
workflow manager with the proper requests, such as process start and activity
completion. The results are written to a file, which serves as input to create the
simulation results. Typical simulation results are the probability distribution of
process execution time and transaction rates.

4.3 Database Tuning

The results of analytical and discrete simulation can be used to tune the accessed
databases. Using the transaction rates, one can determine the number and
types of SQL calls against each database. This information and the current or
estimated size of the databases prov1des sufficient input to the physical database
designer to determine the proper database physics. Furthermore, it allows to
determine how the size of the database changes over time. Collecting additional
information, such as the dlstnbutlon of keys, allows for example to detect hot-
spots in tables,

4.4 Process Optimization

The results of the simulation help to optimize processes by calculating the costs
associated. with each process and activity. This does not only allow to com-
pare different process models and select the most cost-efficient one, but it also
helps to eliminate those activities where the costs for the activity exceed the
estimated benefit. An insurance company may eliminate in a claims process the
dispatching of an inspector if the costs associated with the inspection exceed
the average amount in the claim.

191

5 Implementation

A first prototyp has been implemented to test the approach. The process is
instrumented by using the description field of the process, activities, and con-
trol connector notebooks to provide metrical information such as the activity
processing time (with distribution) and the probabilities associated with a cer-
tain control connector. This allows to use FlowMark’s buildtime unmodified
to populate FlowMark's database. A simple navigation engine has been con-
structed which reads this information from the database. This engine is fed
with scenarious.

6 Summary

This paper outlined a methodology for performance predictions and database
tuning for workflow-based applications by following a particular development
approach, collecting metrical information during all phases of the development
process, and using this information for analytical and discrete simulation.

A first prototype shows the validity of the approach and is the base for
implementing this in FlowMark.

7 Acknowledgement

I would like to thank my collegues Jens Grotrian, Frank Leymann, Marc-Thomas
Schmidt, and Alfons Steinhoff for the discussions we had on the subject.

References

[1] H. Kobayashi, Modeling and Analysis : An Introduction fo System Perfor-
mance Evaluation Methodology, Addison-Wesley, 1978.

(2] J. Gray and A. Reuter, Transaction Processing: Concepls and Techniques,
Morgan Kauffmann Publisher Inc, San Mateo, CA 1993.

(3] IBM FlowMark for 05/2. Document Number GH19-8215-01 IBM Corpo-
ration 1994. Available through IBM branch offices.

[4] F. Leymann, Supporting Business Transactions Via Partial Backward Re-
covery in Workflow Management Systems, Proc. BTW "85, Springer 1995.

[6) A. Law and W. Kelton, Simulation Modeling and Analysis, McGraw-Hill,
New York, 1982. '

[6] J. Banks and J. Carson, Discrete-event system simulation, Prentice-Hall,
Englewood Cliffs, 1984.

192

On-Line Reorganization: A Position Paper

Betty Salzberg and Chendong Zou * Rivka Ladin
College of Computer Science Cambridge Research Lab
Northeastern University Digital Equipment Corporation
Boston, MA. 02115 One Kendall Sq. Bldg. 700

Cambridge, MA 02139

1 Introduction

On-line reorganization is and will be'a major problem for transaction systems of the 1990s
and the 2000s. Mainframes are rapidly being replaced by workstation farms. Most large
software systems must eventually be ported to these new cheaper hardware architectures.
The new hardware architectures lend themselves to a client-server software architecture.
Presentation services are off-loaded to client workstations. Even servers are no longer on
mainframes, but instead on collections of workstations, each perhaps responsible for only
a part of the database. Application software will have to be rewritten to conform to the
new hardware and software architectures.

In addition. some companies may want to take advantage of newer object-oriented
software and object-relational systems and new indexing and presentation options. They
must then reorganize their data to make the best use of these new software systems.

But at the same time, large companies such as airlines and banks can not afford to
be off-line for any significant amount of time. Companies want to take their complex
applications and rewrite or modify them to work with new hardware and software without
having to interrupt service. This means that either reorganization must be incremental
or that massive duplicate systems must be constructed with a fast switch to the duplicate
system when it is in place. It is not clear that anyone really knows how to accomplish
either of these options.

We propose to look at this problem and formulate some reasonable and general prin-
ciples for on-line reorganization of massive database systems. The goal is to (1) provide
some basic reorganization utilities which could be used in more than one system and
(2} give an analysis of the general techniques involved so that implementors liave some
guidelines for writing their own reorganization tools.

"This work was partially supported by NSF grant IRI-93-03403.

193

2 Basic On-Line Reorganization Methods

There are a few basic ways to do reorganization on-line. In this section we outline a few
of the known techniques and point out their strengths and weaknesses.

2.1 New Copies with Change Logs

One approach is to make two copies of the whole database and use the old copy until
the new one is ready. We must then keep some kind of log of changes being made to the
new database so we can apply the new changes. Thus. there is a kind of “catch-up” done
at the end of the reorganization. where database updates {modifications, insertions and
deletions of database records) made during the reorganization are reapplied to the new
structure if needed. Database searches must be directed to updated records during the
reorganization process.

An example of this technique in the context of the creation of new secondary indexes
can be found in [MN92] and [SCI1]. In one option in [MN92|, key inserts and deletes
relating to an index being constructed are maintained separately in a side-file. The index-
building runs sequentially through the data file and maintains a counter saying where it
now is. If another transaction sees that the counter is ahead of where it wants to insert
or delete a record. it uses the side file. After the whole file is scanned once by the index
builder. it uses its list to create the new index. Then it processes the side file. When the
side file is processed. new transactions use the new index.

2.2 Partial Indexes and Small Transactions

Another approach is to look at one moved record at a time and treat it somewhat like a
deletion and insertion within one transaction, locking the record until all changes have
been made as was done in [SD92]. This is however very slow as only one moved record is
treated in each transaction. Every reference to the moved record in the database must
be changed before the lock can be removed, and every record is handled separately.

In contrast, [Sto89] suggests reorganizing indexes in chunks. For example, a key range
could be used to lock a collection of records and they would be unavailable during this
time. Then perhaps some savings could be made in batching the records. For example,
if the records are stored in key order, finding those records does not have to be done
individually. Unfortunately, the references to a collection of records in a given key range
are usually not stored together. For example, if the records are stored by last-name and
there is a secondary index on first-name, there is no reason for any locality of reference in
the secondary index. First names of people whose last names start with “*A” are probably
not clustered in any way.

o

194

2.3 Forwarding Lists

A third method keeps a forwarding list as in [OLS92] and [OLS94]. Instead of changing
all references to a moved record in the database as is done in [SD92| before unlocking
the record, the record is moved and a forwarding address is placed for the record in a
list. After the address is in the list, the record is unlocked. When any transaction finds
the address of any record in a secondary index or in a foreign key, for example, that
transaction must consult the forwarding list to see whether the record has been moved,
and if so. what is its new address. '

Then, in a background process, updates to references to moved records can be made
lazily. When all updates to references to a moved record have been made, the address of
the record can be removed from the forwarding list.

The main drawback to this method is the fact that every transaction must always
consult the forwarding list in a search until there is no forwarding list. This will be
especially inefficient if the forwarding list does not reside in main memory. The advantage
is that not all references to the moved record have to be changed immediately when the
record is moved. (An assumption here is that there is no primary index for records which
translates logical references to physical locations.) '

2.4 Logical Names

A fourth method is to keep logical names for all records and refer to the records ev-
ervwhere in the database using only logical names. Then only one index. the one that
translates logical names to physical addresses, needs be reorganized when the data is
moved. This is used in Tandem’s Non-Stop SQL for example, where data is stored by
primary B¥-tree key [Gro87]. When the records are moved, when a B*-tree leaf splits, no
other changes need to be made to the database. Of course, if it is decided to change from
one attribute to another to be the basis of the primary B*-tree, massive reorganization
must be considered again. This was partially treated in [SD92], but here again only one
record at a time was moved to the new primary organization.

More recently, we have been looking at dynamic hierarchical clustering, which is an
extension of the use of the primary B*-tree to be able to cluster records from separate
relations according to an ancestor-descendent relationship {ZSL.95]. This also enables
records to be moved to retain clustering without having to change references to the
records in other places in the database. It also has the problem that if one decides to
reorganize and cluster according to another relationship, an entire new organization must
be constructed and references to old primary keys must be changed to references to new
primary kevs.

195

3 What Next?

The main objective of incremental on-line reorganization is to change a part of the
database without affecting on-going operations for very long. The portion of the database
locked for reorganization should be small. But reorganizing only one record at a time,
in a background process, may take too long. Ways to batch groups of records to be
reorganized efliciently have to be found.

As a vehicle for examining reorganization. we shall first look at one very specific
problem. This is the problem of taking data which is in one primary B¥-tree based on
one particular attribute of a relation and reorganizing it into another B*-tree based on a
different attribute. We shall assume that there are many references to the primary kevs
elsewhere in the database—in secondary indexes and in foreign keys.

As a variation of this basic problem. we will also look at moving data referred to
by page and slot number (RID) into a primary B*-tree. A further variation involves
moving collections of relations stored separately into our combined hierarchical structure.
[ZSL95].

We hope by focusing on the specific but very practical problem of constructing new
primary B7-trees to be able to bring to light some of the general principles of massive
on-line reorganization.

References

(Gro87] Tandem Database Group. Non-Stop SQL: A distributed high performance high
availability implementation of SQL. In Workshop on High Performance Trans-
action Systems. Springer-Verlag, 1987.

[MN92] C. Mohan and Inderpal Narang. Algorithms for creating indexes for very large
tables without quiescing updates. In Proceedings of ACM/SIGMOD Annual
Conference on Management of Data. pages 361-370, May 1992.

[OLS92] E. Omiecinski, L. Lee, and P. Scheuermann. Concurrent file reorganization for
record clustering: A performance study. In International Conference on Data
Engineering, pages 265-272, 1992.

[OLS94] E. Omiecinski, L. Lee, and P. Scheuermann. Performance analysis of a concur-
rent file reorganization algorithm for record clustering. IEEE Transactions on
Rnowledge and Data Engineering, 6(2):248-257, April 1994.

[SC91] V. Srinivasan and Mike Carey. On-line index reconstruction algorithms. In
Workshop on High Performance Transaction Systems, 1991.

[SD92] B. Salzberg and A. Dimock. Principles of transaction-based on-line reorgani-
zation. In International Conference on Very Large Data Bases, pages 511-520,
1992,

196

[Sto89] M. Stonebraker. The case for partial indexes. In Sigmod Record, Dec. 1989.

[Z5L95] C. Zou, B. Salzberg, and R. Ladin. Back to the future: Dynamic hierarchi-
cal clustering. Technical Report NU-C(CS-95-09, College of Computer Science,
Northeastern University, Boston, MA, 1995.

197

i

APRICOTS - a workflow programming environment

_ Friedemann Schwenkreis
tnstltute of Parallel and Distributed High-Performance Systems
_ Department of Apphcatlons of Parallel and Distributed Systems
T University of Stuttgart -
~Breitwiesenstr. 20-22
D-70565 Stuttgart, Germany
~email: schwenk@informatik.uni-stuttgart.de -

1 Introduction

The ConTract model [6], originally introduced as an extended transaction model covers

. almost every aspect of workflow systems. In pamcular the prototypical implementation of
~a ConTract system (APRICOTS [5]) shows the appl:cabtllty of the concepts in the work-

flow area. .

Since the programm:ng of workftow processes is one of the most critical tasks of workflow
systems, the programming environment of APRICOTS will be presented. Furthermore,
the representation of the low-level description, which is directly used by the ConTract-
Manager to execute a workflow process, is introduced. It will be shown that a so-called
“predicate-transition-net” is a powerfulmeans to express control flows. However, because
it is difficult to read and maintain, this predicate-transition-net is not used directly by the
programmer. Instead, APRICOTS prov;des the programmer with a graphlcal representa-
tion of the control flow. o . .

We will follow a bottom-up approach to describe the programming environment. In section
2 the predicate-transition-net (PTN) is introduced. Section 3 introduces the high-level pro-
gramming constructs to program a-ConTract. In section 4 the depiction of the high-level
constructs on a PTN will be described. In the last section we will conclude witha summary
and we will glve an: outtook on our. future work L e

2 The predlcate-transmon-net (PTN)

A predlcate-tran3|t|on net or PTN is a mechamsm to deﬁne processes or conitrol ﬂows
very similar to petri nets [2]. With the combination of the functionality of petri nets and the
expressiveness of predicates a very powerfu! means is avaltable to express processes in
the workflow area.

There are three basic elements on which PTNs are buzlt
* Spots (S)
* Predicates (P)
* Transitions (T) with an associated attnbute expected tokens

'Based ontheseelements, a drrected graph can be built with the foliowing constructs

198

* Tuples (T, S) which express the connection of a transition T with a spot S.
+ Triples (S, P, T) which express the connection of a spot S with a transition T, control-
led by a predicate P. ‘
The definition of a PTN can be animated by an execution mechanism which realizes the
following rules: S e e
* The execution of a PTN can be started by placing a token on a transition or a spot.
* Ifatransition T receives a token it fires if-the number of received tokens is greater
than or equal to the number of expected tokens. To fire means to pass a token to
every spot §; for which a tuple (T, S;) exists.
* Ifa spot S receives a token every predicate P; is evaluated for which a triple
(S,P;, T)) exists. If the predicate P; evaluates true a token is passed to the transition
Tj of the triple.

» The execution of a PTN ends if no more recipients of tokens can be found when a
transition wants to fire.

It is easy to recognize that PTNs are a very powerful mechanism to express the control
flow of a process. They are very similar to the so-called Event-Condition-Action-rules [3]
and have the same drawbacks on the programming level. Even so, PTNs are suitable for
usage as a low-level representation of processes executed by workflow engines.

3 Programming m AP.RICOTS;' L

As it has turned out, the original approach of ConTracts to define the Script by a (proce-
dural) language is not useful. Since the users of a workflow system.want to cbserve the
progress of their processes, a mechanism to visualize the progress is needed. Further-
more, it is a requirement of users to have (almost) the same view of a Seript in both the
programming phase and the execution phase. '

To fulifil these requirements a graphical programming environment for ConTracts has
been developed in APRICOTS. This environment allows the programming and controlling
of ConTracts on the basis of the same graphical representation of the control fiow. The
control flow is represented as a directed graph in which Steps are represented by ellipses,
predicates by small circles and “flow paths” by lines. This approach follows the “drawing
bubbles and arcs” principle but was enhanced by powerful editing functions.

The graphical editor for the definition of a ConTract is totally object-oriented and offers the
following programming primitives (objects) to build up a process definition:

Steps ' ' '

sequences . o

loop blocks (for, while do, repeat until)

branch blocks (if then else, n paths from m paths)

parallel blocks '

transaction boarders

blocks (similar to macro definitions)

All additional information needed to define the objects properly can be entered with spe-
cialized dialog boxes. For example, if the user opens the property dialog box of a Step, he

* & & & & » 9

199

200

or she can enter the special information associated with Steps:

» Parameters needed by the Step and the correspondung Conrext variables

» Invariants which are needed for a proper isolation

* The definition of the conflict resolution policy tc resolve concurrency conflicts

» Steps which should be started if the transactlon of the current Step is aborted ora
conflict resolution is finished

e The Ioglcal name of the assoc:ated Step Server wh ich has to be called to execute

the Step.

The main advantages of the newly developed editor are the object-orientation and the
direct usage of graphical elements for programming. Through the object-orientation the
programmer of a ConTract is able to use and manipulate well-known constructs of high-
level programming languages instead of “drawing a net”. Furthermore the editor can eas-
ily be enhanced by new, not yet supported, constructs like e.q. the parforeach statement.

On the other hand the representation generated or used by the editor cannot be used
directly for the execution. Since there is too much additional information integrated to sup-
port a proper visualization and manipulation, the direct interpretation of the editor output

would cause a big overhead. To solve this problem, a translator has been developed to

generate a PTN out of the editor’s output. Once again, this is similar to an object-oriented
approach: the editor is used to define a template of a ConTract which is used by the trans-
lator to generate ‘an executable instance of a ConTract.

From an interoperability point of view the distinction between 't'he two forms of the defini-
tion of a ConTract has another advantage: the people who define a workflow (e.g. work-
flow consultants) are very interested in the “migratability” of their processes, i.e. that a

defined process should be executable on several platforms with different workflow

engines. On the other hand, they want to avoid that the original business process (which
is modelled in the programming enviroriment) can be reconstructed from the information
used by workflow engines. By using a very low-level mechanism-on the execution level,
enough information from the original definition‘can be hidden to avoid the unauthorized

reconstruction of business processes (this is similar to the differentiation between source
code and binaries of usual programming).

4 Fromthe pr'og'rarhming to the executable repreSéntation

Several desagn decis:ons have been made to reahze a proper representatzon ofa Con-
Tract's control flow as a PTN. Since users want to observe the progress of their processes
with the same graphical representation as they have used during the programming phase,
some information from the original definition must be integrated with the predicate transi-
tion net. Furthermore, it is very helpful for the implementation of advanced features of the
executing engine to have some additional information beyond the “raw” PTN.

The first decision in the design was to have Steps of a Script represented by spots in the
PTN. Since we want to handle the result of a Step, we can express the different paths for
different results easily with predicate controlied connections of spots and transitions.

The second decision concerned the definition of the parts of a PTN which represent the
high-level constructs For each hugh level construct, we had to make a separate design.

201

In this extended_abstract 'v_r'_e p.re_sé_r__lt_ one _e_kampl_e: _the _for-lo_b_p.

A for-loop is defined similar to its definition in classical programming languages. There is
a variable which represents a loop-counter (currently only integer variables are sup-
ported). A predicate is needed to define the end condition of the loop. Last but not least
the “increment” of the loop has to be defined, i.e. in the current state of the programming
environment a number has to be defined which is added to the. loop-counter every time
the loop is executed. The following figure represents the corresponding part of a PTN.

T | predicate -
I QO
. out.

: I transiton

=== loop body © . - -

In this figure, the spot marked with' 1-is only needed to pass a tokento the two predicates

and does not represent any action. The spot marked with 2 stands for the incrementation
of the loop counter. It has turned out that for almost every high-level construct such “send-

token” spots like spot 1 are needed which are called “pseudo-steps”. Likewise the predi-

cate associated with spot 2 is always true and only needed to fulfill the requirements of
PTNs. The predicate represented by the black square after spot 1 is the negation of the

other predicate of spot1 (end condition) which is again needed due to the requirements of

PTNs. . IR o

As a matter of fact; the PTN generated from a high-level representation of a control flow

creates redundant information. Since the visualization during the execution of processes

should be done on the basis of the high-level representation, this can be a problem

because some elements of the PTN are should not be seen-on the user’s level. These

problems are solved in APRICOTS by assigning types to spots and predicates to be able -
to differentiate in elements which are relevant for the visualization and which are not.

Due to the fact that APRICOTS supports the user with a transactional environment - on
the programming level as well as on the execution level - we decided to use a relational -
DBMS as a stable storage of the whole system. That means that templates and instances
of ConTracts are stored in a RDBMS. The data needed (loop counters, number of
expected tokens, etc.) during run-time is read from the RDBMS and the changes to this
data are recorded in the RDBMS. This approach has the advantage of high portability and,
what is more important, of allowing state changes of an instance to be done under the pro-

tection of transactions as they are defi_ne_-d qn_the’_'._S__c;_ript level.
5 Summary and future work

The distinction of two levels of representation of a workflow definition has several advan-
tages and is requested by users. First, it provides programmers with a simple graphical
representation which is easy to read and maintain. Second, it avoids the overhead of
directly interpreting the input of the programmer by translating that input to a PTN. Last,
the PTN hides some of the proprietary information needed to reconstruct the business

process. With a simple and powerful mechanism on the execution level it is possible to
migrate the execution of workflow processes as well as to support every “structure”
needed on the definition level. Since there is currently no established standard for the low-
level description of the control flow of workflow processes, we think that PTNs have a
good chance to fill this gap.

We are currently working on the depiction of further high-level constructs as e.g. the par-
foreach statement on a PTN. Furthermore we are investigating the structure of so-called

“groupware working modes” and their depictability on both high-level programming con-

structs and PTNs.

Another working line in the development of APRICOTS is the connection of the ConTract
Manager with a transactional environment like Encina from Transarc. This work aims at
the definition of a “handbook” to enhance transaction monitors by mechanisms to run
workflows directly concerning advanced transaction models like e.g. the ConTract model.
Likewise we are looking at the upcoming standard of the Workfiow Management Coalition
to extend their approach with transactional semantics.

Since the external manipulation commands of a running process are currently limited to
starn, stop, suspend and resume, we are also working on the development of concepts to
handle arbitrary (external) events. That means we want to integrate mechanisms in our

engine to catch events from running ConTracts which will cause activities in other running
ConTracts as e.g. the negotiation about resources. Furthermore the handling of time and
events caused by a clock is another important point of our future work.

Last but not least we will have a look at the management of changes in the process defi-
nition while instances of this process are running. That means concepts will be developed
on how and when a process instance can be changed. This work will lead us from the cur-
rent view of statically predefined processes to the dynamic approach which allows the
evolution of a process a run time like e.g. in INCAS [1].

Acknowledgment

I would like to thank Prof. Betty Salzberg (Northeastern Univ.) for her great help during the
preparation of this paper. b

References

[1] D.Barbara, S. Mehrotra, M. Rusinkiewicz: INCAS: A Computation Model for Dynamic Work-
flows in Autonomous Distributed Environments, Technical Report, University of Houston
(TX), 1994

[2] Wilfried Brauer “Petri nets: central models and their properties; advances in Petri nets”,
Springer Verlag (Lecture notes in computer science). 1987

(31 U. Dayal, M. Hsu, R. Ladin “Organizing Long-Running Activities with Triggers and Transac-
tions, ACM SIGMOD Record, pp. 204-214, 1890

[4] Ahmed K. Elmagamnid ed. “Database Transaction Models for Advanced Applications”, Mor-
gan Kaufmann Publishers, Inc., 1992

[6] Friedemann Schwenkreis “APRICOTS - A Prototype Implementation of a ConTract System:
Management of the Control Flow and the Communication System” Proc. of the 12th Sympo-
sium on Reliable Distributed Systems, pp.12-21, 1993

[6] Helmut Waechter, Andreas Reuter “The ConTract Model” chapter 7 in [4]

202

Transactlon Processmg for the Masses
- (posn:mn paper)

R 'jEu'gen'e J. Shekita -
~ IBM Almaden Research Center
San Jose, CA, USA
shekita@almaden.ibm.com -

1 Intro duction

I've heard some people say that transaction processmg (TP) systems are no longer interesting.
It’s not hard to see where this sentiment is coming from. Right now, you can squeeze close
to 1500 TPM-C out of a uniprocessor. Over the course of an 8-hour work day, that translates
into 720,000 transactions. How many companies can process that many transactions per day?
Probably not too many. Moreover, that 1500 TMP-C will probably quadruple to 6000 TMP-C
or 2,880,000 transactions per day by the end of the decade as processor clocks approach 500 Mhz.
And if that’s not enough horsepower, you can always move up to a symmetric multiprocessor,
or a loosely-coupled cluster, or even to massively parallel system.

The bottom line is that 20 years of hard work has paid off. Through a combination of clever
software algorithms and astounding improvements in hardware, high performance TP systems
are now capabable of supporting even the largest business workload. Moréover, they can do it
reliably using a mix of logging and hardware redundancy.

So what’s left for a bunch of TP hardliners like the attendees at this workshop? Are TP
systems really becoming a dead area as far as interesting problems go?

2 Transaction Processing for the Masses

Despite claims to the contrary, I think that a lot of interesting TP problems remain. I didn’t
always feel this way, of course. In fact, my outlook was pretty gloomy just a few years ago. What
turned my thinking around was the World Wide Web.

During any given hour in the day, I can walk down my hallway at work, and out of the 50
or so people on my floor, I'm almost guaranteed to catch at least one person poking around the
Web with a Netscape browser. One of the most popular Web sites at work, the Security APL
stock-quote server, claims to get 400,000 queries per day [1]. And another even more popular
Web site, the Yahoo Index, claims to get 2,000,000 queries per day [2]. The fact that the Web
has managed to capture the imagination of so many people despite its relatively crude state and
low-bandwidth links bodes well for the future.

203

How do the Web and transaction processing come together? ‘In a nutshell, digital commerce.
The Web will bring TP to the masses. Right now, the Web is mostly used as a read-only medium,
and the companies that have set up shop on the Web haven’t seen much demand for their services.
The main problem, I believe, is a lack of trust. For now, most users S1mply feel uncomfortable
sending their credit card number over the wire. Over time, though, I think that this will change.
Network security will improve and encryption standards will emerge {3,4]. Digital money may
even eliminate the need to send credit card numbers [5,6].- Little by little, users will grow more
comfortable conducting business over the Web, and then digital commerce will take off.

But will digital commerce just be more of the same old stuff from the standpoint of transaction
processing? I don’t think so. Issues like security and reliability will probably need to be re-
thought. For example, many databases today transmit passwords unencrypted from client to
server. This is obviously inadequate for the Web. It also isn’t clear that conventional transaction
models are well-suited for digital commerce [7]. Some combination of transactional queues and
replication may be more appropriate to deal with the latency and unreliability inherent in the
Web. Finally, from the end user’s perspective, all of this needs to be bundled together in an
easy-to-use, shrink-wrap package that works right out of the box. I predlct that ultimately Web
browsers will include their own TP monitor of sorts.

3 Conclusions

We’ve solved the problem of how to build a system that’s capable of supporting thousands of
transactions per second. But interesting problems in tranasaction processing still remain. Digital
commerce over the Web is about to bnng transaction processmg to the masses, along with a whole
new set of problems to solve - : :

4 References
[1] K. Rodriguez, “Netscape Upgrades.Web Servefé,” InfoWorld',_ pg 12, March 27, 1995.
[2] D. Plotnikoff, “Net Worth,”, San Jose Mercury, page 1C, March 30, 1995.

(3] P. Fahn, “Frequently Asked Questio'ns. about Today’s'Cryptograpy,” RSA Laboratories Tech
 Report, Sept 1993, http:/ /Ww_w.rsa.com/faq/faq_toc.html

[4] K. Hickman, “The Secure Sockets Layer (S5L) Protocol,™ Netscape Commumcat:ons Corp,
Nov 1994, http://home.mcom. com/newsref/std/ SSL html :

{5] CyberCash Inc., http:/ /www.cyberc_a.sh.com/

(6] DigiCash Inc., http://WWW .DigiCash.com/

[7) M. Sirbu and J. Tygar, “NetBill: An Internet Commerce System Optimized for Network
Delivered Services,” IEEE CompCon, March 1995.

204

- The Market Perspective - Ease-of-use and Heterogeneity

Alfred Z. Spector

President & CEO
Transarc Corporation
Pittsburgh,- PA 15219 -

- September 19095
@1990 Transarc Corporatlon All rights reserved

As many of you know, my close friend and colleague, the most illustrious Dr. Gray, succeeded in
obfuscating many important QLTP architectural issues in our 1993 HPTS debate. However, if
we look beyond his grand-standing stunts, there was one kernel of truth amidst the rotten earful
of arguments. That is, that OLTP strategies perceived to be “light” or “easy” will benefit in
the marketplace. I believe achieving phenomenally great €ase-of-use will prove to be the major
challenge for this community over the next decade or two. The other challenge that we and our
customers will have to understand ‘are the trade-offs between unlimited choice within a system
and cost/simplicity. 1 wﬂl get to both of these issues in this brief note.

Function Shipping is Breakmg Out All Over B

The TP Marketplace is burgeoning. If one considers the growth in home-brew solutions, the

Web, database-centric TP Light, and targeted OLTP middleware, the number of network-based
transaction processing solutions is growing very rapidly.

New markets are driving this. Electronic mass consumer marketing will grow with the increasing’

ability of desktop computers and networks to deliver more diverse services. Underlying this all
is a vastly increasing amount of function shipping: from the desktop to the server and between
servers. Things will keep humming nicely in the OLTP world as standard processing steps such
as tracking customers, tracking merchandise, booking orders, and billing users are handled. But
there will even be more uses, with transactions and multi-media combining forces.

And, traditional markets are driving this. Having made major productivity advances in the
manufacturing sectors, businesses are reengineering their service sectors looking for equivalent
efficiency gains. And in the service sectors particularly, information technology that is based
significantly on function shipping techniques will underlie most systems. Whether it is down-
sizing, rightsizing, networking, or integrating diverse applications, all result in the use of more
transaction processing technology of one form or the other.

205

The Market Perspective - Ease-of-use and Heterogeneity

Objective metrics show the growth: Whether the use of stored procedures in databases, the
growth of internet-based, requeét—res_p_onse protocols, or the geometric sales of the new crop of
OLTP environments, it is clear that transaction processing is growing, and will continue to grow
very rapidly.

So, Function Shipping is a Winner

The technical debate is over. Nearly everyone agrees that the functional request, embodied as
either a request/response message pair, a remote procedure call, a queued request, or a method
invocation is clearly required in larger systems. The ability to encapsulate an object, an ap-
plication server, or a legacy application across well-defined interface peints and to invoke those
interfaces has been recognized by all as an essential tqncep_t. Pure, unabstracted data-oriented
systems plainly scale poorly in many ways. If any group were to fight function shipping, it would
have been the relational database companies but they have embraced, and are even standardizing,
a type of remote procedure call for accessing their servers.

What else we understand

Geometric growth in processing speed, primary, secondary, and tertiary memory and network
bandwidth will continue for at least another. decade. 1,000 MIPS platforms with a gigabyte
of primary memory are not far from being: the commodity platform. Local-area and wide-area
networking will both continue to grow similarly: giving us enormous bandwidth locally and a
continuous set of trade-offs between bandwidth and cost in global communication. I thus believe
that performance issues for the traditional processing required in nearly every OLTP environment
will soon be last generation’s problem. While this argument has traditionally been risky, Transarc
customers are already telling us that Encina/DCE middleware performance is rarely a constraint
for them.

We also understand the critical decomposition of systems into the many components that will
form the middleware layers surrounding OLTP: Security, naming; the various types of resource
managers, etc, 1 d.:scussed_these in my _1_993 HP_TS paper, and I.t._h.ml__c _th_a.t. pa_pe_r__ls on-target.

Since 1993, however, we have learned that the. consu.mer market may drive many more protocol
and service choices than we a.ntlcxpated The verdict is still out on whether the companies serving
the internet and consumer marketplaces will: be able to invent new services rapidly or whether
there will be adoption of the more traditional OLTP products into the consumer marketplace.
So, we do not know if it’s the productw:ty tools from the Netscapes or the Oracles that will have
the biggest impact. But architecturally, things _wﬁ._l:be about the same.

In summary, I would say that we in this community now understand (mostly) how to build OLTP
middleware that can provide the requisite functlonahty With, for example, somewhere between
ten and one hundred two-phase commit engines out there, rany security servers, etc., we really
can make things work. And, a word of congratulations to ourselves is in order: we have come a
long way since the late 80s. We can now glue most any systems together.

206

The Market Perspective - Ease-of-use and Heterogeneity

Two topics we do not understand

I would like to turn the attent:on of our commumty to two toplcs we do not’ really have our arms
around: These are of ease-of-use and the appropnate lm:uts to heterogene:ty

Ease-of-use

Today, we ask customers developing new OLTP applications to choose the overall architecture of
their application and which of hundreds of comporients they will use. (I note that as soon as they
make a decision, a salesman for anothér competing product or technology makes it as difficult as
possible for the customer to maintain his nerve.) For example, we make our customers choose the
number of application severs, and decide whether they should utilize a-cluster multiprocessor,
a shared-memory multiprocessor, or a LAN-based solution. This is but one of hundreds of
complex decisions required. 'I‘hese dec1smns are hard for our commu.mty, and we live a.nd breath
transaction processing.

And once these decisions are made, the programming, debugging, and systems integration remain
difficult, as does the system administration and long-term management of an applications’ evo-
lution. W]:ule most complex, distributed transaction processing apphcatmns are today feasible
(and we have come a long way), we haven’t made them easy.

Therefore, I think the number one challenge in the marketplace has moved from the archltecture
and implementation of working middleware to our absolute, primary focus on ease-of-use: both
from an application development and system administration perspective. I believe we need to
turn the very considerable intellectual capacity of our community away from the things we love
so much to real-user related problems. . .

Regarding the high-level architectural problems our custorners face, very few are trying to solve
these in a methodical, let alone automated, fashion. An unusual project is the Advisor project

within IBM’s client-server marketing group. It is attempting to codify client-server experiences
and to develop working templates that are reusable by others. I believe that eventually, our

systems software will have aspects of expert systems technology in them to enable customers

to make rational decisions on- apphcatlons -and systems architecture. -And, I do believe this is
feasible. : : : : -

If we are successful in this, customers will get automated advice on the structure of their envi-
ronment and then just deposit business functions into a container. After the deposit occurs, the
system will then ensure the right distribution, installation, replication, operation, and manage-
ment of the new function. The result will be even faster growth of our marketplace.

Limits te Heterogeneily

I think we do not understand the appropriate limits to heterogeneity. As computer scientists,
we believe in isolation and abstraction, thereby permitting the development of systems in a
methodical and parallel fashion. Additionally, we believe that innovation is best served if the
development of differing components can proceed along parallel lines. These are the basis for our
faith in object technologies.

207

The Market Perspective - Ease-of-use and Heterogeneity

However, heterogeneity is expensive from both a vendor and customer perspective. Today, as an
example, Transarc tests DCE and Encina with 8 resource managers, nearly 10 operating systems,
many front-end tools, various TCP /IP and LU6.2 stacks, etc. And our products must be a little
different on various platforms. For example, we emulate threads on HPUX, and use slightly
different native threads on Solaris 2, AIX 4, and NT. Encina Console uses the JAM product on
ATX for screen support and Visual C++ on NT

Some heterogenelty is a clea.r advanta.ge for customers a.nd for vendo:s Customers have much
more flexibility and the much greater price levera.ge with many -1f not all— of their suppliers. For
vendors, the diversity contributes to products. tha.t are probably more thorcughly tested, more
versatile, and more 1ong-].wed :

But there are limits, too much heterogeneity leads to procu.rement and ma.nagement nightmares
for customers. For vendors, it leads to rapidly increasing testing and release costs.” And, the
diversity that does creep into a system (e.g., slightly different systems management screens)
makes the system more difficult for the both vendor and customer alike.

There’s a rea.sona.ble balance. to prov1de the benefits of open systems, w1thout the enormous
expense of excess diversity. I think there 1s work and understand.mg to occur here, both in a
technical and economic sense.

C_’onclusion

The OLTP research and development community has made enormous progress in the last decade.
Distributed transaction processing in an open systems environment is not only feasible: it’s
getting more commonly used every day. How the products will play out given the growth of
the web and consumer market place is not clear; on the other hand, rega.rdless of packaging, we

understand the Iow-ievel a.rchltectu.re of d.tstnbuted tra.nsactlon processmg env:ronments pretty

‘We must now recognize that the core components on which we have been focusing for years may
not be the area requiring the greatest innovation. In this paper, I've talked about the challenges
of understanding ease-of-use and the appropriate role of heterogeneity. There are many other
challenges beyond the core components as well. As an industry, meeting these new challenges
will yield the greatest benefits.

208

Why PC databases are i'mporta'nt for High Pe‘rforman‘ce Transaction Systems

Peter Splro _
_ Mtcrasaﬁ Corporauan
_petersp@microsoft.com

There is a natural and inevitable trend in database systems software. The trend is that
customers always pull products into more high-performing, more functionally-rich. more
demanding spaces. For example, if a database system can comfortably handle 50 GB
databases, and 100 users, it’s v:rtually guaranteed that customers will load up the database
to its usable limits, and then demand more. They want 100 GB and 500 users. If a system

can run 1000 tps, users will conﬁgure it for 2000 tps. It’s not really an evil plot designed

to make life difficult for software engmeers, it’s simply that customers very often
undersize the problems/solutions; or they fail to accurately predict new and important uses
of their database. There is a corollary to this first principle, and that is, it’s incredible how
customers can be so successful using products that are either ill-conceived for the
particular problem space or just sunp]y not meant to do a particular job. In fact, this
dictum applies across the board to almost every invention known to man. Examples are:
using a rolling desk chair as a moving cart, a butter knife as a screwdriver, a plastic
garbage bag as rain gear, a spreadsheet as a multi-user database system etc., etc. The key
point here is than man is very creative and resourcefu! he will find a way to make the
thing work. -

Now where have these principles brought us to in the realm of transaction processing and
database systems? ' ' :

At one snapshot in time, say around 1990. We had a nice three-tiered structure for
database products. Inthe low-end there was Fox, Access, Paradox, Dbase and others. In
the mid-range, there were the traditional relational database vendors: Oracle, Sybase,
Ingres, Informix, Rdb, others. At the high- -end, Tandem, Teradata, IBM’s various
products, others. . :

The mid—range players were doing a pretty nice job handling 5-50 GB databases. That’s
where the bulk of their ‘big” databases were. These systems worked pretty well, they
supplied a portion of the 7x24 features that customers wanted. They could supply 100s of
transactions per second depending on the hardware. Then they fell prey to the principles
described above. Many of their customers began pulling them upwards towards database
sizes in the 100s of GB, 100s to 10005 of users, 1000s of tps, complete 7x24 features.
Parallelism was now needed to query these Jarge databases. Parallelism, reaching almost
mythical proportions, became the mantra of all these companies. High-priced consultants
could actually make a living _]US{ talkmg about which vendors had which capabilities!

These mld-ranged systcms on ster01ds have become pretty successful in the high-end, Sure
they had some problems with the very large bids, but over time they will succeed in the

209

high-end because they’ll build market-share and they’ll slowly but surely add the
appropriate features/performance. And they’ve brought their niceties from the mid-range
into the high-end. That is, these systems are somewhat easier to use, they’re cheaper, and
they have many more customers and programmers that are familiar with the product’s
features and quirks. The bottom line is they can pretty much do the job and customers can
deploy solutions pretty quickly. Much quicker than system solutions of ten years ago. In
effect, the traditional high-end players were tp-heavy and db-heavy; the new players in this
space are tp-lite and db-lite.

Anyway because of the exodus from the mid- range to the h:gh-end we now have a
vacuum in the mid-range. It’s not really a vacuum, it’s more of an opportunity. That is, the
traditional mid-range players had an option: they could have noticed what was going on in
the low-end space and adopted some of the low-end conventlons/tactlcs/features, or they
could have pulled/pushed into the high-end. There’s no questmn, they al] looked upwards
They focused on down-sxzmg opportumtles mstead of up—sxzing

Now just as the mid-range p]ayers were mev1tably pulled upwards, the low-end pc
database systems are going to encroach into the traditional mid-range space Often times
these systems won’t even initially be recogmzable as a tp/database system as we know
them. A good example is Lotus Notes. Although it doesn’t have the same capabilities that
we traditionally associate with a re}atlonal database system, it certainly is solving many
data management problems, it’s even threatening to become a complete application
development environment. Another good example is Microsoft Access. There are
probably more multi-user Access solutions than any other traditional relational database.
Both these products, instead of focusing on robust, high-performing engines, concentrated
on allowing developers/users to easily and quickly build solutions that solved real
customer problems. Remember the plastic garbage bag.

Transactions? Sure they like those sometimes. Locking? Certainly not degree 3. SQL? No
way, too complicated, user-friendly query' tools will generate the SQL. Time for
deployment of the application? Now! In fact, in the realm of quick application deployment,
the PC systems are as far ahead of the mid-range players, as the mid-range was to the
high-end. Whereas a traditional high-end deployment rmght take one to two years, and the
mid-range systems brought that number down to say six months, the low-end database
systems allow dep]oyment in weeks or even days' ' S

Compared to the prev:ous mld-range players (tp-llte/db-hte), these systems are no-tp and
db-very-lite. So why might they become important to the high-end space? First, as
described above, they WILL be pulled into the mid-range. It's simply a law of nature.
Then the question becomes, how successful wﬂl they be when they attempt to cover both
ranges? :

Whenever a product attempts to cover multiple usage paradigms it becomes very tricky to
design features appropriately. For example, the PC databases use a file sharing model.
Backup consists of simply copying the database file; often there is no log that will be used

210

for media-failure. A mid-range system usually has a standard backup mechanism and a log,
but not too many bells and whistles..And a high-end system wilt have online incremental
backups, a sophisticated automated log management scheme that rolls over to muitiple
disks and includes operator notification, and the recovery procedures should work against
a small granu!e such as a page (not a table, ﬁle, or database).

Ok, so) the task before the PC database systems is how to demgn thetr product to cover
db-very-lite to db-lite. Interestmgly this is the same problem the mid-range players faced.
Some of the vendors using ‘band-aids’, simply hacked on more features to their existing
architectures. Big mistake. Using this process you end up with some short term success
but over time it becomes very difficult to add/modify functionality. Another model is to
use some sort of add-on product which leverages your traditional product so it will scale
to multiple machines. This is architecturally cleaner than the first option but it’s not a very
efficient model. It’s not really addressing the core problems. The third approach is to
rearchitect and rebuild the product. This is the best approach.

But even so, the ‘redo’ model has to be done correctly. For most features, it’s very
difficult to make the right design tradeoffs so that the feature works correctly under a
wide range of user requirements. The solution is knobs. The system has to be designed so
that a feature can function in one of N ways. For example, a commit sequence might be
able to flush data pages at commit (no redo log), or it might use WAL and only flush
after-image records to the log. The proliferation of knobs is both a curse and a blessing. It
does indeed allow a system to be tuned for different purposes. For example, Rdb/Oracle
which holds the world record for TPC-A tps at 3692, can also be configured as a single-
file database system with no after-image log. Such a configuration would limit
performance to tens of tps. The curse is that usually there are only three people in the
whole world who can tune such a system appropriately.

Hence the next step beyond knobs is automatic feature configuration and tuning. This will
be especially important in the low to mid-range. These systems can’t afford to and don’t
want to have sophisticated database administrators. The automatic capabilities must cover
physical design optimizations (data placement); they must cover which ‘flavors’ of the

~algorithms to use (flush at commit/WAL, local buffers/global buffers, versioning/no

versioning, locking/no locking); they must cover logical designs (ER design, access paths,
views); and they must cover dynamic resource management (memory mgmt contention
between query execution and buffer pool, thread mgmt).

Ok, so why should the high-end systems be concemned with these activities?

If a low or mid-range player redesigns and rebuilds their core engine, and creates a
scaleable system which can auto-configure itself to run appropriately for either domain,

‘they’ll have a very attractive product. It’s very likely that in the redesign process the

system will also be built to scale to the highest end. And the auto-configure/auto-tune
mechanism will pay great dividends on the high-end. Certainly many of the utilities and

211

other services in the high-end won’t initially be present but these can be added just as the
mid-range players added them to their products prev1ously - :

And finally there’s one last piece of the puzzle that’s needed to allow a rebuilt PC product
to scale to the high end: an integrated TP monitor. But a TP monitor playing with the PC
product will have to have some additional functionality. The products and users in this
space aren’t going to be forced into only using database technology. They want to merge
spreadsheets, textual documents, Notes-like data conferences, database tabular data,
project management information, etc., into one seamless integrated data system. The new
TP monitor would have to be able to coordinate data from all these sources. This new TP
monitor, while it might not look like it, is really TP-heavy, just used slightly differently.

Then it’s only a matter of time before this low-end/mid-range product is pulled into the
high-end to square off against the other high-end players. But along the way the new
product may have changed the rules of the game; and it will have market share, price, and
simplicity as its advantages, just as the previous systems did in their earlier migration. So
it’s inevitable, just as mini-computers replaced mainfames, and PCs replaced minis, and tp-
lite replaced tp-heavy, and the mid-range database products replaced the high-end
products, the natural cycle will continue: some 31mp1e exlstmg or even unbmlt product w:ll
evoive to dommate the database mdustry K L o Do

212

Coping with Lock Contention in HPTS
(Position paper for HPTS’95)

‘Alexander Thomasian . .
IBM T. J. Watson Research Center

- 30 Saw Mill River Road

- Hawthorne, NY 10532, USA .

. athomas at watson.ibm.com

1. Introduction

1t has been ten years since the presentation of the “transaction (ixn) pipeline processor” (TPP)

' - as a technigue 1o reduce the level of lock contention in high performance OLTP systems
“[Reut85]. in the first execution phase ixns are pre-executed concurrently 1o prefeich the data
required for their execution. while taking advantage of the mulli-programming effect. No

" Concurrency Control {CC) is applied'in the first phase, which we call virtual execution (VE}
“[FrRT90).|FrRT92). while as a substitute for CC 1xns are executed serially in the second phase.

This already short phase, since no disk I/O is required, can be made even shorter in a spe-

“cially tuned system. A prototype implementing TPP is reported in [LiNa88].

_ Specialized 1e¢hniques to reduce the level of lock contention in DBMSs for h:'gh performance
. OLTP, such ‘as .record rather than page ievel locking and -short-term locks for indexes

[MHL + 92}, [MoLe92] have kept the level of iock contention at a low enough level that TPP is

~ not required for the momen!. We contend that while this is so for mature DBMS implemen-

tations, the cost of implementing sophisticated locking methods and the run-time overhead
may make TPP desirable again, especially for new (object-oriented) DBMSs.

Two-phase processing {2PH) methods described in [FrRT91], [FrRTQ?]'generallzé and extend

TPP. In what follows we describe 2PH methods and contrast them with TPP. We then point
out some’ problem-areas and 1echmques to cope with them. In this note we will not concern
ourseives with the data contention between short online txns and long read-only queries.
which can be handied using specialized methods such as versioning {MoPL32).

The paper is organized as follows. 2PH methods are described in Section 2. This Section
touches upon another set of methods .based on limiting the wait depth of blocked txns in

locking [FrRT92], which is a viable alternative to 2PH. In Section 3 we discuss methods for
. coping with the use of uncommitted data, which may lead to an incorrect path in ixn execution,

Prefetching as part of txn execution is discussed in Section 4.

2. Two-Phase Processmg Methods

Two-phase processing (2PH) methods differ from TPP in that: (|) The first execution phase of
a txn may be in VE mode or involve CC. .In‘the latter case some 1xns may complete their ex-

..ecution at the end of the first execution phase and commit, resulting in significant savings by

eliminating the second execution phase. {ii) Multiple txns may be executed concurrently in the
second phase, which eliminates the limit on the maximum throughput {the inverse of the mean
serialized re-execution time) set by 2PH. In fact it may be possible 1o categorize txns into

- ..multiple non-interfering classes from the lock contention viewpoint, in which case txns in dif-

ferent classes can proceed concurrently. . 2PH involves CC at least in the second execution
phase and hence introduces more overhead. .

‘The simplest form of 2PH based on oplimistic CC (OCC) executes txns according to the opli-

mistic die policy in the first phase, i.e., a txn known to be conflicted is allowed to continue its

- execution 1o the end. ‘At the end of their first execution phase txns either validate successfully

and commit, obviating the need for re-execution, or they are re-executed according to the
optimistic kifl policy, since there is no advantage in executing conflicted txns 1o the end when
objects required for re-executing a txn are retained in a sufficiently large database buffer.

213

The optimistic die/kill policy, i.e., optimistic die in the first phase and kill in ali following
phases, outperforms an optimistic kill/kill policy if the following conditions hold: (i) the system
is data contention rather than hardware resource contention bound, i.e., running the system
in optimistic die mode does not resuli in saturating processors (presumed to be the botlieneck
hardware resource}; (i) access invariance prevails, i.e., 1xns access the same set of database
blocks or more generally database objects when they are re-executed.” We distinguish be-
tween logical and physical access invariance, where the latter implies an access 1o a data
item collocated with the previocusly accessed ilem. it is' contended: in {FrRT92] that the
changes 1o the database state are not severe enough to modify the outcome and hence exe-
cution path followed by restarted txns, which is a justification for serialization as the correct-
ness criterion for CC. Serialization implies that any execution (commit) sequence is
acceplable, as long as it corresponds to some serial execution of txns, but this is not neces-
sarily so in all applications, e.g., stock trading applications {PeRS88].. Provided access invar-
iance prevails, the second-phase of txn execution. will be very fast since no disk /O is
required, which implies that the possibility that a second phase txn is conflicted by a first or
second-phase 1xn is rather small. The variability.of txn response time can be reduced by en-
suring that the second execution phase will always be successful, provided that access in-
variance prevails. This is accomplished by using a hybrid CC metheod, i.e., the optimistic die
policy in the first phase and lock preclaiming or siatic locking in the .second phase
[ThRa90],[FrRT92].. Given that the number of txns executing in the second phase is much
smaller than the number executing in the first phase, txns in the second phase tend to intro-
duce iess lock contention. The multi-programming level for. executing second phase txns can
be limited to reduce the level of data contention in this phase. it follows from the simulation
results in {FrRTS2] that under such mrcumstances the CC method for the second phase has
little effect on performance

OCC implies a private workspace paradigm, i.e., data items accessed by a txn are copied into
xn's woskspace 10 which ixn updates and further accesses are made. A successfully vali-
dated ixn externalizes its updates afier logging them, but this is-fraught with numerous diffi-
culties [MohaS2]. It has been argued that OCC is inefficient in dealing with aggregate
variables constituting hot-spots [GrRe82]; but this is. similarly a problem in iocking which is
handled by the “field calls” technique of IMS Fasipath [GrRe92]. Other techniques to reduce
the ievel of lock contention in this manner are beyond the scope of this discussion.

Optimistic methods result in a significant degree of wasted processing due to txn restarts as
compared to other CC methods. In fact according to the quadratic effect ihe probability of txn
restart increases quadraticaily with ils size (the number of objecis accessed by the txn) pro-
vided that database objects are accessed uniformly [FrRT92}. Txn level checkpointing using
(volatile) savepoints or syncpoints [GrRe92] shows a rather limited effect on reducing wasted
processing due 1o txn restarts, except when the access o hot-spots at the end of txn execution
is preceded by a single checkpoint [Thom85).

Because of the excessive wasteful processing and implementation difficulties associated with
OCC, 2PH methods based on locking have been devised [FrRTS0},[FrRT92]. Since deadlocks
associated with standard locking are rare [GrRe92] and the performance degradation in this
case is due to txn blocking, an appropriate method is required 1o induce txn aborts to reduce
the lock contention fevel in the system. The running priority (RP} method [FrRo85} is one such
method, which aborts a txn holding a iock requested by an active txn. This action is expected
to improve performance since it partially fulfilts the essential blocking property [FrRo85], that
blocking is acceptable only when the requested lock is held by an active txn doing useful work,
i.e., provided that the txn will not be aborted at a later time. Thus first-phase txns are run
according to the RP method, except instead of aborting txns they continue their execution in
VE or in optirmistic die mede. [n both cases a txn releases all of its locks. Undo tog records
need to be maintained in main slorage to ensure inexpensive. txn rollbacks, since they are
considerably more frequent than in the standard iocking case.

VE is similar to the optimistic die method, except that in the presence of locking methods,
which generally do not follow a private workspace paradigm. a txn may be allowed 1o read

214

. uncommitied data (a latch.can be used 1o ensure that data biock is not being currently modi-

fied). In-fact latching is adequate in TPPand the reiease of latiches will coincide with ixn
commit in this case {see [GMSa82] for locking in-main slorage databases). In the case of the
hybrid OQCC method txns in optimistic ' mode may defer their access 1o currently locked objects
[ThRag80]. A private workspace paradigm is used in VE mode, but a txn does not externalize
its updates upon completion. ‘The optimistic die method has the advantage over VE that a

' ~ previously conflscied x®n may dlscover at the end ‘of its execution that it can validale suc-

cessfully. This is possible when the (farst phase) txn that obtained the lock released by the txn
is itself aborted releassng its lock (the validation of the completed txn can be deferred if it has

. not encountered any conflacls and the other txn is still in progress).

: -Slandard lockmg or lock. precla:mmg £an be used for the second- phase of txns running with

RP in the first phase. :In fact for realistic parameters for disk access times and database buffer
hit ratios the number of txns in the second phase tends to be an order of magnitude smaller
than those in the first phase. Prioritizing the execution of second phase with respect to the

_first phase txns at the CPU can be used o further reduce the execution time of second phase

txns. In effect there is very little lock contention among ixns in the second phase. Txns re-

" guesting locks held by second phase txns are blocked {even though the second phase txn may

be blocked itself), while a second phase 1xns lock request will result in the preemption of the
iock held by a first phase txn-(although it rnay be actwe) Deadlocks are still possibie in this
phase if it uses standard locking.

It was verified by simulation studies IFrRTQD],'{FrRTQZj that using the RP method in the first
. phase of txn execution results in an.improvement in performance with respect to an optimistic

method when the system is hardware resource bound {in systems with “infinite resources”
optimistic methods outperforms all others). In fact an adaptive method is desirable when the
system initially runs with OCC, but when the processors become saturated it switches from
OCC 1o RP. The system may switch to more conservative versions of RP based on the number
of txns blocked at a wait depth of one or the wait depth exceeding one [Thom84]. Alerna-
tively, the {symmetric) RP method [FrRT92] can be modified to take into account the progress

" made by txns in deciding which txn to abort. The wait-depth limited (WDL) method with the
restart waiting paradigm of delaying the restart of aborted txns until conflicting txns have left
~ the system outperform all others for a wide range of parameters [FrRT92] (excépt OCC and

_2PH in high contention systems with infinite resources). Trace-driven simulation studies in

IWHMZ84] also show that this method performs quite weII compared with other methods pro-

posed for coping with thrashing in standard’ Iockmg

.. Txn spawning is a method to speed up the execution of blocked txns [FrRT92] The spawned

sub-txn .runs in VE mode, prefetching data required for the main ixn’s execution, while a pri-

.- vate .workspace paradigm is used from this point on. it might be advantageous 1o run the

spawned sub-1xn to the end, even when the main txn is unblocked before the spawn completes
execution, since no spawning will be required if the main ixn is blocked again. The main {xn
switches from the first to the second phase when the spawned sub-txn completes, regardless
of whether it is active or still blocked at that point.

2PH parad'i'gms"have also been considered for real-time TP applications [O'RP92].

3. Techniques to Cope with Access Variance

: Prefetching and s'petul'é'tive execution.of two paths of a branch are techniques used in high-

performance processors to speed up execution. One method to cope with access variance is

-to allow mulliple inslances of ixn execution based on the possible values of variables, as in

“polyvalues” [Mont78] and “branching ixns [BuTh94], Polyvalues were intended to cope with
failures in a distribuled database environment through a bookkeeping tool described in

- [Mont78], which keeps track of several potential values for a data item depending on the

commit or abort of precommitied txns. For example, when two pending txns 7, and T; have
accessed a bank balance, there are three polyvalues specified as
(Balance,,, — Withdraw, — Withdraw,, T,,T;), . (Balance,,,~ Withdraw, Ty, =T}, and
(Balance,.; —~ Withdraw., — T, .T3), where T, (resp. T} indicates the commit (resp. abort) of txn

3

215

T, respectively. Thus items remaining locked due to the failure of a commit coordinator can
be accessed conditionally by other txns. The escrow paradigm [O’Ne86] assures that a txn
can follow a certain path regardless of pending operations on an aggregate variable, while the
polyvalues paradigm considers the possibilily that one or more {xns may fail

Branching txns paradigm [BuTh84] allows a txn 1o, pursue “multiple” paths based on the fact
that multiple versions of an object may. be available (all versions reside in main storage for
efficiency reasons).” A txn may introduces additional branches when it encouniers additional
‘objects with multiple versions. Note that only. one e_x_ec:unon instance out of many can suc-
ceed, i.e., most of the processing in the system is wasted, which is the reason why this
scheme is proposed in the context of a highly parallei system. A completed txn cannot commit
untit all txns affecting it are committed.. Load control methods to cope with this wasted proc-
essing are obviously required as mentioned- but not elaborated: in the paper. Note that
branching is not required when different versions of an object result in: the same path.

This discussion is also relevant to optimistic methods, where a txn accesses a committed
~ value of a desired data item, while there may be multiple updated instances of it in the private
workspace of other txns. In effect a branching ixn paradigm can be foliowed in this case, such
* that one of the instances of txn executton may be successful.~

in fact in both locking with multiple versions and optimistic CC with. 1he branching paradigm,
new branches need to be created as new instances of daila values accessed by txns are cre-
ated. This is especially inefficient when the same original txn accesses a data value again
and again. This is why some CC methods make the assumption that an object is updated once
after its X-lock is obtained and never again [AEAL94). Of course this programming paradigm
would help improve the efficiency of the branching txn paradigm as well'.

4. Prefetching Inline with Transaction Execution

Prefetching as part of txn. execution can aiso be useful in reducing txn response time and
hence the lock holding time and the level of lock contention. As noted.in [Reut86] TPP is a
“brute force” method to predict the reference pattern of a txn. Given the class of a txn and its
input parameters, it is possible to predict the dala objects 1o be accessed by a txn, i.e., the
execution of a txn starts only after all objects required by it haVe' been prefetched. A txn ori-
ented prepaging method is described in [WeZo86], which minimizes the time txns spend in the
system. One may distinguish between a strategy-based and a fraining-based predictors,
where an explicit programmed strategy is provided in the former case, while the latter re-
quires extensive monitoring [GeKe84]. In fact a combination of the two methods may be re-
quired for more complex txns, which are affected by dala dependencies. Sequence prediction
techniques are applicable to the problem . More specifically, the TDAG algorithm [LeSa94]
limits the storage by retaining the most likely prediction: contexts and forgetting less likely
ones. This remalns an area of further. mvestlganon

References

[AEAL94] D. Agrawal, A. El Abbadi, and A. E. Lang. “The performance of protocols based
on locks with ordered sharing,” IFEE TKDE 6,5 {Oct. 1994), 805-818.

[BuThS4] A. Burger and P. Thanisch. "Branching iransactions: A transaction mode! for
parallel database systems,” Directions in Databases: Proc. 12th Nat’ Conf. Da-
tabases, BNCOD 12, D: 8. Powers (Ed.); Guildford; UK, July: 1894, pp. 121-136.

[FrRo85] P. Franaszek and J. T. Robinson. - “Limitations of concurrency in transaction
processing.” ACM TODS 10,1 {March 1985), 1-28. : :

[FrRTQO]' P. Franaszek, J. T. Robinson, and A. Thomasnan '"Acces's invariance and its use
in_high contention environments,” Proc 6th ICDE, Los Angeles, CA, Feb. 1990,
pp. 47-55.

[FrRT92] P. Franaszek, J. T. Robinson, and A. Thomasian. “Corcurrency control for high
contention environments,” ACM TODS 17,2 (June 1992), 304-345.

21¢

[GeKeS4]

[GMSa%2)]
{LaSa%4)

[LiNa88]

[Moha92}

[MHL +92]
[MoLe92]
[MoPL82]

[Mont78]
[O’Neg6]
[O'RPS2]

[PeRS88]

[Reut85]
[Reut88)

[ThRa90]

[Thom93]
[Thom94]
[Thom95)
[WeZoB6]

[WHMZ94]

C. A. Gerlhof and A. Kemper. “A multi-threaded architecture for prefetching in
object bases,” Advances in Database Technology-EDBT' 94 Cambridge, UK,
March 1984, pp. 351-364.

H. Garcia-Molina and K. Szlem, “Main memory database systems: An over-
view,” IEEE TKDE 4,6 {Dec. 1892), 509-516.

P. Laird and R. Saul. “Discrtete sequence prediction and its applications,” Ma-
chine Learning 15, {1994}, 43-68.

K. Li and J. F. Naughton. *Muitiprocessor main memory transaction processing,”
Proc. Int’'l Symp. Databases in Paralle! and Distributed Systems, Austin, TX, Dec.
1988, pp. 177-187.

C. Mohan. "Less optimism about optimistic concurrency control,” Proc. 2nd Int'|
Workshop on Research Issues on Data Eng., Tempe, Az, Feb. 1992, pp. 189-204.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwartz. “ARIES: A
fransaction recovery method supporting fine granularity locking and partial
rolibacks using write-ahead locking,” ACM TODS 17,1 (March 1992), 94-182.

C. Mohan ang F. Levine. "ARIES/IM: An efficient and high concurrency index
management method using wrile-ahead logging.,” Proc. 1992 ACM SIGMOD, San
Diego, CA, June 1392, pp. 371-380.

C. Mohan, H. Pirahesh, and R. Lorie. "Efficieni and flexible methods for transient
versioning of records to avoid locking by read-only transactions,” Proc. 1992
ACM SIGMOD, San Diego, CA, June 1992, pp. 124-133.

W. A. Montgomery. “Robust concurrency control for a distributed information
system,” MIT-LCS-TR-207, MIT, CS Lab., Cambridge, MA, Dec. 1978.

P. E. O’'Neil. "The escrow transaction method,” ACM TODS 17,4 {Dec. 1886),
405-430.

P. E. O’Neil, K. Ramamithram, and C. Pu. "Towards predictable transaction ex-
ecutions in real-lime database systems,” Tech. Report 82-35, Univ. of Mass, 1982,

P. Peinl, A. Reuter, and H. Sammer. “High contention in a stock trading data-
base: A case study,” Proc. 1888 ACM SIGMOD, Chicago, IL, June 1888, pp.
260-268.

A Reuter. “The transaction pipeline processor,” Inf'l Workshop on High Per-
formance Transaction Systems, Pacific Grove, CA, Sept. 1485.

A. Reuter. “Load control and load balancing in a shared database management
system,” Proc. 2nd ICDE, Feb. 1986, Los Angeles, CA, pp. 188-187.

A. Thomasian and E. Rahm. “A new distributed optimistic concurrency control
method and a comparison of its performance with two-phase locking,” Proc. 1980
ICDCS, Paris, France, May 1980), pp. 294-301.

A. Thomasian. “Two-phase locking and its thrashing behavior,” ACM TODS
18,4 (Dec. 1893), 579-625.

A. Thomasian. “Concurrency control: Methods, performance, and analysis,” IBM
Research Report RC 19964, Dec. 1994,

A. Thomasian. “Checkpointing for optimistic concurrency control methods.”
IEEE Trans. Knowledge and Data Eng. 7,2 (April 1995).

H. Wedekind and G. Zoerntlein. "Prefetching in realtime database applications,”
Proc. 1986 ACM SIGMOD Conf. Washington, D.C., May 1986, pp. 215-225.

G. Weikum, C. Hasse, A. Moenkeberg, and P. Zabback. "The COMFORT auto-
matic tuning project, information Systems 19,5 (1994), 381-432.

217

“Using Unix Workstations for a Low Latency, High Availability DBMS
Extended abstract
_ @ystein Torbjgrnsen and Svein-Olaf Hvasshovd
Telenor Research, N-7005 Trondheim, Norway

- Email: {Oystein.Torbjornsen,Svein-Olaf. Hvasshovd} @tf telenor.no

- Submitted to HPTS "95, Pacific Grove, California, September 17-20

-1 Introduction

Databases have over the last years been facing new applications in the telecom industry. One such applica-

‘tion is universal personal telephone (UPT). These applications are characterized by requirements which in

combination are not met by current database systems [2. 6]. These requirements are: 1) low, predictable
response times (15 to 30 ms); 2) high throughput (more than 1000 transactions per second); and 3) very high
availability (maximum 2 minutes downtime per year). The transaction types in these applications are very
light, ie. touching one to four tuples in the database, and with up to 90% read-only transactions.

Multiple projects address these applications. but none so far has aimed for reaching all three requirements.
Smallbase [4] arid Dali [7] are two of these systems.- Both have excellent response times and throughput for

~light transactions, but have not focused on the high availability aspect.

ClustRa is a parallel and distributed DBMS engine for telecom applications which is designed to meet the
combined three requirements. It is using standard Unix workstations interconnected with a high-performance
ATM network. A UniX workstation constitutes a node, which is the smallest unit of failure. A siteis a
collection of several nodés and 2 ATM switch, and is the unit of failure for catastrophic events like fire and
avalanche. Some of the nodes on each site are dedicated spare nodes.

Database tables are horizontally fragmented based on hashing. Fragments are replicated with one primary and
one hot stand-by replica. The replicas are distributed so that cone site only stores one replica of a fragment.
Currently we are supporting mirrored declustering.

Data is stored on disk with 4 traditional page-oriented layout. To avoid disk accesses for real-time transactions

~data used by them are cached in main memory. A B-tree access method with real-time extensions is used for

direct tuple access.

i Transacuons can enter the system on any node wh1ch control its execution. Based on the fragmentation key

value and the fully replicated fragmentation dictionary, tuple operations are forwarded to the nodes carrying
the primary replicas the tuples are stored in. Independent operations inside one transaction are shipped and
executed in parallel. Multiple operations targeted to the same node are sent as one message. Tuple updates
cause log records to be shipped from the primary replica to the hot stand-by. A prepare-to-commit request

'is piggybacked on the last independent message to each involved primary node. A primary responds ready

when it has executed all tuple operanons and shipped the log-records to the hot stand-bys [5].

.“When the transacnon comroller ships the updates to the primaries.. it also ships requests to the hot stand-bys
. to participate in the two-phase-commit (2PC) of the transaction. When a hot stand-by has received all the log

records for the transaction, it responds ready to the controller. .Note that neither the primaries, nor the hot
stand-bys walt for Eog disk dips.

: When the transaction controller has received ready from all primary and hot stand-by participants, it ships

the commit decision to a hot stand-by transaction controller on an independent site. After receiving an

218

acknowledge, it responds the results to the transaction requester. Finally, all participants are informed of the
outcome. This execution model gives a total number of messages for a TPC-B transaction varying from 16
to 40 depending on tuple clustering. The number of messages sent before responding to the requester varies
between 10 and 22. The time critical path from the reception of the request until the response consists of a
sequence of 5 messages. These numbers do not include the communication with the requester.

Scheduling based on ordinary two-phase locking is performed to the primary data. Tuple granularity locks
are kept on both primary (read and write locks) and hot stand-by data (write locks only). Tuple log records
are fully location transparent both with respect to redo and undo operations. Node internal log records are
kept within the originating node. ST e

Node failures are detected through a heart-beat protocol. A new availability set is computed based on the
virtual-partition algorithm {1]. The hot stand-bys for the unavailable primary replicas take over as primaries.
In flight transactions involving the failed node are aborted. The replicated fragmentation dictionary is
automatically modified to reflect the current system state. If the failed node is unable to immediately recover,
data and log with only one replica left, is automatically rereplicated onto one of the spare nodes. We consider
securing log records in primary memory on two different sites to provide sufficient safety when it is combined
with an immediate rereplication capability. This reduces the time-window when the system is vulnerable to
double failures,

Except where stated the hardware used is Sun Sparcstation 10/40 workstations with 256 MB primary memory
and 1 GB disk running SunOS 4.1.3. They are interconnected with a Fore _S_ys_te_r_ns_ ASX-200 ATM switch
using SBA-200 100 Mb/s TAXI S-bus adapter cards. o ST

2 UNIX deficiencies

Unix was designed as a time-sharing operating system for interactive use. Although it is not the perfect system
for all applications it has gained acceptance for its ubiquitousness. The portability of the operating system
itself and applications on top of it has resuited in a large user base. The development environment is excellent
with many tools available and an excellent integrated network support. - '

Real-time systems and transaction processing demand other aspects than those originally addressed by Unix.
Over the years this has somewhat improved with real-time extensions, multi-threading support, and efficient
access to shared memory and disk resources. :

2.1 Process scheduling

Ateach node transaction processing activates three processes: the transaction controller (TCON), the database
kernel (KERN), and the update channel (UCHN). This subdivision was motivated by increased protection
between independent modules in the system. This increases the probability of early detection of software
errors and reduces the chance of corrupting the database content. Transaction concurrency is achieved by using
multithreading inside each of these processes. The thread package implements non-preemptive scheduling
between threads to avoid use of expensive semaphore mechanisms. Especially those supported by Unix are
too expensive for our application. IR ERETE SR R

A transaction is executed in parallel both over the processes internally on a node and over the nodes in the
system. The interaction between the processes is through messages. Some of the processes also share memory
regions but only one process is allowed to write into it. Our design assumed that Unix did not reschedule
processes when sending messages, but rather after spending its relatively long (20 ms) time slot or having
to wait for a resource. Therefore, a process could send multiple messages before deliberately giving up its
control by waiting for a message response without being interrupted by Unix. For instance the TCON could
send all its messages uninterrupted to the participating KERNs before waiting for response.

Despite this careful design, Unix caused problems. The three processes schedule very unpredictable and
occasionally compete with system processes. In a study of the scheduling of the processes [3], we found

-that we could get a rescheduling at any message transfer operation, also when sending messages. In effect,

this caused a varying riumber of ¢ontext switches within the execution of a trarisaction which could not be

predicted. Also the scheduling causes messages in the time critical path to be delayed. We have measured

a variation in the transaction response times ‘of the exact same transaction from 11.7 ms to 16.6 ms without
any other load on a two node system. Given the 15 ms response time requirement this was disappointing.

The fast transaction execution resulted in 7 context switches on the node where the transaction controller
resides before responding to the user, while the slow had 10. Our optimistic scheduling prediction was only
5 context switches. We have measured the context switching time on the workstations used to 57 us. In total
this results in negligible CPU time for context switching itself. Most of the added time can be explained by a
suboptimal scheduling of the paralle] transaction execution plan:

" Given this new insight we did some modifications to our design. The change that gave the most significant

effect with respect to response time was merging the three processes into a single one. This was fairly simple
since we already had a multithreaded design. The threads that originally were distributed over three processes

- are now running in one and-are still communicating by messages. Obviously this compromises the intended

protection between the modules. ‘We find this acceptable since the main defense against software and hardware
errors is the logical and physical isolation between nodes. If the extra protection is required, the system can
optionally be recompiled and built into multiple processes. The overall improvement of this change alone

. was a speedup in the range of 20-25% depending on target platform.

The most recent version of the DBMS executes 99.5% of the transactions timcly. On the other hand, a

few transactions end up with with a response time more than 10 times longer than the average at 9.77 ms..

These are caused by Unix activating system processes periodically. These run system management tasks, like
paging, swapping, and file-system cache flushing. For our application this is not necessary since we require
that there should be enough primary memory to avoid this. These redundant processes run for periods that are
longer than our required response time, causing transaction processing to be blocked. Fortunately this occurs
so infrequently that it does not threaten our soft real-time requirement.

Modern Unices have support for real-time processes. This allows processes to have a fixed priority which is
higher than ordinary Unix processes.: Testing this on HP-UX 9.0.5 showed that we got much less variance

- than using traditional Unix scheduling. Unfortunately, the average response time increased slightly. Since

calls to the Unix kernel are non-preemptive there still existed a few long lasting transactions. We solved this
by killing the system process responsible for the trouble, without knowing whether this will be feasible in a

- production environment.

2.2 Message p'assing' :

Interaction between processes, both inside a node and between nodes is done using a lightweight RPC (remote
procedure call) mechanism supporting reliable delivery. This simplifies the implementation of the DBMS

~ layer code without adding too much processing overhead. The RPC paradigm corresponds well to what is
~ needed by distributed transaction processing, included the 2PC protocol. The RPC mechanisms makes few

assumptions about the underlaying message passing mechanism provided by Unix.

The need for fast communication between nodes are given by the soft real-time requirement. High communi-
cation bandwidth is required to support high volume transaction processing and fast rereplication of fragments
after anode crash. Normal 10 Mb/s Ethernet would soon be saturated for high transaction volumes and would
only be able to handle small databases in case of failures. Close to saturated Ethernets can not guarantee
response times due to high collision rates. Of the alternative high bandwidth solutions we have chosen ATM,
because it is an established product, scalable, and has a low hardware latency. The literature reports measured
bandwidths larger than 10 MB/s and RPC latencies lower than 100 us [8].

UDP/IP is the basic communication protocol used in the implementation. It is a datagram protocol with

. unreliable delivery which perfectly matches our RPC paradigm. It gives high portability over all platforms

and can be vsed over both ATM and Ethernet.
It was evaluated against three other alternatives: TCP/IP, ATM AP, and Unix SysV messages. TCP/IP’s

220

byte stream paradigm represents a mismatch with message passing applications. Normally it delays sending
non-full messages in case more data are sent soon. after, causing unpredictable message latency. On the
receiving site messages have to be refragmented causing extra overhead. Since TCP/IP provides reliable
delivery, it is sending acknowledgement messages adding to the total number of messages generated. Due to
the semantics of RPC, the acknowledgements must anyway be implemented on a higher level. A proprietary
API was provided with the ATM product, This alternative was ruled out because it is not portable to other
platforms, it has poor functionality, and it gives little or no performance tmprovements over UDP/IP. Unix
SysV messages have excellent performance, but can only be used inside a node.”

Our system design was based on the assumption that messages were relatively cheap (less than 2000 instruc-
tions sending and receiving a message) and had a low latency (less than 100 p#s). These assumptions were
founded on an overail knowledge of the ATM architecture and published reports telling that commercial ATM
hardware was able to do an RPC between the Unix kernels on two different workstations in 55 ps (8],

When we started to experiment with the hardware the process to process UDP/IP RPC latency was measured
to 1.7 ms. The same figure for Ethernet was 1.5 ms!. By instrumenting the driver software for ATM we
have found that the Unix protocol stacks are eating.close to all of this time.. This disappointing observation
lead us to a careful reconsideration of the architecture since rewriting of communication drivers and protocol
stacks was considered outside the scope of the project. The architecture was from the. beginning optimized
with respect to message passing. Despite this fact, we made an effort to further eliminate the total number of
messages for a transaction and moving messages out of the time critical transaction execution path.

A consequence of the Unix scheduling in the original design log records were frequently shipped as individual
messages from the primary to the hot stand-by.. Immediately when a log record was produced, this was
reported to the UCHN. This frequently resulted in its activation and sending of one message. To avoid this,
the UCHN was not informed before prepare-to-commit causing log records generated by one transaction to be
clustered into one message. This modification both reduced the number of context switches and the number
of log messages.

In the original design we informed the hot stand-by TCON when a transaction was initiated. This was done
1o guarantee that two TCONSs knew about the existence of the transaction. This lead to a RPC round-trip
delay in the time critical transaction execution path. The round-trip was eliminated and is now only involved
at commit time. This could be done by letting all participants know which node the hot stand-by TCON
eventually would be located on. If the the primary TCON fails, all participants contact the hot stand-by
TCON which completes the transaction. If no knowledge about the transaction exists at the TCON when it is
contacted by a participant, it can assume an abort. If the decision was commit, the TCON would know about
the transaction. because the commit decision is sent to it before being sent to the participants. This change
resulted in the number of messages before replying to the requester to be reduced from 12 to 10.

. The merging of the three processes into asingle process also had an effect on the number of messages sentusing
the operating system. Messages sent from one thread to another inside the.same process are short-circuited
saving CPU cycles spent by Unix. This removed from 2 to 10 messages before replying to the requester, and
removed from 2 to 12 messages in the total execution plan for a TPC-B transaction, The number of messages
depends on the clustering of data relative to the TCONs. S

3 Performance results-

Table 1 shows the performance evolution of the system for TPC-B like ir_an_sactions on a two node system.

The first row in the table shows the performance of the original design. These results clearly did not reach the
latency requirement with 95% completing within 15 mns.

The second row shows the system when the message removal indicated in section 2.2 have been incorporated.
Compared to the original design, the average response time is reduced with 21% and the throughput increased
with 40%. On a systemn with low load, the response time requirement is clearly satisfied.

The third row shows the results for the single process version of the system in row two. The improvement

Minimum | Average Percentage Transactions
response | response | of transactions per
time time < 15ms second
Original multi process version | 109ms | 144 ms 81.0% 50
New muiti process version 100ms | 114 ms 99.0% 70
Single process version 8.0ms 88 ms 99.8% 86

Table 1: Response time and transaction throughput evolution.

by going from three to one process is 23% for both response time and throughput. The overall effect of the
optimizations presented in this paper is a 39% response time reduction and a 72% throughput increase.

4 Conclusions and further work

So far, our focus has been on response time optimizations. In a number of telecom applications single tuple

transactions are dominating. We are now working on response time optimizations for single tuple read and
write transactions.

Throughput can be further optimized without compromising response time. One direction we are considerin g
is grouping multiple operations into one messages when they occur after completion of the time critical phase
of the transactions.

The project has reached its goals with respect to response time using commodity workstations with Unix.
Onwards our focus will primarily be on achieving the required availability.

References

[1] A.E. Abbadi, D. Skeen, and F. Cristian. An Efficient, Fault-Tolerant Protocol for Replicated Data Man-

agement. In M. Stonebraker, editor, Readings in Database Systems, pages 259~273. Morgan Kaufmann
Publishers, Inc., San Mateo, California, 1988.

{2] 1. Ahn. Database issues in telecommunications network management. In Proceedings of ACM/SIGMOD
{Management of Dara), May 1994,

[3] C. A. Galindo-Legaria and S.-O. Hvasshovd. A performance analysis of the ClustRa DBMS. Technical
Report TF R 46/94, Norwegian Telecom Research, Kjeller, Norway, 1994,

[4] M. Heytens, S. Listgarten, M. Neimat, and K. Wilkinson. Smallbase: A main-memory dbms for high-
performance applications (release 3.1), Mar. 1994. Hewlett-Packard Laboratories, Palo Alto, CA, USA.

[5] S. Hvasshovd, T. Szter, @. Torbjgrnsen, P. Moe, and O. Risnes. A Continously Available and Highly
Scalable Transaction Server: Design Experience from the HypRa Project. In Proceedings of the 4th
International Workshop on High Performance Transaction Systems, September 1991.

(6] S.-O. Hvasshovd, @. Torbjgrnsen, S. E. Bratsberg, and P. Holager. The ClustRa telecom database: High
availability, high throughput, and real-time response, 1995, Submitted to VLDB-95.

{71 H. V. Jagadish, D. Lieuwen, R. Rastogi, and A. Silberschatz. Dali: A high performance main memory
storage manager. In Proceedings of the 20th International Conference on Very Large Databases, Santiago,
Chile (VLDB '94), pages 4859, Sept. 1994,

(8] C.A.Thekkath, H M. Levy, and E. D. Lazowska. Efficient support for multicomputing on ATM networks.
Technical Report 93-04-03, Department of Computer Science and Engineering FR.35, University of
‘Washington, 1993.

222

e,

1. Motivation

223

Flexible Business Processing with
SAP Busmess ‘Workflow 3.0

Extendcd Abstract
Helmut Wachter Arch1tect and Developer of thc SAP Workflow Manager

 SAP AG Busmess Process Technologies, Postbox.1461, D - 69185 Walldorf
e o emml helmut_wacchter@sap ag.de

Most companies operate in an environment with a-very dynamic nature: rapidly changing customer demands,
market situation, legal or political regulations, technology, etc. result in frequently changing organizational
structures and business procedures. This means that a re-engineered and ”optlmlzcd” business process
[HaCha93] is no longer optimal after a while and has to be improved again and again. Thus the ability to
change a process easily and’ qmckly is-at least as important as its optimization, e.g. with respect to time or
money. Critical users argue (and partly thcy are right) that available workflow management systems (WFMS
for short) will "cement” a business process once'it is implemented. When using a WFMS one has to be careful
not to produce "legacy workflows” which hinder or even prevent ordinary alterations, such as replacing
hardware and software components which implement a business process; creating, dividing or merging
organizational units, jobs and workplaces, or adjusting assigned tasks and authorities; employees join the
company, are temporarily absent, or move to another department and so on. In order to support these various

~changes efficiently, a WFMS has to prov1de a hlgh dcgree of flex1b111ty in‘'modelling, mamtamlng as well as

executing business processes. -

Release 3.0 of the SAP R/3 System contains an integrated set of workflow tools. This paper presents these

tools with a special focus on the concepts and mechanisms for implementing flexible business processes. After

the general architecture (section 2) we describe the basic desxgn and modelling principles and give some
examples to illustrate the resulting ﬂex1b1hty (sections 3-5).

2. SAP Business Workflow Architecture

.The .SAP R/3 Syste:rﬁ :is a Well known standard software package for business applications [BuGa94]. Based

on a TP monitor it implements a three-level client/server architecture [GrRe92) and runs on various hardware
and software platforms. Its rich set of integrated functions covers nearly all business tasks which need to be
carried out in medium to large-sized and even multinational companies. It-also comes with an enterprise data
model and a process repository, which describe the architecture and functionality of its business objects and
procedures. Release 3.0 contains a workflow workbench, which can be used either to customize the pre-
defined workflow process templates or to build individual business processes based on the various building

blocks delivered with the workflow repository (business objects, events, tasks, roles, etc.).

Besides the existing interfaces to the SAP System, the workflow tools offer an additional interface at the

process level: workflows within the R/3 System can call external workflows and vice versa. Since SAP is an
active member of the Workflow Management Coalition [WfMC94] it plans to support the standardized

‘“Workflow API (WAPI) when it is published.-

Fundamental for the flexibility which can be achieved with SAP Business Workflow is the three-level archi-

tecture sketched in figure 1. It distinguishes various aspects of a business process and maps each of themto a

separate level. These perceptional views are the organizational level, the process level and the object level:

224

Organizationa.l |
Model

i Ca_ﬂl + Flés_ult
|2

Figure 1: Architecture of SAP Bu_sine_.é_s Workﬂbw 3.0

.+ - Organizational model AR S -
The organizational model describes all orgamzanonal elements paruapaung in a business process: _]ObS and
positions; their grouping into organizational units like workgroups, departments etc.; job descriptions with
the tasks and responsibilities of a staff member; reporting and management relationships etc.

+ Process Model
A business process consists of several sequenual or parallel stcps Dcﬁmng the flow of data and control
between the steps through a graphics editor [SAP-WF] is based on the ConTract Model [WaRe92]. The
steps of a workflow are not defined by specifying a program (transacnon report etc.), but by referencing a
task of the organizational model, which thereby takes the leading role in business process modelling,

e Object Model
Tasks in SAP Business Workflow are 1mplcmentcd by calimg methods on objects The object level
provides a unified interface to the existing application data and programs inside and outside the SAP
 System, which are involved in a business process. (like database tables, PC documents; transaction pro-
grams, 4GL function modules, etc.). Remote data or Ob_]CCl'. servers can be accessed by OLE2 [OLE94]

Thef followm g sections sketch the three levels and their mterrelauons in more detall

3. Organizational Model

Integrated in the SAP Business Workflow Tools is a powerful component for organizational modelling and
management [SchDr95). As mentioned above, tasks play the central role in linking the organizational and
operational structure: On the one hand, they are part of the operational structure and describe a procedure
which manipulates one or more business objects, for example creating an order, approving an invoice and so

on. On the other hand, tasks are linked to agents (usually to jobs, not to persons directly) which are part of the

organizational structure. This link is the foundation for addressing workflow steps to agents ("routing”): When
a workflow step is to be carried out, it is clear from the organizational model which jobs contain the
corresponding task and which persons fill these jobs. Thus, when logging on to their personal work list, the
users find only those workitems which are part of their jOb description, or which are addressed to the
organizational unit they belong to. Addressing tasks to jobs or organizational units, and not to persons direct-
ly, has the advantage that acting as a substitute, moving job or department, and other organizational changes

225

~ become effective immediately in the workflow system. Especially in large organizations it is not acceptable to
. Te-route active workitems manually i in order to see them in the work list of the new user (or substitute). In

other words: the SAP Workflow System reﬂects all organizational changes automatically.

Now, determining agents of a task by addressing all jobs or persons which have the task in their job
description is sometimes a too static way of work enactment. Thus the SAP workflow tools offer several
additional mechanisms in order to select agents dynamically depending on the actual workflow data:

a) A customer complaint, for example, should not be routed to al/ customer service staff members, which
could do the task according to their job profile, but only to those who are actually responsible for the specific
customer (or product, sales region etc.). Therefore, the agent of a task can be determined by a role resolution
program which has access to the customer’s name and the other workflow data. Another possibility is to
determine the agent of a step when starting'the wo'rkﬂow or as the result of a preceding step.

b) It is also possxble to select an agent indirectly’ by referencing an agent of a prevmus step, the workflow
initiator, the manager of the agent of step § and or.her predefined roles.

All these mechanisms could also be used to exclude agents, who should not work on a task. An invoice, for
example, has to be approved by two different persons when it is above a certain amount. Or consider a work-
flow for business trip approval by the respective manager. Here it is possible to specify that a staff member is
not allowed to approve hlS/hCI‘ own business trips, even when he/she tcmporanly replaces his/her manager.

Triggering and terminating events provide further flexibility in SAP Business Workflow. In the task
repository one can define events which trigger or terminate a task automatically. Events are signalled by the
business objects indicating a workflow relevant state transition, see below. For example, a complaint received
by fax or EDI could start a service workflow to process it. When the customer with a complaint reports that
the problem has been solved, the workflow is completed automatically. A company using the SAP Workflow

_ System can specify which task (if any) is to be started or completed when an event occurs in the system.
- "Invoice.created", for example, can start the (mOdlflCd) workflow template SAP delivers with R/3, a

completely different customer-defined workﬂow ‘or no process at all, if creation and verification of an invoice
is carried out by the same user within one step. Triggering or completing a task by an event can be dependent
on a condition (cf. event-condition-action-rules) and can also be disabled temporarily [Gers95].

4. Process Model

- The ‘graphical presentation of a process uses a special sort of activity/state chart called event-driven process

chains” [KeMe94], see figure 2: Activities (rectangles) and resulting states are linked by connectors xor and -
and. This mechanism was extended by the usual flow elements of block-structured programming languages
(e.g. Modula) and further mechanisms necessary to control long-running activities [WaRe92]: Besides
sequential and parallel blocks (for#, join) we have if, case, while and until loops. To support parallel business
flows in a database environment, it is also possible to process each line of a table (e.g. items of an invoice) in

| _parallel. At a join node only » from m parallel incoming paths rmght be declared necessary to continue the

flow. Since a workflow is also modelled as a task in the task repository, process definitions can be nested.
Automated process control is supported by suspending or cancelling individual steps or the whole workflow.
An important link to the object level are steps, which can wait for asynchronous state transition signals

" (events) from object instances which are of interest to the workflow, see below. A workflow or step can also

be completed by an event e even without processing the referenced task, if the task declares event e to be one

" of its terminating ‘events. For example, an event employment stop triggered by the CEO could stop all ongoing

application workflows. If a step has more than one terminating event, the workflow can branch on that event

‘in order to model a speciﬁc res’p‘o'nse to the event which actually terminated the step.

A workﬂow and-each of its steps have a- private data pool contamm g (pointers to) the involved objects and

other variables. The data flow definition, a part of the process definition, specifies how flow variables are
mapped to the mput and output varlables of a step ThlS creates two separate name spaces for workflow and

226

step data. As a consequence, both can be implemented mdependent}y and, more importantly, steps can be
easily reused in other workflows: To tolerate crashes and other system failures, workflow and step data are
managed transparently for the flow and step programmer in a databasc '

" (Branching) F

Task with #

deadlines R .

Join nof m z‘;’/; :
parallel paths é '

Fzgure 2: Sample Workﬂow Deﬁmtzon

Although workflows are mainly"mtended for well-structured processes, some limited deviations and modi-
fications of the process script are inevitable to handle unusual, and therefore not predefined exceptions. To
- allow a quick response to ad hoc changes durm ga workﬂow execuuon the SAP workfiow tools support

¢ skipping optional steps

* dynamic determination of the task of a step and its deadlmes (snmlar to dynamic agent determination)

e inserting additional steps and objects (notes, PC documents etc.) into a workflow.

Besides that, users with the required authorization can change the attributes and processing states of steps or

workflows. For example, a manager or person rcspon51b1c for a process could updato the deadlines of a step,
or change the list of respons1ble agents etc. : :

S. Object Model

A workflow step 1mplementmg a task calls one or more methods of the involved business objects. The
delivered business objects comprise orders, _dehvenes, invoices, production plans, matenals, plants etc.
Workflows, steps and objects are also modelled as (meta) object s classes in the reposnory

The object level does not replace the existing SAP runtime system. Rathcr it provides a suxtable basis for
workflow computing on top of existing applications. It is a type of wrapper implementing a unified calling and
data transfer interface to the various non-object-oriented transaction programs, 4GL procedures and so on. By
providing an RPC-like API, OLE2 [OLE%4] and (planned) CORBA [OMG91] it is also possible to implement
business objects outside the SAP System. A delegation mechanism allows the customer to overwrite classes
delivered by SAP with user-defined modifications or extensions. Besides that the state-of-the-art object
repository supports selected multiple inheritance, aggregating and linking objects. The graphical object
browser integrates the SAP Development Workbench and Data Dictionary in order to define an object class by
simply clicking the mouse to reference existing tables, transachons 4GL programs etc.

Object identifiers, attributes, methods and events are the four important interfaces to the process level:

227

1. Via the object id one can find all process instances in the system which work on a given object.

2. An object’s attributes can be used in a workflow branching condition by the usual dot notation (e.g.
“invoice.amount > $ 10 000") without coding any SQL or 4GL statements to query the required values.

3. Besides an arbitrary number of input/output parameters, a method could produce one distinguished result
value and several exceptions (indicating application errors) which can be used in the workflow definition
for an implicit branch after a step. The same is possible for the completion and deadline events of a task.

4. Events indicate workflow-relevant state transitions of an object, as mentioned above (created, changed,
released, deleted, and so on). Like a method, an event can have parameters which a subscribing task can
pick up to respond more specifically to that event. Note, that the reaction to an event is not part of the
application program implementing an object, but is defined in the task repository (triggering and
terminating events) or in the workflow definition (steps waiting for an event of an object instance). This
separation of the "publisher” of an event and its "subscribers” responding to it allows you to define and
change them independently. The implementation reflects this separation: Creating an event is implemented
by using a transactional RPC-like function call within the publisher’s sphere of control. The subscribers,
however, run asynchronously in their own logical unit of work. This mechanism is also used in SAP
Business Workflow to integrate dialog transactions, which produce their result in an asynchronous commit
procedure outside the sphere of control of a method call.

6. Summary

The process and object orientation and principally the integrated organizational model of the SAP Business
Workflow tools allow a high degree of flexibility in modelling and executing business processes. Thereby they
support individual and evolutionary business process engineering in an enterprise.

References

[BuGa%4] Buck-Emden, R.; Galimow, J.; Die Client-Server-Technologie des Systems R/3. Bonn 1993.

[Gers95] Gerstner, R.: A Workflow-Oriented Architecture of Application Systems based on Events
(in German). Proc. Modelling Office Information Systems, Bamberg, Germany, October 1995,

[GrRe92] Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann,1992
fHaCh93] Hamer, M.; Champy, J.: Reengineering the Corporation. New York 1993.

[KeMe94] Keller, G.; Meinhardt, S.: SAP R/3 Analyzer: Optimizing Business Processes using the R/3
Reference Process Model SAP AG, Walldorf 1994.

[OLE94] Microsoft OLE Custom Controls. Preliminary Specification, Jan. 1994.
[OMG9%1] Object Management Group: The Common Object Request Broker. Document No. 91.12.1, 1991
[SAP-WF] SAP Business Workflow. R/3 System: Functionality en Detail. SAP AG, Walldorf, 1995.

[SchDr95] Schidgel, C., Drittler, B.: Workflow-integrated Organizational Management. SAP-Info Business
Workflow, SAP AG, Walldorf, 1995 '

[WiRe92] Wichter, H., Reuter, A.: The ConTract Model. In: AK. Elmargarmid (Ed.): Transaction Models

for Advanced Database Applications. Morgan Kaufmann Publishers, San Mateo, CA, 1992
[WIMC94] Workflow Management Coalition: The Workflow Reference Model. Doc. TC00-1003, 1994

—

- Workflow Monitoring:
~Queries On Logs or Temporal Databases?
o Position paper, submitted to HPTS’95
- Gerhard Weikum *
- Department of Compter Science
-- University of the Saarland

' PO.Box 151150, D-66041 Saarbruecken, Germariy
E-mail: weikum@cs.uni-sb.de .

1 The Need for Workflow Monitoring and Workflow Histofy Evaluation

Workflow management is a challenging subject that is being tackled, from different angles, by
computer industry, computer science, and business science [Me94, GHS95, HC93]. A work-
flow consists of a set of processing steps together with some specification of the control and
data flow between the steps. In addition, some deviation from the specified control flow
should be possible to allow for inteliectual exception handling and decision making. The ulti-
mate goal is to automate the computerized processing of workflows in large-scale distributed
environments, without harniessing the flexibility of human intervention. Application exam-
ples that would enormously benefit from even partial solutions include loan processing in
banks, insurance claim processing, health care administration, submission and processing of
tax declarations, and so on, not to mention the often—cited, canonical example of travel plan-
ning.

The focus of computer science in this context is on specification methods for workflows, and

on mechanisms for reliable execution in distributed systems with use ‘of and extensions to

transactional technology [Be93, Da93, De94, Hsu93, LA94, Mo95, RS94, WR92]. In con- .-

trast, business science is more concerned with the re-engineering of inefficient business pro-

cesses at arather informal level [Ma93, Sch94]. One aspect of workflow management that has

notreceived much attention by neither community is the monitoring of workflow executions. I

claim that this aspect bears a huge potential for improving the transparency, efficiency, and ac-

curacy of workflows and is crucial for the success of business process reengineering. In fact, I
believe that workflow monitoring is an important link between the computer~science and the
business-science perspective of workflow management. In the following, I discuss the ratio-
- nale for this position statement and the research issues that are entailed by it.

7 Inworkflow -appl'i'c'a':ti'ons, steps may be processed in a fully automatic manner (e .-g; checkin g -

- the completeness of a tax declaration), solely intellecutally (¢.g., deciding upon the medical
‘treatment of a hospital patient), or by a combination of both (e.g., approving a loan request
“based on information from a customer database). In any case, a workflow management system

should be aware of all these steps and should be informed about the corresponding input and

* This position paper is based on 2 joint project. between the University of the Saarland, the Union
Bank of Switzerland, and ETH Zurich, on “Middleware for Enterprise-wide Workflow Manage-
ment” (MENTOR).

228

229

output data. This information is the basis for making the dynamics of distributed business pro-
cesses comprehensible to the involved agents themselves and to a.process engineering staff.
For example, a bank agent who is in charge of a certain step in 2 complex workflow may want
to check the current status of other steps that are being processed in parallel, in order to assess
the criticality of the workflow with respect to deadlines, risk versus potential profit, and so on.
A process engineer, on the other hand, would be keen to learn about the (average and maxi-
mum) duration of and total work time involved in various steps, in order to identify opportuni-
ties for improvement. Then, workflows with a high turn—-around time could, for example, be
reorganized by streamlining the control flow and the organizational responsibilities (e.g.,
combining steps or running more steps in parallel).

Conceptually, these information demands could be satisfied from arelational database as illus-
trated in Figure 1 in an oversimplified manner: Obviously, such a database cbnstitute_s an ap-
plication-level log of all relevant events that occur during workflow executions. The log is
further augmented with additional data such as step status, work time spent on a step, refer-
ences to documents that describe input and output of a step, addresses of databases or imaging
archives where these documents reside, and so on. I claim that the implementation of this ap-
plication-level log is an important and largely unexplored issue in large-scale workflow man-
agement. In the following I point out two conceivable starting points for tackling thisissue: the
first approach aims to enrich an audit trail with additional functionality, and the second ap-
proach takes the viewpoint that a-'workflow log is a special kind of temporal database.

Workflows

[WFId |WEType Iniiaang . |Starting 7 - .. | Completion R 1
' Agent R Date&Time Date&Time. e e
1001 |LoanRequest |B.J. Smith Sept-13-199510:05 AM | Sept-20-1995 2:20 PM
1002 {PortfolioMgt B.J. Smith Sept-15-1995 11:30 AM - [Sept-17-1995 8:30 AM
1003 - | LoanRequest ‘AB. Jones Sept-20-19959:15 AM | still in progress
Steps _ -~
WFId |Stepld | StepType. “\Agent' - |Starting - |Completion - | Work

InCharge - |Date&Time “ | Date&Time Time

- | InitiateLoanRequest

1001 |1 B.J. Smith * { Sept-13-1995 10:05 AM | Sept-13-1995 10:50 AM [0:45 -
1001 {2 CheckClientRating * |P. Nutts | Sept-14-1995 9:05 AM Sept-18-1995 10:30 AM | 1:30 :
0L |3 [AssessRisk RiskMgtSys | Sept-13-199511:22 AM | Sepi-13-1995 11:24 AM_|0:02

1001 |4 MakeDecision T.W.Miller |Sept-20-1995 1:50PM - | Sept-20-19952:20PM | 0:30

1002 |1

EnterlnvestorData [AB.Jones |Sept-15-1995 11:30 AM Sept-15-1995 12:25 PM [0:55

 Figure 1: Oversimplified illustration of a workflow monitoring database

2 The Audit Trail Approach

A wOrkﬂow audit trail is basically an append-only list of applica'tio:n¥p:bvidéd log entries. In
addition, however, it has to satisfy some challenging requirements that go way beyond the ca-
pabilities of a conventional log file:

* Logentries (i.e., workflow events) must be retrievable via declarative queries. Example
queries could be: - - . B o _
* Which steps of Which loan réques_t_workﬂbws took place duririg the week from Sep-
- tember 18 through September 247 .. . - :
e Is a particular workflow still on track and likely to meet a specified deadline?
* Queries against a workflow audit trail may involve complex temporal aggregations. Ex-
~amples couldbe: . . T
* Which step type has the longest av‘eragé'duratidn in all completed loan request work-
- flows that had an overall turn-around time of 2 weeks or longer?
e What was the highest number of steps that B.J. Smith was involved in within three
- adjacent work-days? (This involves aggregation over a moving time window.)

¢ Queries must be supported concurrently to the appending of new log entries.

* Logentries may have to be kept for years. Thus, the standard techniques for compacting
and reusing log disk space are not applicable. Rather log entries have to be spooled onto
tertiary storage and possibly translated into a different format and storage organization.

3 The Temporal Database Approach

An alternative to the audit trail approach is to view the workflow history as a special kind of
temporal database. Thus, significant leverage could be expected from the advances in tempo-
ral database systerns [Ta93, Sn94], most notably, from the functionality provided by temporal
query languages such as TSQL and the efficiency of temporal access structures such as the
TSB-tree [ST94). However, substantial extensions to the state of the art are necessary in this
case as well:

* Thetemporal database that would hold the workflow history is inherently distributed. The
data about workflow events arises at different sites where workflow steps are executed.
Enterprise-wide workflow management (e.g., in a bank) encompasses in the order of ten
thousand computers. Thus, it is important to partition the workflow history and manage it
as a distributed database. This is particularly difficult as workflows themselves migrate

-between sites.

* The workflow history must be highly available. This may require sophisticated forms of
replication or other techniques for masking failures and unavailability of sites. Again, this

is particularly challenging because of the high dynamics and migratory nature of work-
flows.

230

* Itmay be practically infeasible to keep the entirety of workflow history data in an enter-
prise~wide homogeneous repository system. The reason lies in the autonomy of different
branches and departments within large enterprises. Thus, different partitions of the work-
flow history may be based on different types of databases or other archival systems.

4 Conclusions

I believe that resolving the open questions discussed above poses exciting challenges to re-
searchers and system engineers, regardless of which of the two approaches is pursued. I advo-
cate the direction of building a distributed and highty évé.i.‘t_able fé_mporal database. It seems to
me that the envisioned advanced workflow monitorin g facilities can be adequately supported
only by a full-fledged database system with support for temporal data; in other words: au g-
menting a workflow audit trail by an appropriate query engine would eventually lead to some
kind of temporal database system anyway. I would expect, however, that architects of com-
mercial systems may heavily disagree with this statement, especially given the fact that the im-
plementation side of temporal database systems is developed rather poorly. On the other hand,
an important application class like workflow monitoring may give a push to the currently un-
dercovered research on efficient implementation of temporal da_tabaée_ systems, As for the
additional requirements of distributed queries and high availability, there should be significant
leverage from the experience on distributed data management in general.

In any case, such advanced workflow monitoring facilities are completely lacking in the cur-
rent generation of commercial workflow management systems, and are, perhaps, not yet the
most crucial feature of the next-generation systems. In the long term, however, workflow
management can realize its full potential and meet the high expectations only if enterprise-
wide distributed workflows can be effectively monitored and workflow history data can be
evaluated to provide the necessary feedback for the re-engineering of business processes.

231

References

[Be93] P.A. Bemnstein, Middleware: An Architecture for Distributed System Services, Tech-
nical Report, Digital Corporation, Cambridge Research Laboratory, 1993

[Da%3]U. Dayal, H. Garcia-Molina, M. Hsu, B.X20, M.-C. Shan, Third Generation TP Mon-
itors: A Database Challenge, ACM SIGMOD Conference, 1993

[De94] PI. Denning, The Fifteenth Level, Keynote Address, ACM SIGMETRICS Confer-
ence, 1994

[GHS95] D. Georgakopoulos, M. Hornick, A. Sheth, An Overview of Workflow Manage-

ment: From Process Modeling to Workflow Automation Infrastructure, Distributed and Paral-
lel Databases Vol.3 No.2, pp. 119-153, 1995

[HC93] M. Hammer, J. Champy, Reengineering the Corporation, New York, 1993

[(Hsu93] M. Hsu (Editor), IEEE Data Engineering Bulletin Vol.16 N 0.2, June 1993, Special
Issue on Workflow and Extended Transaction Systems

[LAS4] F. Leymann, W, Altenhuber, Managing Business Processes as an Information Re-
source, IBM Systems Journal Vol.33 No.2, 1994

[(Ma93] T'W. Malone, K. Crowston, J. Lee, B. Pentland, Tools for Inventing Organizations:
Toward a Handbook of Organizational Processes, Technical Report, MIT Center for Coor-
dination Science, 1993

[Me94] W.P. Melling, Enterprise Information Architectures — They’re Finally Changing, In-
vited Industrial Plenary Talk, ACM SIGMOD Conference, 1994

[Mo95] C. Mohan, G. Alonso, R. Giinthér, M. Kamath, Exotica: A Research Perspective on
Workflow Management Systems, 1995

[RS94] M. Rusinkiewicz, A. Sheth, Specification and Execution of Transactional Workflows,
in: W. Kim (Editor), Modern Database Systems: The Object Model, Interoperability, and Be-
yond, ACM Press, 1994

[ST94] B. Salzberg, V.J. Tsotras, A Comparison of Access Methods for Time Evoiving Data,
Technical Report NU-CCS-94-21, Northeastern University, Boston, 1994

[Sch94] A.-W. Scheer, ARIS Toolset: a Software Product is Born, Information Systems
Vol.19 No.8, 1994

[Sn94] R. Snodgrass, Temporal Object-oriented Databases: A Critical Comparison, in; W,
Kim (Editor), Modern Database Systems: The Object Model, Interoperability, and Beyond,
ACM Press, 1994 '

[Ta93] A.U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A, Segev, R. Snodgrass (Editors), Tempo-
ral Databases, Benjamin/Cummings, 1993

[WR92] H. Wichter, A. Reuter, The ConTract Model, in: A K. Elmagarmid (Editor), Data-
base and Transaction Models for Advanced Applications, Morgan Kaufmann, 1992

232

6th High Performance Transaction Processing Workshop

17-20 September 1995
Asilomar, CA.
———SUNDAY (Sept. 17, 1995)
1:00- 5:00PM Registration
6:00 PM Dinner
7:00-10:00PM Reception

———MONDAY (Sept. 18,1995)

8:30 AM
8:45

9:45
10:15-NOON
12:00
1:30-3:00PM

Introductions: Don Haderle

Peter Weinberger. - AT&T challenges in growth.
Break
(Andreas Reuter, session ch_a'ir) _

Frank Leymann (IBM):
FlowMark technology: Current state and future trends

Jack Bissell (ATT/GIS):
Electronic Commerce at Walmart

LUNCH
(Dieter Gawlick, session chair)

Helmut Waechter (SAP):

" Flexible Business Processing with SAP Business Workflow 3.0

Paul Oeuvray (Prologic):
Temporal Data Manager

Friedemann Schwenkreis (University of Stuttgart):
APRICOTS - A Workflow Programming Environment

233

———MONDAY (Sept. 18,1995) Continued:

3:00
3:30-

5:00

5:30
6:00

7:00

Break R
Internet (Susan Malaika, session chair)

Michael Higgins (Netscape)
Netscape Secure Courier

Hamilton, Brown, Malaika
Discussion

Mark Carges

Next Event for Client/Server
<end of day> o
Dinner

Night Session (D.Vaskevitch, session chair)
David to explain our participatory preparation earlier in the day

——TUESDAY (Sept. 19, 1995)

8:30 AM

10:00

Messaging and Queuing (S. M_alaika; séSs_ion chair)

Jim Gray
Queues are DataBases

Jeff Eppinger
title missing

Roger Bamford

Oracle in Motion - support for 'asyn'ch/d_i sconnected transactions

Break

234

~———TUESDAY (Sept. 19, 1995) Continued:

10:30

12:00

1:30

3:00

3:30

5:30
6:00
7:00

PM

Object Transaction Services (G. Copeland, session chair)
George Copeland

Introduction: Thesis is objects improve application productivity
and cost. Large scale savings is possible through binary reuse.

Each of the following will describe their approach to how binary
components can be used in transactions.

Jim Lyons - Tandem

Geoff Hambrick - IBM

Bob Atkinson - Microsoft
Mohsen Al-Ghosein - Microsoft
Charly Kleissner - Next . ..
Lunch

Object Transaction Services, continued (G.Copeland, session chair)
Panel debate on alternative approaches with folk from previous session.

Break
Interesting Stuff (H.Garcia-Molina, session chair)

C. Mohan
Workflow Management, A Research Perspective

Jim Johnson
Charting the Seas of Information Technology

Wayne Duquaine
Notes on Third Generation Data Access

Gary Kelley

Informix TPCD performance (at MCI)

Break

Dinner

Evening Services - Poster Boards (P. Helland leads the parade)
Pat will explain this ritual to us during the day.

235

———WEDNESDAY (Sept. 20, 1995)

8:30 TBD (Andreas Reuter to supply)
A Perspective on C/S Transactions from SAP
9:30 High Performance (S. DeFazio, session chair) -
Pat O'Neill .

DSS Performance is Now more significant than OLTP performance
10:00 Break

10:15 High Performance, continued (S DeFazro, session chair)
Ranga Rengarajan
Subject is transaction performance (blg tpc numbers)
Bill Baker il
Subject is performance in multidimensional (IRI) -

11:15 The Market Perspective (D Haderle chalr)
Alfred Spector
Challenges from the Market

11:45 End (D. Haderle) -

