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1 Introduction

In addition to the conventional operating system interpretation, the concept of process is starting
to be used to refer to complex sequences of computer programs and data exchanges controlled by a
meta-program. Thus, today one finds notions such as process centered software engineering, business
processes, or process based parallelism. In fact, the idea seems to have widespread acceptance in
many areas, in particular in those where computation is based on cluster of PC’s and workstations
or on environments involving heterogeneous platforms and applications. A careful analysis of areas
such as business environments [Fry94], software engineering [BK94] or scientific data management
[ILGP96, BSR96] reveals a surprising number of problems that are both pervasive and common
to all of them. Such pervasiveness may explain the attention being devoted to workflow products,
which are the current process support systems. It may also explain why some researchers consider
workfiow management to be just a reincarnation of job control languages.

Today’s computing environments, however, have changed significantly since the conception of
Job control languages. In practice, the most widely available platforms for corporate computing are
based on multiple stand alone computers linked by a network. Such clusters offer the possibility
of implementing truly distributed systems, which can be done in two ways: fop-doun, the entire
system is designed from the beginning as a distributed system, and bottom-up, where already
existing applications are used as building blocks. The former approach offers many interesting
research opportunities and considerable attention has been devoted to it. The latter approach is,
above all, practical since in most cases both the hardware and software infrastructures are already
in place and cannot be discarded. The notion of process described above, derived mainly from
workflow management, targets precisely distributed systems built following a bottom-up strategy,
which is likely to be the approach of choice for future distributed systems.

In this short paper, it is argued that the notion of process, augmented with transactional
properties, can be a very powerful tool for designing and developing distributed applications over
clusters of PCs and workstations. This is done by first defining the type of distributed applications
being targeted (Section 2), showing how the notion of process supports such applications (Section
3), and finally pointing out the role transaction must play to complement the notion of process
(Section 4). The paper concludes with an overview of how these systems may evolve (Section 5).
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2 Distributed Applications

The distributed application addressed in this paper are those based on already existing, stand-alone
tools located on clusters of PCs and workstations linked by a network. The idea is to provide a
way to use these existing tools as building blocks of a higher level system in which the process
acts as the blueprint for control and data flow. Typical examples are business processes in which
several office tools such as spread-sheets, text editors, databases, and human decisions are combined
into a higher level entity by encoding the business logic within the fiow of control and data of the
process. Among existing products, the ones most closely related to the notion of process used in
this paper are workflow management systems. Existing workflow tools, however, target almost
exclusively either business processes or imaging systems, suffer from severe limitations related to
performance and functionality [AAEMO7], and are not easy to apply in other areas [MVWQ6,
BSR96]. Workfiow management, however, is a first step towards supporting the development of
complex applications over distributed systems using already existing tools. Its concepts can be
generalized by extending the notion of process to any arbitrary sequence of tool invocations (a
script or pipelined UNIX commands, for instance, are simple forms of processes). In this way,
future workflow systems could act as a high level programming tools linking heterogeneous, stand-
alone applications. Integrated with additional technology such as CORBA, queuing systems or
‘T'P-monitors, workflow management could also very well play the role of distributed operating
systems in which to exploit the coarse parallelism and distributed characteristics of distributed

processes.

3 Processes

A process can be seen as a description of an arbitrary sequence of application invocations along
with the data flow between these applications. As such, the process acts as a the meta-program
governing the interactions among existing applications. Each step within a process is an activity,
which represents invocations of external applications. The flow of control within a process — what
to execute next — is determined by control connectors labelled with transition conditions, usually
boolean expressions based on data produced by the activities. Processes also include programming
constructs that allow modular design and nesting, as well as the invocation of other processes.

During execution, the process engine navigates the description of the process determining which
activities are to be invoked next. The procedure is very similar to that of executing any other
program (more like an interpreted program than a compiled one}. The description of the process
is usually stored persistently in a database and the engine consults the database continuously to
find out what is to be done next. Any changes to the process are also stored persistently (the
status of executed activities, returned values, etc.), which opens up interesting possibilities in
terms of recovery and overall reliability [KAGM96]. When an application is to be invoked, the
workflow engine notifies an application-agent located at the same node where the program resides.
The application agent then executes the program and returns the results of the program to the
workflow engine.

These ideas hint at the possibility of considering the workflow engine as a distributed operating
system executing programs that have been constructed using existing applications as programming
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primitives. In practice, workflow engines do act as schedulers and resource allocators in distributed
environments. But, unlike in the case of centralized operating systems, workflow engines have to
contend with the network, which immediately brings up issues such as atomicity of invocations,
interferences between concurrently executed processes, performance, and overall consistency. Here
is where transactional notions should play an important part.

4 Transactions

Transactions are the conventional form of encapsulating database operations so as to provide Atom-
icity, Consistency, Isolation, and Durability [GR93]. They provide not only clean semantics to the
interactions between concurrent executions but also a powerful abstraction in which to base opti-
mizations to the architecture of a database system. This same ideas can be applied to processes so
as to provide useful abstractions to reason about the correctness of the system, to express properties
of the execution of processes, and to tune the overall architecture of process support systems. It
is likely that transactional ideas applied to process support systems will be as successful as when
applied to databases (which, to certain extent, has always been the goal of many advanced trans-
action models [Elm92]). However, in the case of processes, database-like transactions are too rigid.
Some form of light-weight transactions should be used [BRS96]. Thus, within a process, instead
of using a unique construct encompassing all transactional properties, e.g., BOT/EOT, several
separate constructs should be used to group activities according to the desired semantics. Thus, -
one could consider spheres of atomicity (atomic units with the standard all or nothing semantics),
spheres of isolation (isolation units, much like critical sections in traditional operating systems),
and spheres of persistence (determining whether the activitys in the sphere are to be made per-
sistent or not). Spheres can be naturally combined with the nested structures provided in most
process specification languages. Such constructs could have the following semantics:

Spheres of Atomicity. Atomicity is the “most popular” property from transactions in that it
addresses a common coordination problem. There have already been many suggestions regarding
how to use atomicity in advanced transaction models [Elm92] and it has also been suggested as a
basic mechanism for process navigation [Ley95]. In fact, process support systems may offer the only
realistic scenario in which to use the many ideas related to compensation. For instance, activities
could be declared to be Basic (non-atomic), Semi-atomic, Atomic, Restartable, or Compensatable.
Basic activities are the default and correspond to non-atomic applications, i.e., those for which the
system cannot guarantee atomicity. Semi-atomic activities are those providing enough information
to implement a rollback method to be executed if the activity fails before completing its execution.
Atomic activities are those that preserve atomicity by themselves, for instance, a transaction exe-
cuted over an X/Open XA interface. Restartable activities [ELLRY0] are those that can be invoked
repeatedly until they eventually succeed. Compensatable activities are those that can be undone
after they have finished using an user provided method attached to the activity interface[ELLRS0].
Note that these categories can be applied at different levels, thereby allowing to group a set of
activities into a semi-atomic block, for instance, or provide high level compensation for an en-
tire sub-process by declaring it to be compensatable. The same navigation mechanisms used for
processes could be used to drive operations related to atomicity properties.



Spheres of Isolation. The semantics behind the notion of spheres of isolation follow the ideas
suggested in {[AAE96], which point out that processes may require more a notion of synchronization
in the traditional operating systems sense than the traditional database concept of serializability.
For applications that demand a database like approach both spheres of isolation and spheres of
atomicity could be used in a manner similar to that of nested or multilevel transactions [Wei91,
Mos81], which provide a powerful mechanism to reason about recovery in applications with a
complex structure [GR93].

Spheres of Persistence. Spheres of persistence could be used to avoid the overhead incurred
by storing all process information in a database. Using databases for storage provides significant
advantages in terms of reliability, monitoring and audit control [AAEMY7, KAGM96]. but intro-
duces a considerable overhead. Within a process, a programmer could specify whether a set of
activities is to be executed persistently or not. If an activity or a group of activities are embedded
within a sphere of persistence, every step of the execution is recorded in the underlying database.
This guarantees forward recoverability in the event of failures. The information related to activities
not included in a sphere of persistence about the execution is maintained only in main memory.
Upon completion or after pre-determined time intervals, this information could be checkpointed to
the database in an off-line fashion, thereby avoiding the I/0 overhead.

5 Processes + Transactions = Distributed Applications

In practice, the equation that serves as the title for this position paper should include Standarization
on its left side. The amount of efforts being devoted to CORBA, OLE, SOM, DSOM, and ODBC, to
mention a few, show the growing interest in being able to link together stand alone tools. In terms
of products, the same goal can be ascribed to TP-monitors, persistent queuing systems, CORBA
implementations, and workflow management systems. These products are slowly converging to-
wards a common point, as proven by the many ongoing attempts at combining their functionality.
For instance, TP-monitors implementing the execution guarantees in CORBA, CORBA extensions
to TP-Monitors, efforts to combine workflow standards and CORBA under the notion of business
objects, or queuing systems being added to workflow management systems. Once applications fol-
low a given standard interface and these interfaces have been widely accepted, the task of linking
together stand alone systems will be greatly simplified. But in addition to the standards there
must a way to express interactions between stand alone applications. A very powerful paradigm
for this purpose is processes, with the added advantage that the technology for process support
is almost already in place. Certainly it will not be in the form of current workflow management
systems, but it is likely that it will be in the form of a combination of mainly TP-monitors (for
transactional guarantees), queuing systems (to allow asynchronous interactions), CORBA {and/or
any other standard providing a common way to interact with applications), and workflow manage-
ment (for process support}. In a way, this is not very different from early transactional operating
systems [GR93], but it is an idea that offers very interesting research and commercial opportunities

and may give transactional concepts a significant relevance in future information systems.
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Abstract

A*Cache is an associative client-side caching scheme proposed in [6]. The cache at a client
site dynamically loads query results and uses predicates based on the gueries to describe its
current contents. These predicate descriptions are used to determine query containment for local
query evaluaiion ai the client and also for cache mainienance. In this paper, we demonsirate
via a stmulation study thet the A*Cache system provides high performance and scalability with
respect to different workloads and large number of clients.

1 Introduction

Client-server configuration is a popular architecture for modern databases. This setup involves one
Or Imore server processes that manage a repository of persistent data and handle requests for data
retrieval and update from multiple client processes. Clients are autonomous entities that may be
located on the same machine as the database server or on different machines. With the current
prevalence of distributed computing, the latter scenario is most common, where client transactions
are initiated from desktop workstations and communicate with the server through explicit messages
across a local-area or a wide-area network.

The server response is a critical factor in the performance of a client-server database. Resources
of the server are shared among all clients, and can become the bottlenecks in scaling the system to
large database sizes and many clients. Optimizing the performance of the server has thus been a
major focus of commercial systems. However, the revolution in computer hardware technology has
made client resources relatively cheap and plentiful. Today’s smart clients can perform intensive
computations locally, using the database as a remote resource that is accessed only when necessary.
Therefore, the system design must now take into consideration client memory and CPU for data
caching and query evaluation purposes. Despite the pffotential cost of maintaining data cached at
client sites, a number of recent studies for object-oriented databases [3, 4, 11] have demonstrated
that increased client-side functionality generally imnproves the system performance.

A new client-side caching scheme for client-server databases was proposed in {6]. The client
cache, henceforth called the A *Cache, dynamically loads query results during transaction execution,



and uses query predicates to formulate predicate descriptions of the cache contents. A*Cache
supports assoctative data reuse across transactions — new queries are compared against the cache
description usingff predicate-based reasoning [7, 8] to determine if the query can be evaluated locally.
Predicate descriptions of client caches are also registered at the server, and are used to generate
update notifications for cache maintenance. The clients the notifications to maintain the validity
of their cache descriptions and data. :

The A*Caffche scheme provides a number of benefits over ID-based caching for navigational
purposes, as in [3]. A primary advanantage is that it supports the processing of associative queries
locally at client sites, thus improving data reuse. Server indexes are not required for query execution
at client sitesff — the clients may construct local indexes to faciliate query evaluation. The cache
maintenance method is completely flexible, e.g., automatic refresh or invalidation upon update, and
can vary by client and even by individual queries. Several new optimization and approximation
techniques can be designed in this context; a detailed discussion of the design choices appears in
[6].

Operating the A*Cache requires reasoning with predicates in a dynamic environment, naturally
raising questions about its performance and scalability. Earlier papers have demonstrated the
effectiveness of A*Cache in the presence of moderate-to-high update loads [1]. More results on
the performance of the A*Cache scheme for different workload types will be presented in the full
version of this paper. We present below a brief summary of our scaiabﬂlty results for the A*Cache
scheme.

2 Overview of A¥Cache Architecture

The persistent data store is resident at the server and transactionffs are initiated from client sites,
with the server providing transactional facilities for shared data access and recovery. The configu-
ration is non-shared memory, so that the address space of each client process is disjoint from that
of the server and of other clients. Separate subsystems exist at each client site and at the central
server for cache management. In this paper, we assume that a client runs a single transaction at any
given time. Thus, local concurrency control and lock management issues are not considered at the
client. Figure 1 shows an client-server A*Cache system with one client. Due to space constraints,
we omit detailed description of the various components here; details of the system opera.tlon can
be found in [1, 6].

3 Related Work

A couple of recent studies [2, 10] have examined associative access to a client cache. Both of these
studies are related to the associative caching model presented in [6] flbut are limited to read-only
scenarios. The semantic caching study in [2} investigates cache replacement policies for no-update
workloads. A cache manager called WATCHMAN for read-only caching of query results in data
warehousing environments is presented in [10]. Neither of these two studies consider the important
issue of cache maintenance when there are database updates, and the performance and scalability
of the system under update loads.






