Fo) Fkelskel

Seventh International
Workshop on
High Performance
Transaction Systems (HPTS)

Asilomar, California
14-17 September 1997

General Chair: David Vaskevitch
Program Chair: Bruce Lindsay
Program Committee:
Sam DeFazio Jim Johnson
Jeff Eppinger Gary Kelly
Michael Franklin Ed Lassettre
Dieter Gawlick Barbara Liskov
Peter Gassner Susan Malaika
Jim Gray Friedemann Schwenkreis
Pat Helland Randy Smerik

Joe Hellerstein

Organization: Nancy Chapman
Diana Miller

Seventh International Workshop on
High Performance Transaction Systems (HPTS)

Asilomar, California
14-17 September 1997

Contents

20 T v+« O D vii
Seventh International HPTS Workshop Participantso iiii.t. xi
Processes + Transactions = Distributed Applications

Gustavo Alonso, Institute of Information Systems,

Swiss Federal Institute of Technology ool i i i s 1
High Performance and Scalability Through Associative Client-Side Caching

Julie Basu, Stanford University; Meikel Poss, Technical University of Berlin;

Arthur M. Keller, Stanford Universityo i e 7
Design Transactions and Serializability

Philip A. Bernstein, Microsoft i 13
Databases for Next Generation Telecommunications

Mumir Cochinwala, K. C. Lee, Bell Communications Research_.... 17
Issues to Argue About

George Copeland, IBM e e 21
The Coyote approach for Network Centric Service Applications: Conversational Service
Transactions, a Monitor and an Application Style

Asit Dan, Francis Parr, IBM i e i e e 23
Performance Archive Database (PAD) -~ Data Mining Towards Self-Tuning Servers

Pranta Das, Girish Vaitheeswaran, T. K. Rengarajan, Sybase 49
Workload Management in Large Transaction Processing Systems

T T R Dunm, IBM e 65
Why PC Servers Won’t Overtake Mainframe Servers Anytime Soon

Wayne Duquaine, Independent Consultant, Client/Server Interoperability i
TIP: Gateway to Heterogenous Internet Transactions

Keith Evans, Johannes Klein, Tandem; Jim Lyon, Microsoft;

Francis Upton, Forte e 81
Synergy Between Public Key Technology and TP Systems

Edward Felt, BEA Systems, Inc e 87
Storage Metrics

Jim Gray, Goetz Graefe, Microsoft i 9]
Position

Don Haderle, IBM .. oo i i i e e e 93
QOperational Data Stores Must Unite

James R. Hamilton, Microsoft; Patricia G. Selinger, IBM 95

iil

Contents

CONTROL: Providing Impossibly Good Performance for Data-Intensive Applications
Joe Hellerstein, UC Berkeleyo i e et a s 109

The Shock Of IRAM: Will Information Systems Be Ready for the Next Chip Technology?
Joe Hellerstein, UC Berkeleyo e i e 113

Will non-determinism be a gating factor in Web transactions?
Tony Hey, University of Southampton; Charles Brett, C3B Consulting Ltd.. 115

TPMoniters - gone, but not forgotten?
Pete Homan, Mark Carges, BEA Systems, Inc.ooi oo 117

WorldFlow: A System for building Global Transactional Workflows
Mohan Kamath, Krithi Ramamritham, University of Massachusetts;
Narain Gehani, Daniel Liewen, Lucent Technologies/Bell Labs 119

Benchmarking ratabase Application Systems
Alfons Kemper, Donald Kossmann, Universitit Passau 125

Caprera: An Activity Framework for Transaction Processing on Wide-Area Networks
Suresh Kumar, Eng-Kee Kwang, Tactica Corporation;

Divyakant Agrawal, UC SantaBarbaraooviiiiii i 131
Shirt Pocket Transactions

TobinLehman, IBM e e e 141
Distributed Workload Balancing Deserves More Attention!

Benoit J Lhereux, NCR COrporationc.uuuueenniununnanennnaaaenaiaaans 147
Distributed Transactions in Java

M.C. Little, S. K. Shrivastava, University of Newcastle 151
Application Recovery: Closing in on an Elusive Goal

David Lomet, MIcrosofl oot e 157
Embedded HTTP

Susan Malaika, IBM e e 161
Enterprise JavaBeans: Extending the JavaBeans component model to scalable three-tier
applications

Vlada Matena, Mark Hapner, Rick Cattel, Shel Finkelstein,

Grabam Hamilton, Sun MiCrOSYSIEINSo niiee it i ia i inaeaenanns 167

Database Systems as a Reflection of the Changing Nature of High Performance Transaction

Processing Systems
John McPherson, IBMttt it i it e 173

Data Management Issues in Biotechnology]
Michael A. Olson, Molecular Applications Group coi vt in i iininnnrinraes 175

v

Contents

Isolation Level Testing
Pat O Neil, UIasS . . oot to ettt it e e ta i aea e st i a e nae e 179

Pipeline Server: A New Architecture for Server Performance on Modern Microprocessors
Michael Parkes, Rick Vicik, Charles Levine, Microsoft 183

Implementing Extended Transaction Models
Calton Pu, Roger Barga, Tong Zhou, Oregon Graduate Institute;
Shu-Wie Chen, Columbia Universityttt iiiainnrarnaaanaens 185

Building the Global Payments System for the Next Millenium
Bill Reid, VISA Internationalt i 191

Relational Data Access on the Web: The Argument for a Dataless Database
Eugene Shekita, Dan Ford, IBM e 195

Self-Tuning Scalable Servers
Peter Spiro, David Campbell, Microsoftl 199

Industry Standard Benchmarks, What’s Real and What’s Smoke and Mirrors
H. Reza Taheri, Hewlett Packard e 203

A Framework for Configurable Distributed Transactions
S. M. Wheater, S. K. Shrivastava, University of Newcastle 205

High Volume Transaction Processing Without Concurrency Control, Two Phase Commit,
SQL or C++
Arthur Whitney, KX Systems; Dennis Shasha, Corant Institute, NYU;
Stevan Apter, Union Bank of Switzerland il 211

Contents

vi

HPTS ‘97 Program

Sunday: 1:00-5:00
Registration

Sunday: 6:00
Dinner

Sunday: 7:00 - 10:00
Reception

Monday: 8:30
Kickoff / Keynotes (Bruce Lindsay)
David Vaskevitch - Microsoft
"Where You Want To Be"
Don Haderle - IBM
"Object Relational and Data Integration”

Monday: 10:00
Break

Monday: 10:30
Technology Futures (Jim Gray)

Dennis Roberson - NCR
"Smart Cards and how they will revolutionize transaction processing"
Ed Lassettre - IBM
"Great software needs greater hardware -- design for the future and
plan to trade hardware for functionality and usability"
Justin Rattner - Intel
"Greater hardware -- the revolutions in communication, in computer
architecture, and in computer economics"

Monday: 12:00
Lunch

vii

HPTS ‘97 Program

Monday: 13:30
The Impact of Business Issues on Application Programming Models (Don
Haderle)

Par Helland - Microsoft

Mark Carges - BEA

Ed Lassettre - IBM

Randy Smerik - Top End

Monday: 15:15
Break

Monday: 15:45
Network (Randy Smerik)
Viada Matena - SUN
"Java Beans"
Santosh Shrivastava - Newcastle
"Java Transactions"
C. Moharn - IBM
"DB2/MQ integration”

Monday: 17:30
Break

Monday: 18:00
Dinner

Monday: 19:00
Evening I (Susan Malaika)
TPmonitor updates & Work-in-progress mini-talks

Tuesday: 8:30
Applications (Jim Johnson)

James Chong - Charles Schwab
Munir Cochinwala - Bell Research
Pete Heisinger - VISA

viil

HPTS 97 Program

Tuesday: 10:15

Break

Tuesday: 10:45

Self Tuning (Friedemann Schwenkreis)
Pranta Das - Sybase
"Performance Archive Database: PAD"
Peter Spiro - Microsoft
"Self Tuning Scalable Servers"
Tim Dunn - IBM
"Workload Management in Large Transaction Processing Systems"

Tuesday: 12:00
Lunch

Tuesday: 13:30
Panel: Do Industry Standard Benchmarks have Value to the

Buyer of Transaction Processing Systems? (C.Brett)
Reza Taheri - Hewlett Packard
Jim Johnson - Standish Group
Bruce Lindsay - IBM
Randy Smerik - Top End

Tuesday: 14:45

Break

Tuesday: 15:15

Is the Web Server a TPmonitor? (Bruce Lindsay)
Pat Helland - Microsoft Viper Xaction Server
Jeff Eppinger - TransArc Encina
Pete Homan - BEA Tuxedo
Susan Malaika - CICS
Randy Smerik - NCR - Top End

Tuesday: 17:00
Break

Tuesday: 18:00
Dinner

ix

HPTS ‘97 Program

Tuesday: 19:00
Evening II
Consultants Couch (Brett & Johnson & Boucher)

s et oot

Wednesday: 8:30
Workload balancing and scaling (Peter Gassner)
Benoit Lheureux - NCR
"Distributed Workload Balancing Deserves More Attention:
Rick Vicik - Microsoft
"Pipeline Server: A New Architecture ..."
Eric Brewer - Inktome
"Scalable Web Crawler & Indexer"

Wednesday: 10:00
Break

Wednesday: 10:30
Selected Technologies and Expected Implications (Sam deFazio)

Joe Hellerstein - Berkeley
"The Shock of IRAM"
Wayne Duquaine - Consultant
"PC Servers Won't Overtake Mainframe Servers Anytime Soon"
Mike Caruso - Insyte
"Analytic Objects”
Toby Lehman - IBM
"Shirt Pocket Transactions"

Wednesday: 12:00
End - Lunch

Processes + Transactions = Distributed Applications
Position Paper, HPTS’97

Gustavo Alonso
Institute of Information Systems, Swiss Federal Institute of Technology {ETH)
ETH Zentrum, Ziirich CH-8092, Switzerland

E-mail: alonso@inf.ethz.ch

March 10, 1997

1 Introduction

In addition to the conventional operating system interpretation, the concept of process is starting
to be used to refer to complex sequences of computer programs and data exchanges controlled by a
meta-program. Thus, today one finds notions such as process centered software engineering, business
processes, or process based parallelism. In fact, the idea seems to have widespread acceptance in
many areas, in particular in those where computation is based on cluster of PC’s and workstations
or on environments involving heterogeneous platforms and applications. A careful analysis of areas
such as business environments [Fry94], software engineering [BK94] or scientific data management
[ILGP96, BSR96] reveals a surprising number of problems that are both pervasive and common
to all of them. Such pervasiveness may explain the attention being devoted to workflow products,
which are the current process support systems. It may also explain why some researchers consider
workfiow management to be just a reincarnation of job control languages.

Today’s computing environments, however, have changed significantly since the conception of
Job control languages. In practice, the most widely available platforms for corporate computing are
based on multiple stand alone computers linked by a network. Such clusters offer the possibility
of implementing truly distributed systems, which can be done in two ways: fop-doun, the entire
system is designed from the beginning as a distributed system, and bottom-up, where already
existing applications are used as building blocks. The former approach offers many interesting
research opportunities and considerable attention has been devoted to it. The latter approach is,
above all, practical since in most cases both the hardware and software infrastructures are already
in place and cannot be discarded. The notion of process described above, derived mainly from
workflow management, targets precisely distributed systems built following a bottom-up strategy,
which is likely to be the approach of choice for future distributed systems.

In this short paper, it is argued that the notion of process, augmented with transactional
properties, can be a very powerful tool for designing and developing distributed applications over
clusters of PCs and workstations. This is done by first defining the type of distributed applications
being targeted (Section 2), showing how the notion of process supports such applications (Section
3), and finally pointing out the role transaction must play to complement the notion of process
(Section 4). The paper concludes with an overview of how these systems may evolve (Section 5).

1 1

2 Distributed Applications

The distributed application addressed in this paper are those based on already existing, stand-alone
tools located on clusters of PCs and workstations linked by a network. The idea is to provide a
way to use these existing tools as building blocks of a higher level system in which the process
acts as the blueprint for control and data flow. Typical examples are business processes in which
several office tools such as spread-sheets, text editors, databases, and human decisions are combined
into a higher level entity by encoding the business logic within the fiow of control and data of the
process. Among existing products, the ones most closely related to the notion of process used in
this paper are workflow management systems. Existing workflow tools, however, target almost
exclusively either business processes or imaging systems, suffer from severe limitations related to
performance and functionality [AAEMO7], and are not easy to apply in other areas [MVWQ6,
BSR96]. Workfiow management, however, is a first step towards supporting the development of
complex applications over distributed systems using already existing tools. Its concepts can be
generalized by extending the notion of process to any arbitrary sequence of tool invocations (a
script or pipelined UNIX commands, for instance, are simple forms of processes). In this way,
future workflow systems could act as a high level programming tools linking heterogeneous, stand-
alone applications. Integrated with additional technology such as CORBA, queuing systems or
‘T'P-monitors, workflow management could also very well play the role of distributed operating
systems in which to exploit the coarse parallelism and distributed characteristics of distributed

processes.

3 Processes

A process can be seen as a description of an arbitrary sequence of application invocations along
with the data flow between these applications. As such, the process acts as a the meta-program
governing the interactions among existing applications. Each step within a process is an activity,
which represents invocations of external applications. The flow of control within a process — what
to execute next — is determined by control connectors labelled with transition conditions, usually
boolean expressions based on data produced by the activities. Processes also include programming
constructs that allow modular design and nesting, as well as the invocation of other processes.

During execution, the process engine navigates the description of the process determining which
activities are to be invoked next. The procedure is very similar to that of executing any other
program (more like an interpreted program than a compiled one}. The description of the process
is usually stored persistently in a database and the engine consults the database continuously to
find out what is to be done next. Any changes to the process are also stored persistently (the
status of executed activities, returned values, etc.), which opens up interesting possibilities in
terms of recovery and overall reliability [KAGM96]. When an application is to be invoked, the
workflow engine notifies an application-agent located at the same node where the program resides.
The application agent then executes the program and returns the results of the program to the
workflow engine.

These ideas hint at the possibility of considering the workflow engine as a distributed operating
system executing programs that have been constructed using existing applications as programming

2

primitives. In practice, workflow engines do act as schedulers and resource allocators in distributed
environments. But, unlike in the case of centralized operating systems, workflow engines have to
contend with the network, which immediately brings up issues such as atomicity of invocations,
interferences between concurrently executed processes, performance, and overall consistency. Here
is where transactional notions should play an important part.

4 Transactions

Transactions are the conventional form of encapsulating database operations so as to provide Atom-
icity, Consistency, Isolation, and Durability [GR93]. They provide not only clean semantics to the
interactions between concurrent executions but also a powerful abstraction in which to base opti-
mizations to the architecture of a database system. This same ideas can be applied to processes so
as to provide useful abstractions to reason about the correctness of the system, to express properties
of the execution of processes, and to tune the overall architecture of process support systems. It
is likely that transactional ideas applied to process support systems will be as successful as when
applied to databases (which, to certain extent, has always been the goal of many advanced trans-
action models [Elm92]). However, in the case of processes, database-like transactions are too rigid.
Some form of light-weight transactions should be used [BRS96]. Thus, within a process, instead
of using a unique construct encompassing all transactional properties, e.g., BOT/EOT, several
separate constructs should be used to group activities according to the desired semantics. Thus, -
one could consider spheres of atomicity (atomic units with the standard all or nothing semantics),
spheres of isolation (isolation units, much like critical sections in traditional operating systems),
and spheres of persistence (determining whether the activitys in the sphere are to be made per-
sistent or not). Spheres can be naturally combined with the nested structures provided in most
process specification languages. Such constructs could have the following semantics:

Spheres of Atomicity. Atomicity is the “most popular” property from transactions in that it
addresses a common coordination problem. There have already been many suggestions regarding
how to use atomicity in advanced transaction models [Elm92] and it has also been suggested as a
basic mechanism for process navigation [Ley95]. In fact, process support systems may offer the only
realistic scenario in which to use the many ideas related to compensation. For instance, activities
could be declared to be Basic (non-atomic), Semi-atomic, Atomic, Restartable, or Compensatable.
Basic activities are the default and correspond to non-atomic applications, i.e., those for which the
system cannot guarantee atomicity. Semi-atomic activities are those providing enough information
to implement a rollback method to be executed if the activity fails before completing its execution.
Atomic activities are those that preserve atomicity by themselves, for instance, a transaction exe-
cuted over an X/Open XA interface. Restartable activities [ELLRY0] are those that can be invoked
repeatedly until they eventually succeed. Compensatable activities are those that can be undone
after they have finished using an user provided method attached to the activity interface[ELLRS0].
Note that these categories can be applied at different levels, thereby allowing to group a set of
activities into a semi-atomic block, for instance, or provide high level compensation for an en-
tire sub-process by declaring it to be compensatable. The same navigation mechanisms used for
processes could be used to drive operations related to atomicity properties.

Spheres of Isolation. The semantics behind the notion of spheres of isolation follow the ideas
suggested in {[AAE96], which point out that processes may require more a notion of synchronization
in the traditional operating systems sense than the traditional database concept of serializability.
For applications that demand a database like approach both spheres of isolation and spheres of
atomicity could be used in a manner similar to that of nested or multilevel transactions [Wei91,
Mos81], which provide a powerful mechanism to reason about recovery in applications with a
complex structure [GR93].

Spheres of Persistence. Spheres of persistence could be used to avoid the overhead incurred
by storing all process information in a database. Using databases for storage provides significant
advantages in terms of reliability, monitoring and audit control [AAEMY7, KAGM96]. but intro-
duces a considerable overhead. Within a process, a programmer could specify whether a set of
activities is to be executed persistently or not. If an activity or a group of activities are embedded
within a sphere of persistence, every step of the execution is recorded in the underlying database.
This guarantees forward recoverability in the event of failures. The information related to activities
not included in a sphere of persistence about the execution is maintained only in main memory.
Upon completion or after pre-determined time intervals, this information could be checkpointed to
the database in an off-line fashion, thereby avoiding the I/0 overhead.

5 Processes + Transactions = Distributed Applications

In practice, the equation that serves as the title for this position paper should include Standarization
on its left side. The amount of efforts being devoted to CORBA, OLE, SOM, DSOM, and ODBC, to
mention a few, show the growing interest in being able to link together stand alone tools. In terms
of products, the same goal can be ascribed to TP-monitors, persistent queuing systems, CORBA
implementations, and workflow management systems. These products are slowly converging to-
wards a common point, as proven by the many ongoing attempts at combining their functionality.
For instance, TP-monitors implementing the execution guarantees in CORBA, CORBA extensions
to TP-Monitors, efforts to combine workflow standards and CORBA under the notion of business
objects, or queuing systems being added to workflow management systems. Once applications fol-
low a given standard interface and these interfaces have been widely accepted, the task of linking
together stand alone systems will be greatly simplified. But in addition to the standards there
must a way to express interactions between stand alone applications. A very powerful paradigm
for this purpose is processes, with the added advantage that the technology for process support
is almost already in place. Certainly it will not be in the form of current workflow management
systems, but it is likely that it will be in the form of a combination of mainly TP-monitors (for
transactional guarantees), queuing systems (to allow asynchronous interactions), CORBA {and/or
any other standard providing a common way to interact with applications), and workflow manage-
ment (for process support}. In a way, this is not very different from early transactional operating
systems [GR93], but it is an idea that offers very interesting research and commercial opportunities

and may give transactional concepts a significant relevance in future information systems.

References

[AAE96]

[AAEM97]

[BK94)

[BRS96]

[BSR96]

[ELLR90]

[Elmo2]

[Fry94]

[GRe3]
[ILGP%6)

[KAGMO96]

[Ley93]

[Mos81]}

MVW96]

[Weio1]

G. Alonso, . Agrawal, and A. El Abbadi. Process Synchronization in Workflow Management Systems.
In 8th IEEE Symposium on Porallel and Distributed Processing (SPDS’'97). New Orleans, Louisiana -
October 23-26, 1996., October 1996.

G. Alonso, D, Agrawal, A. El Abbadi, and C. Mohan. Functicnality and Limitaticns of Current Workflow
Management Systems. JEEE Ezpert {to appear), 1997.

L.Z. Ben-Shaul and G.E. Kaiser. A paradigm for decentralized process modeling and its realization in the
oz environment. In Proceedings of the 16th International Conference on Software Engineering, Sorrento.
Italy, 1994.

Stephen Blott, Lukas Relly, and Hans-J6rg Schek. An open abstract-object storage svstem. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, Montreal, Canada, June 19986.

A. Bonner, A. Shrufi, and 3. Rozen. LabFlow-1: A Database Benchmark for High Throughput Workflow
Management. In Proceedings of the Fifth International Conference on Extending Database Technology
(EDBTY6}, Avignon, France, March 1996.

A.K. Elmagarmid, Y. Leu, W. Litwin, and M.E. Rusinkiewicz. A Multidatabase Transaction Model for
Interbase. In Proc. of the 16th VLDB Conference, August 1990.

AK. Elmagarmid, editor. Transaction Models for Advanced Database Applications. Morgan-Kaufmann.
1992,
C. Frye. Move to Workflow Provokes Business Process Scrutiny. Software Magazine, pages 77-89, April
1994.

J. Gray and A. Reuter. Transection Processing: Concepts and Technigues. Morgan Kaufman, 1993

Y.E. loanmidis, M. Livny, 5. Gupta, and N. Ponnekanti. ZOO: A desktop Experiment Management
Environment. In Proceedings of the 22nd VLDB Conference, Mumbai {Bombay), India, September 1996.

M. Kamath, G. Alonso, R. Giinthér, and C. Mohan. Providing High Availability in Very Large Workflow
Management Systems. In In Proceedings of the Fifth International Conference on Ertending Database
Technology {EDBT96) , Avignon, France, March 1996. Also available as IBM Research Report RJS967 ,
IBM Almaden Research Center, July 1995,

Frank Leymann. Supporting business transactions via partial backward recovery in workflow manage-
ment systems. In GI-Fachtagung Datenbanken in Biiro Technik und Wissenschaft - BTW95, Dresder,
Germany, March 1995. Springer Verlag.

I. Eliot B. Moss. Nested transactions: An approach to reliable computing. M.i.t. report mit-les-tr-260.
M.LT., Laboratory of Computer Science, April 1981.

1. Meidanis, G. Vossen, and M. Weske. Using Workflow Management in DNA Sequencing. In Proceedin s
of the st International Conference on Cooperative Information Systems {Coopl596), Brussles, Belgium,
June 1996,

G. Weikum. Principles and realization strategies of multilevel transaction management. ACM Transace
tions on Datebase Systems, 16(1}, March 1991.

High Performance and Scalability
Through Associative Client-Side Caching

Julie Basu Meikel Poss Arthur M. Keller

julie@cs. stanford.edu s.poess@ira uka.de arkQ@cs.stanford.edu

 Stanford University Technical University of Berlin Stanford University
Computer Science Department Computer Science Department Computer Science Department
and Oracle Corporation D-10587 Berlin, Germany Stanford, CA 94305-0020, USA

March 24, 1997

Abstract

A*Cache is an associative client-side caching scheme proposed in [6]. The cache at a client
site dynamically loads query results and uses predicates based on the gueries to describe its
current contents. These predicate descriptions are used to determine query containment for local
query evaluaiion ai the client and also for cache mainienance. In this paper, we demonsirate
via a stmulation study thet the A*Cache system provides high performance and scalability with
respect to different workloads and large number of clients.

1 Introduction

Client-server configuration is a popular architecture for modern databases. This setup involves one
Or Imore server processes that manage a repository of persistent data and handle requests for data
retrieval and update from multiple client processes. Clients are autonomous entities that may be
located on the same machine as the database server or on different machines. With the current
prevalence of distributed computing, the latter scenario is most common, where client transactions
are initiated from desktop workstations and communicate with the server through explicit messages
across a local-area or a wide-area network.

The server response is a critical factor in the performance of a client-server database. Resources
of the server are shared among all clients, and can become the bottlenecks in scaling the system to
large database sizes and many clients. Optimizing the performance of the server has thus been a
major focus of commercial systems. However, the revolution in computer hardware technology has
made client resources relatively cheap and plentiful. Today’s smart clients can perform intensive
computations locally, using the database as a remote resource that is accessed only when necessary.
Therefore, the system design must now take into consideration client memory and CPU for data
caching and query evaluation purposes. Despite the pffotential cost of maintaining data cached at
client sites, a number of recent studies for object-oriented databases [3, 4, 11] have demonstrated
that increased client-side functionality generally imnproves the system performance.

A new client-side caching scheme for client-server databases was proposed in {6]. The client
cache, henceforth called the A *Cache, dynamically loads query results during transaction execution,

and uses query predicates to formulate predicate descriptions of the cache contents. A*Cache
supports assoctative data reuse across transactions — new queries are compared against the cache
description usingff predicate-based reasoning [7, 8] to determine if the query can be evaluated locally.
Predicate descriptions of client caches are also registered at the server, and are used to generate
update notifications for cache maintenance. The clients the notifications to maintain the validity
of their cache descriptions and data. :

The A*Caffche scheme provides a number of benefits over ID-based caching for navigational
purposes, as in [3]. A primary advanantage is that it supports the processing of associative queries
locally at client sites, thus improving data reuse. Server indexes are not required for query execution
at client sitesff — the clients may construct local indexes to faciliate query evaluation. The cache
maintenance method is completely flexible, e.g., automatic refresh or invalidation upon update, and
can vary by client and even by individual queries. Several new optimization and approximation
techniques can be designed in this context; a detailed discussion of the design choices appears in
[6].

Operating the A*Cache requires reasoning with predicates in a dynamic environment, naturally
raising questions about its performance and scalability. Earlier papers have demonstrated the
effectiveness of A*Cache in the presence of moderate-to-high update loads [1]. More results on
the performance of the A*Cache scheme for different workload types will be presented in the full
version of this paper. We present below a brief summary of our scaiabﬂlty results for the A*Cache
scheme.

2 Overview of A¥Cache Architecture

The persistent data store is resident at the server and transactionffs are initiated from client sites,
with the server providing transactional facilities for shared data access and recovery. The configu-
ration is non-shared memory, so that the address space of each client process is disjoint from that
of the server and of other clients. Separate subsystems exist at each client site and at the central
server for cache management. In this paper, we assume that a client runs a single transaction at any
given time. Thus, local concurrency control and lock management issues are not considered at the
client. Figure 1 shows an client-server A*Cache system with one client. Due to space constraints,
we omit detailed description of the various components here; details of the system opera.tlon can
be found in [1, 6].

3 Related Work

A couple of recent studies [2, 10] have examined associative access to a client cache. Both of these
studies are related to the associative caching model presented in [6] flbut are limited to read-only
scenarios. The semantic caching study in [2} investigates cache replacement policies for no-update
workloads. A cache manager called WATCHMAN for read-only caching of query results in data
warehousing environments is presented in [10]. Neither of these two studies consider the important
issue of cache maintenance when there are database updates, and the performance and scalability
of the system under update loads.

