
Just-in-time Index Reference Updates

Chendong Zou

921 S.W. Washington Ave, Suite 670

Portland, OR97205

email: zou@informix.com

fax: 503-221-2633

Abstract

In this paper, we present an eÆcient method for updating index references. The basic idea is to

defer index reference updates as much as possible and piggyback the pending updates with other user

transactions. Not only is our method eÆcient in terms of number of I/Os, but it is also safe. Our method

also pays attention to system issues that are often overlooked such as concurrency and recovery issues.

1 Introduction

Normal database operations such as insertions, deletions and updates of records generally involves

updating the corresponding references in the indexes. In a typical database implementation, the

operation (insert, delete, and update) and the corresponding reference updates are encapsulated

and done at once as an atomic operation. Since a record can be referenced in more than one indexes,

this usually implies multiple I/Os for index reference updates.

In order to decrease the number of I/Os for index reference updates, we present a new method

that defers index references updates, and does the update just-in-time { piggybacking the updates

with other user transactions' I/O. Our method guarantees that the database bu�er is always

consistent.

Section 2 will presents some data structures that are used by our method. It will also describe

how do we defer index updates. The just-in-time reference updates logic is discussed in section 3.

Section 4 will briey describe some system considerations such as concurrency and recovery with

our method. Finally section 5 concludes the paper with some future research directions.

2 Deferred Updates

The basic idea of our method is to do index updates as much as we can without doing any disk

I/Os. Then if there are still updates that need to be done, we defer them and put them in some



in-memory tables. These tables are:

� Pending Changes Table Qis

Tables Qi, i = 1; : : : ; s, where s is the number of secondary indexes, are used to keep

information about the changes that should be made to secondary indexes. An entry in Qj

has the format (Index value, Page number, Old-ID,New-ID, tid). Old-ID is the old record

identifer before the operation, and New-ID is the new record identifer after the operation.

If the operation is an insertion, then Old-ID is NULL. If the operation is a deletion, then

New-ID is NULL. tid is the transaction ID of the operation. Both New-ID and Old-ID are

not NULL if the operation is a record move. The Index value �eld is the index value of the

record for that secondary index. The Page number �eld is the page number of the secondary

index page which either stores the Index value (leaf page) or has a descendant which stores

the Index value (upper level index page). Table Qis are hash tables. They are accessed by

hashing on Page number.

� Transaction Table T Transaction table T keeps track of all transactions that have pending

updates in one of the Qi tables. An entry of T consists of a transaction ID and a list of

pointers to Qi table entries. T is also a hash table (hash on tid).

With these lookup tables, we can outline our algorithm for deferring updates:

1. Check to see if the look-up tables are full. If they are, do clean-up for those tables.

2. Obtain all the locks necessary for the operation. These also include locks on the secondary index

leaf pages that need to be updated.

3. Do the operation (insert, delete, update).

4. For each secondary index leaf page that needs to be updated:

(a) If the page is in the bu�er, make the update and log the change.

(b) Otherwise, put the change in the look-up table and update the corresponding entry in the

transaction table.

Figure 1: Algorithm for Deferred Reference Updating

Figure 1 illustrates the main idea of the algorithm. We �rst check if there are still rooms for

deferred updates in the in-memory tables. If there isn't any room, then we would do cleanup. That

is, we would bring in index pages and �nish those pending updates to clean up the in-memory

tables.

After the possible cleanup step, we get all necessary locks and do the operation. For each

secondary index leaf page in which a reference should be updated, if the page is already in the

bu�er, we make the update and log it. If the page is not in the bu�er, we record the update in the

look-up tables. The locks shall be released after the corresponding transaction is �nished. After

each operation, the database bu�er is consistent. That is, all index leaf pages in the bu�er have

correct references to records.



3 Just-in-time Updates

Buffer Manager

DISK

piggybacking before returning

the page to the requestor

holding a lock on the page

Requester requests a page while

The Buffer Manager 

page from the disk

Buffer Manager returns

The

the page if it is in the buffer

issues an I/O to get the 

The

The Buffer Manager finishes the

Requester

Figure 2: Just-in-time Updates

Figure 2 shows the interactions between the requester and the bu�er manager, and how just-in-

time updates are done. The dotted line represents the bu�er manager's action when the requested

page is already in the bu�er, the bold line represents the bu�er manager's actions when the requested

page is not in the bu�er. The idea here is that the database bu�er manager will do the index

reference updates just-in-time before anyone else access the page that contains pending updates.

When the requester gets the page, the page already has the correct content. So the database bu�er

is always consistent. When all pending changes of a transaction have been done, its entry in the

transaction table T shall be removed.

Notice here that the just-in-time update is page-oriented. That is, it is done for all pending

updates on that page, so one gets the e�ect of batch processing of updates. Piggybacking updates

shall be logged as in [Che98].

Piggybacking of changes can be complicated if there isn't enough room left on the page for those

changes. This would happen if the new address for the moved record is larger than the old address.

We call this the overow problem. Detailed discussion of the overow problem and our solution

can be found in [Zou96].

4 System Issues

In this section, we will briey discuss some system issues.

4.1 Concurrency and Recovery Concerns

With this approach, all operations can use record-level locking protocol. Details can be found in

[Che98]. The main di�erence here is that we will not release locks until the transaction �nishes. We

have to be careful about phantoms with our method. In the worst case, one might have to bring in

the parent page of an index leaf page to avoid phantoms.

Because all the lookup tables are in main memory, if there is a system crash, it is important that

we could recover them correctly. Most of the techniques presented in [Che98] should apply here

except forward recovery. At the end of the redo phase, we will undo those uncommitted transactions.



This means that we should delete the corresponding entries of those aborted transactions in the

lookup tables.

4.2 Transaction Abort

When a transaction aborts, we should delete all the pending updates from the Qi tables, and remove

its entry in the transaction table T .

In order to support savepoint rollback, one might need to add a savepoint number as a �eld in

the lookup table entry.

5 Future Work

In this paper, we outline a method to do index reference update just-in-time. The idea is to defer

any updates that might need a disk I/O, and piggyback the updates with other user activities'

I/O. The updates are done just-in-time so that index pages in the bu�er are always consistent.

By deferring index updates and piggybacking them (page-oriented) with other user activities' I/O,

one can save a great amount of disk I/O. We would like to implement the method and measure its

performance implications. We would also like to investigate other concurrency protocol to avoid

phantoms with our method.

References

[Che98] Chendong Zou and Betty Salzberg. Safely and EÆciently Reference Updates during On-Line

Reorganization. In International Conference on Very Large Data Bases, 1998.

[Zou96] Chendong Zou. Dynamic Hierarchical Data Clustering and EÆcient On-line Database Reorgani-

zation. PhD thesis, College of Computer Science, Northeastern University, 1996.


