
CICS Business Transaction

Services - enabling robust

extended transactions

Ian J Mitchell, IBM UK Laboratories, Hursley Park
ianj_mitchell@uk.ibm.com

CICS Transaction Server 1.3 includes a significant set of new APIs under the umbrella title of
CICS Business Transaction Services (CICS BTS). The aim of this set of APIs is to ease the
development and deployment of complex, multi-transaction applications in the mainframe
CICS environment. The APIs enable the explicit management of the collection of individual
CICS transactions that implement an application.1

In this paper I will describe the programming model supported by CICS BTS, discuss some of
the fundamental concepts that proved challenging, and finally compare CICS BTS with other
models for extended transaction management.

BTS Programming Model

Fundamentally, BTS introduces an event-driven programming model to CICS. This sounds
deceptively simple - event-driven programming is not new, and has proved to be an extremely
popular style in many application areas (GUI frameworks, for example). Indeed, it is possible
to identify programming constructs in the existing CICS API that are event-driven - the
so-called 'pseudo-conversational' style of application is essentially driven by interaction
events. So what's different about BTS and its style of event-driven programming?

What is BTS aiming to do?

The aim of BTS is to make it easier to develop complex, multi-transaction applications. So a
BTS application is probably made up of more than a single CICS transaction. Finding
applications like this is certainly not hard! Only the most simple business requirements can be
supported by an application that entails a single set of resource updates in a single, short-lived
Unit of Work.
So most CICS applications assemble individual CICS transactions into something useful to
the customer's business. The business will recognise the composite function of the assembly
as a Business Transaction, for example, a holiday booking. But, being a Transaction Monitor,
CICS has previously left the mechanics of the assembly largely to the ingenuity of the
application programmer.
Obviously the existing features in the CICS API have proved very useful in the assembly of
multi-transaction applications. Some of the more useful features are:

1See CICS Business Transaction Services - SC34-5268-00.

� Pseudo-conversations - these are sequences of transactions that result from the
interactions during a conversation with a user terminal device.

� The START command - enables one transaction to initiate another.
� Transient Data queue triggers - the presence of data may trigger a transaction.
Nevertheless, the job of controlling the collection of transactions that make up a Business
Transaction has been a challenge for application programmers over the years. If the low-level
control has been a difficult problem, then the task of specifying the pattern of transactions has
been even harder. Application packages have been developed to try and ease the burden on
the application programmer, but these can quickly become industry specific and they still
have only the basic CICS functions available under the covers.
So how does BTS aim to help? BTS enables programmatic, flexible, transactional control of
transactions.
Programmatic - it is possible to write application programs that specifically control the
execution of transactions. The control operations are accessed through extensions to the
translated CICS API thereby enabling CICS programmers to code BTS applications in the
traditional CICS languages familiar to them.
Flexible - the pieces of the Business Transaction can execute in sequence or in parallel. The
control structure can range from a simple sequence to a complex tree of interrelated entities.
Transactional - the control state and operations are managed in a fully recoverable manner.

Application control of transactions

BTS introduces the ability to write programs that control transactions. Thus a program is able
to determine how a set of transactions executes. The program can construct a simple sequence
of transactions, or allow a set of transactions to execute in parallel.
It is important to point out that it is functional decomposition that is occurring here. The
program is using the transactions that it controls to implement a composite function.
What does control of a transaction amount to? BTS allows the controlling program
� to create an entity representing the transaction
� to specify its attributes
� to initiate the transaction
� and to be informed of the transaction's outcome.
Of course, in CICS, all programs execute within a transactional environment. So the
controlling application program is itself executing within a transaction and the control
operations on other transactions are transactional. (The existing 'protected' form of START
operates transactionally.) So it is better to describe BTS as enabling transactions to control
transactions.

What are BTS processes, activities and events?

The entity that the controlling transaction creates and through which control is exercised is
called an activity. Data can be associated with activities by placing it in containers. Execution
of the controlled transaction is initiated by activating the activity. It is natural to talk about
parent and child roles for the activities.
Progress is signalled by driving activities with events. Events embody the reason for an
activation. Fired events cause activations. When an activity is activated, the application
program is obliged to ask the reason for the activation. Events are delivered to the child from
the parent (termed input events), and events are delivered to the parent when the child
completes (termed completion events). Containers can be used to pass data back and forth
between parents and children.

Completion events are one of the distinguishing features of the BTS programming model.
The existing START command provides a 'fire-and-forget' capability whereas BTS provides
fully synchronised transaction control. I expand on the importance of completion events later.
The application program can specify that the activation of the child is either synchronous or
asynchronous with the execution of the parent transaction. In the asynchronous case, the
parent transaction must terminate and commit the control operation before the child activation
will take place. Then the input event associated with the activation is delivered to the
application program in a new transaction. When the child transaction completes, the child's
completion event is fired in the parent. This case involves three transactions:
1. The transaction that is the activation of the parent that creates and requests the activation

of a child.
2. The activation of the child in which an input event is fired.
3. The (re-)activation of the parent that is caused by the firing of the child's completion

event.
So both parent and child activities must respond to the firing of events. This leads to the BTS
activity application programs having the style of classic event-driven programs. There is a
switch statement with cases to catch each event. This comprises the body of the event
processing loop.
Whilst waiting for the next event to be fired, the activity is dormant and CICS stores the state
of the activity on DASD in a so-called Repository File. Thus, processing resources are only
consumed when an activity is actually processing an event.
There is no formal assignment of the role of parent or child in the BTS API. So a child can
create and use its own children, and has to respond to their completion events. In this way the
whole application can be decomposed into a tree of activities acting in parent and child roles.
In general, an activity will receive a number of fired events and thus be activated in a
sequence of activations as each event fires. An activity is deemed to be complete when all its
children are complete, and no more events are pending.
The collection of activities in the tree is called a process in BTS terms. Of course, any tree
structure will have a root. In the BTS case there is a topmost activity with no parent which is
the root activity.

Events, transactions and admitting failure

Both Transactional programming and Event-driven programming are mature styles of
programming. BTS brings the two together.
ACID transactional management of application resources, such as file records and queue
entries, is what CICS is all about. Message-driven processing is also well understood by CICS
through inter-operation with products such as MQSeries. BTS events are another type of
resource that is managed in a recoverable manner, and this places some obligations on the
applications that make use of BTS's ability to control transactions.

Event-handling - a mutual obligation

In asserting that BTS events are transactional, CICS has to manage them with care. Along
with the rest of the state of a process or activity, the set of events it will respond to (and their
status) is recorded in a logically recoverable VSAM file. Operations that change the state of
events are thus dependent on the commital of the transaction that makes them.
The result of firing an event is a new transaction. The new transaction invokes the application
program, which is obliged to process the fired event. Failure to process the event is an
application error. An activity that suffers such an error is terminated, and its own completion
event raised.

Events created by an application are safe in the hands of CICS - the application is obliged to
treat them with a similar respect.

Admitting failure

Events are the means by which progress is signalled to the application. In this context, failure
is as significant as success. But failure of a transactional operation is usually accompanied by
the backout of the recoverable updates - the aim of which is to hide the existence of the failed
transaction. One of the essential achievements of BTS is to manage its events recoverably and
yet to allow an event to signal failure as assuredly as it signals successful completion. (The
scheme is currently the subject of a US Patent application.)
The scheme employed to achieve this aims to be as non-disruptive to the management of
other recoverable resources as possible. The failed transaction is backed out in its entirety, but
the backout processing for the event state causes another transaction to be initiated - this is
called the failure admission transaction. This transaction's role is to record the failure by
firing the completion event of the activity that has suffered the failure. The failing transaction
and the failure admission transaction are interlocked to ensure that the failure information
cannot be lost. The failing transaction does not complete its backout until the failure is safely
communicated to the admission transaction. This involves handshaking between the tasks
executing the transactions and the logging of the failure information by the admission
transaction. Once the failure information is safely logged in the new transaction, the
obligation to signal the failure is passed from the failed transaction and it can complete its
backout. The admission transaction executes in the knowledge of the failure, but all other
resource updates have been backed out. The admission transaction fires the completion event
and commits forwards - so activating the parent activity in the normal way. The failure
information is then available to the application program and it can behave accordingly.

Using Processes, Activities, Events and Containers in extended transactions

Crucial to the design of a BTS application is deciding on the scope of the Process. The scope
can be analysed in terms of the function of a Process and the control data it requires.

The function of a process

BTS should reduce the gap between the form in which Business Processes are specified and
the entities that appear in the application code. The mapping of the Business Process into
business logic can be expressed directly in terms of dataflows in Containers and Events.

The control data

The data managed as the state of a Process (in the Containers and the Events) is intended to
be merely the data required to control the execution of the Process. An aim of BTS is to
separate this control data from the true Enterprise Data (such as customer records, orders,
accounts) that is best placed in a 'proper' database (for example, DB2). Processes and
activities are not intended to be long-lived representations of enterprise data, rather they are
the means to implement control of the transactions that update the enterprise data. The
decomposition of a business into processes, and processes into activities is driven by
functional analysis rather than data or object analysis. BTS containers are specialised
resources intended for a localised purpose - the preservation of control data for extended
transactions. They are not a suitable choice for data of wider interest to the business.

Encapsulation and reuse

The formalisation of the activity as an entity provides increased opportunities for reuse of
application code. An activity can be used to encapsulate an application function. The interface
to an activity is essentially the set of events used to interact with it and the set of containers
that pass data in and out. This allows activities to be reused in a 'plug-and-play' fashion across
different applications.

Scalability of BTS applications

The asynchronous form of activation provides opportunities for Workload Balancing
decisions to optimise the CICS resources consumed by BTS applications. When activities are
dormant their state is held offline in repository files. When an event causes an asynchronous
activation, this can be dispatched on the most appropriate CICS region that has access to the
repository file. This currently relies on VSAM Datasharing and is limited to a single OS/390
Sysplex.

CICS BTS and the ConTract Model

The objectives of BTS are very similar to those expressed in the ConTract Model (Wachter &
Reuter). It is interesting to examine some differences in the two approaches.

Application coding style

BTS embeds the control logic operations into the traditional CICS API. This decision was the
subject of a lot of debate and arguement. It avoids the invention of yet another
programming/scripting language. It has been observed that even a COBOL program that
confines itself to the business logic at the level typically present in scripting or rule-based
languages can be as concise and readable as a higher level specification.
BTS activity programs can be as simple as that, or they can utilise the full power of a general
purpose programming language. I consider the following quote as particularly persuasive -
"With rules, you can't even ask the time of day!" (IJM 1997).

Managing failure

The ConTract Model rightly identifies the implementation challenge of recoverably admitting
failure. The admission must be made to the 'script manager'. The suggested mechanism is to
employ nested transactions. The script executes in an outer transaction scope and always
invokes the application in a nested transaction so that an application failure can be caught by
the script's transaction.
CICS BTS does not require (nor implement) nested transactions. The application code is
invoked in conventional, flat, CICS transactions. In the successful case, this is all that is
required. As described above, in the (hopefully rare) case that failure must be admitted, the
mechanism BTS employs is to back out the failed transaction and reliably initiate a
transaction with the sole purpose of signalling the failure. I believe that this is a significantly
more efficient scheme than relying on the overhead of nested transactions for all application
execution.

Where's Compensation, then?

A formalisation of Compensation is notably absent from the BTS programming model. This
comes as somewhat of a surprise, especially when it is revealed that BTS itself was called
'Compensation Manager' at an early stage of development.

We considered Compensation at great length. But the more it was considered, the more it
absented itself from the model. The essential function in lieu of Compensation is the
recoverable admission of failure of activities.
If the application is structured into meaningful pieces, and business logic can rely on being
informed of the failure of the pieces, then a useful compensation behaviour can be regarded
simply as 'progress in an alternative direction'. In general, it was not observed that useful
behaviour in a 'compensation phase' would be any less complex than that in the 'forward
phase'. The reliable admission of failure enables the application to detect that compensation
may be necessary. An activity can easily be structured to behave in alternative ways under the
direction of the parent.

Summary

BTS is a significant extension to the application management facilities provided by CICS
Transaction Server. It addresses some well recognised problems facing the designer and
deployer of enterprise applications. By introducing a single new, event-driven primitive - the
activity - it provides a rich enough framework for multiple transaction management in which
these problems can be overcome. The solution is embodied in an evolution of the partnership
between the application program and the transaction monitor. In consequence, compensation
management is seen as a natural extension of the application design, and not as a special
mode supported by the system.

