
A Document Engine on a DB Cluster

Torsten Grabs Klemens B�ohm Hans-J�org Schek

Database Research Group { Institute of Information Systems
ETH Zentrum, CH-8092 Z�urich, Switzerland

fgrabs,boehm,schekg@inf.ethz.ch

Abstract

Requirements on document engines include low query

response time and freshness of index data. Our so-

lution to the problem is based on a DB cluster con-

sisting of PCs, each of them running an o�-the-shelf

DBMS. The specialty of our approach is to allow con-

current execution of insertion and retrieval on the

same data. Our technique is based on decompos-

ing and parallelizing insertion and retrieval requests,

while at the same time guaranteeing correctness by

an additional high-level transaction manager. An im-

portant design decision with our architecture is how

to assign data to the di�erent components, and we

compare several such alternatives. The speed-up ob-

tained is surprisingly good. The cluster-based archi-

tecture nicely defuses the bottlenecks occurring with

a single-component system.

1 Introduction

Document search engines must cope with very large

document collections, both on the internet or in

enterprise-wide intranets. These document collec-

tions keep growing at a high rate in size and number.

At the same time, when querying such collections,

users more and more expect up-to-date information

that re
ects recent modi�cations to the document

collection or related meta-data. Thus, requirements

on document search engines are not only low query

response time, but also freshness of the index data

[9] by allowing concurrent document insertion and

retrieval. The common approach that there are two

versions of a search engine one of which is used to an-

swer queries while the other one is updated, does not

exactly meet both of these requirements. But so far

this has been the only means to ensures acceptable

query response times.

Within the PowerDB project, the Database Re-

search Group at ETH Zurich o�ers a solution to this

urgent problem. The PowerDB project aims at in-

vestigating the power of a DB cluster, i.e. a cluster of

commodity hardware plus software components to-

gether with o�-the-shelf database systems. Previ-

ous work of our group [8] has shown that compos-

ite multi-level transactions [1, 10] lead to signi�cant

performance gains for document search engines based

on a multi-processor relational database system. As

opposed to [8], we deploy those techniques in clus-

ters of workstations, where an instance of a relational

database system is running on each node of the clus-

ter. Furthermore a \coordinator" node { without

sacri�cing serializability { decomposes client requests

into short (sub-)transactions that are routed to the

appropriate component node in the cluster. That pre-

vents us from the performance drawbacks that nor-

mally occur with managing redundant data [5].

In a case study, we have implemented those request

decomposition and parallelization techniques for doc-

ument search engines supporting boolean retrieval.

We have investigated alternatives how to distribute

the data among components of the cluster. We eval-

uate these alternatives for di�erent numbers of com-

ponents and expose these con�gurations to di�erent

workload patterns.

Our experimental �ndings from the prototype are

very promising, they are better than what one would

expect. Consider a request whose processing lasts one

time unit in a single-component system. One might

expect that processing this request on n components

in parallel lasts 1=n time units at best. But in the

case of high workloads, the speed-up is even better

than 1=n.

Another positive observation is that both docu-

ment retrievals and insertions can run concurrently

on the same system. Nevertheless, both services yield

response times that allow for inter-active usage. That

means that the problem of outdated index data lit-

erally does not exist: a retrieval request operates on

an index that represents the state of the document

collection at the start time of the request.

The idea to enhance search engine performance by

using clusters of workstations has been applied be-

fore: The HotBot search engine ([3, 6]) statically

partitions the data among the workstations. But

global insertion and retrieval transactions remain un-

changed, there is no decomposition and paralleliza-

tion of smaller subtransactions. The latter tech-

niques, in combination with full ACID properties for

concurrent insertion and retrieval on the same sys-

tem, constitute the major contribution of our ap-

proach. Already [4] has identi�ed that it is crucial for

commodity clusters to 'break the computation into

small jobs' at the semantic level and to execute these

in parallel. Furthermore, it has been known for a long

time that transaction boundaries are crucial with re-

gard to system performance [2]. Another approach

contrary to our proposal is to gain performance by

1



sacri�cing serializability. [7] applies this to concur-

rent document retrieval and insertion.

The remainder of this paper is organized as follows:

In Section 2, we discuss the document search engine

architecture. Section 3 then reports on the applica-

tion of PowerDB decomposition and parallelization

techniques to news messages as an example of docu-

ments. Section 4 discusses the data placement alter-

natives that we investigated. We present our experi-

ments in Section 5 and draw conclusions and sketch

future work directions in Section 6.

2 Architectural Overview of

the PowerDB Document

Search Engine

In our previous work [8], we have shown that com-

posite transactions lead to signi�cant performance

gains for document search engines based on a multi-

processor relational database system. In the Pow-

erDB project we are investigating these techniques

in a cluster of workstations, where an instance of a

relational database system is running on each node of

the cluster.

A coordinator-component architecture hides this

system topology from clients. Clients connect to

a distinguished node { the coordinator. The other

nodes { the components { only interact with the co-

ordinator. Only the components store (document-

related) data, not the coordinator. The coordinator

o�ers a service interface for document insertion and

retrieval processing. This processing is as follows:

after submission of a request, the coordinator decom-

poses it into sub-requests. All sub-requests of the

same service invocation can run in parallel at di�erent

components if the data is distributed appropriately

in the cluster. Thus, after decomposition and paral-

lelization, the coordinator routes the sub-requests to

the components. After processing the sub-requests,

the components return their (partial) results. The

coordinator composes an overall result and returns it

to the client.

Within this process, the coordinator ensures atom-

icity of each service invocation and isolation of con-

current service invocations at the semantic level. In

this current context, isolationmeans that a document

insertion and a query cannot run concurrently if they

con
ict, i.e. the document inserted is in the query re-

sult. With a query with a conjunctive combination of

query terms (boolean AND combination), this is only

the case, i� this document contains all terms from

the query. Applying this notion of con
ict allows to

start concurrent sub-requests of non-con
icting re-

quests even if con
icts at the database page level oc-

cur.

On the component side, the relational database

Data Data Data Data

Requests

subtrans-
actions

Database Layer
(ORACLE Server)

Communication
Middleware (TUXEDO)

Coordination
Middleware

interconnection network

subtrans-
actions

subtrans-
actions

subtrans-
actions

subtrans-
actions

Figure 1: System architecture

system ORACLE ensures durability of the sub-

requests processed. We administer the distributed

processing on the cluster with the transaction pro-

cessing monitor (TP monitor) product TUXEDO

from Bea Systems. Actually, we only apply a small

subset of TUXEDO features, namely asynchronous

remote service invocations, FML bu�ers (�elded

bu�ers for data transmission) and routing capabili-

ties. We have found that applying a full-
edged TP

monitor product does not introduce much overhead,

compared to a conventional two-tier solution with

ORACLE Net8 connections. Our decomposition and

parallelization techniques lead to small request sizes

where performance di�erences between the two alter-

natives are not signi�cant.

Note that we do not apply XA's 2PC protocol de-

livered with TUXEDO. As explained before, atomic-

ity and isolation at the service level are proprietary

extensions of the TP monitor at the coordinator. Fig-

ure 1 depicts the coordinator-component topology

and the software systems used.

3 Request Decomposition and

Parallelization

We will use news messages as an example for docu-

ments in order to describe the mapping and decom-

position. More general types of documents can be

mapped in a similar way.

Database Mapping News messages contain the

�elds author, date, . . . , subject and body. Then a

relation A that stores the raw document text has the

attributes docid, author, ..., body. For the sub-

ject and the body �elds, a relation B1 resp. B2 with

the attributes termid and docid represents the in-

dex. Hence, A and Bi compose a 1 : n relationship.

Given this mapping to a relational schema, we now

explain how to express document insertion and re-

trieval with SQL.

2



Example 1: Suppose that the relations A and B1

reside in a single database. Then the following SQL

statement retrieves documents that contain the words

d1 and d2 in the subject �eld:

SELECT * FROM A WHERE docid IN

(SELECT docid FROM B(1) WHERE term = d1)

INTERSECT

(SELECT docid FROM B(1) WHERE term = d2)

The expression for insertion is as follows:

BEGIN TRANSACTION

INSERT INTO A VALUES(a)

INSERT INTO B(1) VALUES(docid, d(1))

INSERT INTO B(1) VALUES(docid, d(2))

END TRANSACTION �

Request Decomposition Generally, decomposi-

tion of these services expressed in SQL is as follows:

The retrieval for each term of the query consti-

tutes a separate SQL sub-statement. Decomposition

means now that each of these SELECT statements

has its own transaction boundaries. The overall re-

sult of relevant documents is the intersection of the

docid sets returned from these sub-requests.

Decomposition of insertion service calls is as fol-

lows:

1. For each relation modi�ed by an insertion there

is a separate subtransaction.

2. To enhance the parallelism (explained below), we

can further decompose each of those subtransac-

tions into smaller subtransactions. Each of those

sub-subtransactions inserts a number of tuples

into the relation. This number is a parameter

that depends on system characteristics such as

the commit cost.

Example 2: Consider an insertion of a document

with text t where t contains the terms d1 and d2 in

the subject �eld. Then, in principle, there are the

following subtransactions:

BEGIN TRANSACTION

BOT;INSERT INTO A VALUES(t);EOT

BOT;INSERT INTO B(1) VALUES(docid,d(1));EOT

BOT;INSERT INTO B(1) VALUES(docid,d(2));EOT

END TRANSACTION

�

In this example, we have decomposed the insertion

into three SQL insert transactions. As said before, in

the practical evaluations we did not push decompo-

sition to such extremes.

Sub-Request Parallelization Having accom-

plished the decomposition into sub-requests, it is

easy to see that (nearly) all sub-requests of the

same global service invocation can run in paral-

lel. This leads to signi�cantly higher degrees of

intra-transaction parallelism compared to the long

transaction without these techniques. Furthermore,

our semantic con
ict test in combination with

this decomposition and parallelization leads to

higher inter-transaction parallelism because less lock

contention occurs.

To facilitate true parallelism for these sub-requests,

data placement is crucial. This means that di�erent

disks and processors process these parallel requests.

We discuss this in the following section.

4 Data Placement

Data placement is an essential issue to ensure bal-

anced workloads on the nodes of the cluster. This is

because the coordinator routes sub-requests depend-

ing on the data placement. Hence, a bad placement

decision may lead to skewed workload distributions

and increase response times.

Recall the 1 : n relationships that characterize the

schema of our document-to-database mapping. For

this schema, we have identi�ed three di�erent place-

ment alternatives:

DISTAB: DIStributing complete TABles,

HASHLOC: HASHing tuples with dependency LO-

Cality, and

HASHCONS: HASHing tuples CONSecutively to

component databases.

The �rst placement scheme assigns each relation in

the schema to a di�erent component database and is

easy to implement. The following placement alterna-

tives (HASH*) distribute tuples at the data level, as

opposed to the schema level with DISTAB. The com-

ponent where a tuple is stored depends on a hash

value h of the document identi�er. HASHLOC pre-

serves dependency locality. That means that the doc-

ument and its index data reside at the same compo-

nent system. HASHCONS assigns tuples consecu-

tively to component systems. In other words, if the

tuples for relation A of a given document reside at a

component h, then the index entries in relation Bi of

this document are stored at component h + i mod n

(n : number of components).

5 Experiments

This section describes the experiments we have car-

ried out in order to evaluate the di�erent placement

alternatives with our news search engine prototype.

The three following independent dimensions charac-

terize our experiments:

3



Placement Alternatives: We have considered the

placement alternatives DISTAB, HASHLOC and

HASHCONS.

Con�guration: In order to assess the speed-up

properties of the placement alternatives, we

tested the system with 3 workstations (2 com-

ponents and the coordinator) and with 5 work-

stations (4 components and the coordinator).

To have a reference point, we have run exper-

iments on a monolithic con�guration with only

one workstation.

Workload Patterns: Performance of the place-

ment alternatives depends on the workload pat-

tern. We denote the system workload with a vec-

tor (a; b) where a and b represent the number of

concurrent insertion and retrieval services, resp.

Our current system con�guration uses PCs with one

233 MHz Pentium Processor, 128MB main memory

and an interface to a network with a data transmis-

sion rate of 10 Mbit/sec. All of those workstation

systems are equipped with the Microsoft Windows

NT Server 4.0 operating system software. We con-

�gured the database systems with tablespaces on an

IDE and a SCSI disk drive. The database bu�er holds

a maximum of 550 blocks of 2K size. Each measure-

ment started with an initial collection size of 2000

documents in the database. With high workloads, we

have inserted roughly another 2000 documents. Con-

currently to the insertions, we have run the query

streams with one to �ve arbitrary query terms from

the complete collection.

In our discussion, we focus on response times at

the client interface. Figure 2 depicts the response

times for a monolithic con�guration with only one

node. This node is both the coordinator and the only

component of the system. Hence, data placement is

trivial with this con�guration.

The values from Figure 2 show that response times

increase approximately linearly from low to high

workloads. With increasing workloads, more services

compete for restricted system resources, especially

disk I/O. Note that for high workloads insertions last

on average unbearable 45 seconds per document. But

even for the low workload (1; 1) insertion response

times are rather high with 5 seconds on average. This

is because the restricted disk capacities do not allow

for parallel processing of the many sub-requests gen-

erated from the service call.

Figure 3 and 4 show the insertion response times

for a large con�guration with �ve nodes { one coor-

dinator and four component nodes. The three series

denote the di�erent placement alternatives previously

discussed. The values for insertions show that the

absolute response times decrease from 45 seconds in

the monolithical case to less than 8 seconds for DIS-

TAB. Both HASH placement alternatives show an

Monolithic Response Times

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

(1,1) (5,5) (10,10)

Workload

S
ec

o
n

d
s

p
er

se
rv

ic
e

Insertion

Retrieval

Figure 2: Response time values in a monolithic con-

�guration

Insertion Response Times

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

(1,1) (5,5) (10,10)

Workload

S
ec

o
n

d
s

p
er

se
rv

ic
e

DISTAB

HASHLOC

HASHCONS

Figure 3: Insertion response time with 4 component

subsystems

even better behavior that yields insertion response

times of less than 4 seconds per document for high

workloads. The reason is that now the same work-

load distributes among four component nodes of the

cluster. Recall our initial consideration from the in-

troduction that for an increase n of nodes, response

times decrease at best by a factor of 1=n. Then we

would expect a response time around 45=4 = 11 sec-

onds. Hence, our experiments show that with HASH

placement one can achieve even better performance

improvements by increasing the number of compo-

nents in the cluster when this increase signi�cantly

reduces workload contention on the nodes. We as-

sume that this is due to reduced I/O contention on

the relatively small number of disks in each worksta-

tion. Another plausible explanation could be that the

log latch constitutes the bottleneck in the monolith-

ical case. In the clustered con�guration, we have as

many logs as there are component systems. Never-

theless, this is still an open issue and we will explore

this.

Response times for retrieval decrease by a simi-

lar factor. Hence, this con�guration now allows for

an inter-active usage of the services. Both HASH

4



Retrieval Response Times

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

(1,1) (5,5) (10,10)

Workload

S
ec

o
n

d
s

p
er

se
rv

ic
e

DISTAB

HASHLOC

HASHCONS

Figure 4: Retrieval response time with 4 component

subsystems

workload DISTAB HASHLOC HASHCONS

(1; 1) 2.8 2.5 3.1

(5; 5) 4.2 6.3 6.1

(10; 10) 6 12 11.2

Table 1: Insertion speed-up from monolithic to large

con�guration

placement alternatives outperform the DISTAB al-

ternative because table sizes are not equal with DIS-

TAB. Hence, DISTAB's distribution of complete ta-

bles leads to skewed workloads on the cluster. Both

HASH placement alternatives do not su�er from this

drawback.

In addition to the �gures discussed above, Tables 1

and 2 show the speed-up factors achieved by increas-

ing the number of components from 1 in the mono-

lithical case to 4. Note that for large workloads this

decreases response times by an order of magnitude

for both HASH placement architectures. Further, we

observe that the retrieval speed-up with the DISTAB

alternative does not increase with higher workloads

due to its skewed data distribution.

6 Conclusions and Future

Work

In the PowerDB project we combine concurrency con-

trol at the semantic level and sophisticated request

decomposition and parallelization mechanisms in DB

clusters.

In a case study, we have implemented a news doc-

ument search engine with PowerDB techniques and

tested this engine with di�erent data placement al-

ternatives. Our �ndings show, that HASH placement

yields the best response time. For high workloads,

these placement alternatives reduce response times

by an order of magnitude when increasing the num-

ber of components by 4.

Our evaluation has not yet covered all interesting

workload DISTAB HASHLOC HASHCONS

(1; 1) 2.7 2.7 2.5

(5; 5) 2.5 6.4 5.3

(10; 10) 2.5 15 13

Table 2: Retrieval speed-up from monolithic to large

con�guration

aspects. Currently, we investigate whether and when

the coordinator can become a bottleneck. We further

want to compare our approach to the conventional

XA/2PC solution in quantitative terms. Finally, in

parallel to document support, we apply our PowerDB

architecture to the traditional TPC-C and TPC-D

benchmarks.

References

[1] G. Alonso, A. Fe�ler, G. Pardon, and H.-J. Schek.
Transactions in stack, fork, and join composite sys-

tems. In Proc. ICDT'99, Jerusalem, pages 150{168,

1999.
[2] M. J. Carey, R. Jauhari, and M. Livny. On transac-

tion boundaries in active databases: A performance
perspective. IEEE Transactions on Knowledge and

Data Engineering, 3(3):320{336, 1991.
[3] A. Fox, S. G. Y. Chawathe, E. Brewer, and

P. Gaulthier. Cluster-based scalable network ser-

vices. In Proc. of the SOSP'97, St. Malo, France,
1997.

[4] J. Gray. Super-servers: Commodity computer clus-
ters pose a software challenge. In Datenbanksysteme

in B�uro, Technik und Wissenschaft, pages 30{47,

1995.
[5] J. Gray, P. Helland, P. O'Neill, and D. Shasha. The

dangers of replication and a solution. In Proc. of the

ACM SIGMOD Conf., pages 173{182, 1996.
[6] Inktomi Corp. The Inktomi technology

behind HotBot. Technical report, Ink-

tomi Corp., http://www.inktomi.com/Tech/-

CoupClustWhitePap.html, 1996.
[7] M. Kamath and K. Ramamritham. E�cient transac-

tion support for dynamic information retrieval sys-

tems. In Proc. of ACM SIGIR, 1996.
[8] H. Kaufmann and H.-J. Schek. Extending tp-

monitors for intra-transaction parallelism. In Proc.

of the 4th Int. Con. on Parellel and Distributed In-

formation Systems, 1996.
[9] S. Kirsch. Infoseek's experiences searching the inter-

net. SIGIR Forum, 32(2):3{7, 1998.
[10] G. Weikum. Principles and realization strategies of

multilevel transaction management. ACM Transac-

tions on Database Systems, 16(1):132{180, 1991.

5


