
age the

s for con-

left to

e was to

le8

s a data-

these

urable

ser-popu-

ling

tter han-

n is

ling poli-

r of

ny pro-

ical sec-

stems.

orkload

le

lasses of

nt

ssary to

eries

onserve

ed a

ess

ups

party

o pay

tment.
The Oracle Database Resource Manager:
Scheduling CPU Resources at the Application Level

Ann Rhee, Sumanta Chatterjee, Tirthankar Lahiri
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065
ann.rhee@oracle.com, sumanta.chatterjee@oracle.com, tirthankar.lahiri@oracle.com

Introduction
Modern Database Management Systems have numerous mechanisms for allowing administrators to man

usage of system resources such as disk space and memory, yet they have typically not included mechanism

trolling the usage of the all-important system resource of CPU-time. Traditionally, this functionality has been

the host Operating System scheduler. Because of this, the only recourse for Oracle to control users’ CPU usag

impose hard limits on CPU consumption. If a user session exceeded its CPU limit, it was terminated. In Oraci we

introduced the Oracle Database Resource Manager, a novel DBMS CPU management mechanism that allow

base administrator to delineate logically distinct units of a workload and to partition CPU resources between

units. Performance investigations show that running with the Database Resource Manager imposes no meas

overheads on a workload, and the use of the Resource Manager actually improves performance with large u

lations.

Several commercial Operating Systems now support CPU resource management via a fair-share schedu

mechanism. We believe that for large, complex applications such as Oracle, CPU resource management is be

dled within the application itself. Since the scheduling is done within the Oracle application and the applicatio

portable across numerous platforms, the Oracle Resource Manager is able to consistently enforce its schedu

cies, independent of OS platform.

The Need for Database CPU Management
In an attempt to consume all the available CPU bandwidth, DBAs often tend to over-configure the numbe

server-processes (e.g. ten times the number of CPUs). Over-scheduling can be inefficient: scheduling too ma

cesses increases context switch overheads and increases the probability of preempting processes within crit

tions, leading to performance bottlenecks. On the other hand, under-scheduling can lead to under-utilized sy

The simple approach of allowing the OS to treat all server processes uniformly may be adequate when the w

is homogenous and response time requirements are the same for all users. However, workloads within a sing

instance of a database are becoming exceedingly complex and heterogeneous, consisting of many different c

users and activities as illustrated in the following examples:

• Mixed-mode workloads: Workloads may consist of an OLTP portion with large user groups issuing freque

short transactions and a DSS/batch portion consisting of complex data-intensive queries. It may be nece

allow the OLTP users a greater share of system bandwidth and to limit the intrusive effects of the DSS qu

during normal business hours. It may also be necessary to control the number of active DSS sessions to c

sparse resources, such as temporary disk space required for sort operations. DSS sessions may be allow

greater share of the system after close of business, when OLTP activity is likely to be lighter.

• Consolidation within the enterprise: Even within a single enterprise, the trend has been to consolidate busin

data management into fewer and larger database systems. Response time requirements for different gro

within a company (Accounts Payable, Sales, etc.) may be quite different.

• Application hosting: For economies of scale, companies may out-source database administration. A third-

administered large-scale database may host applications from a number of different client companies wh

for varying proportions of system usage. Different clients should see throughput proportional to their inves

 con-

e con-

rol the

g execu-

 also

 run

ource

a work-

ogical

ay be

 same

 more

con-

wn as

lan

ng to

ema.

given

e (or

n time,

r has no

 to other

t call into

ontinue

rocess

 itself to
All of the above scenarios require the server to have more explicit control over the amount of CPU resources

sumed by the different pieces of a workload.

Overview of Database Resource Manager
The Oracle Database Resource Manager includes a scheduling mechanism that keeps track of CPU tim

sumption and performs scheduling decisions at fixed time-intervals. It also contains a mechanism to the cont

number of concurrently active sessions. Once all active session slots are filled, subsequent sessions attemptin

tion will be queued and let into the system as other active sessions finish their work. The Resource Manager

allows the administrator to set scheduling policies based on the predicted execution time of a query (e.g. only

very long queries in a low priority group, or prevent very long queries from even entering the system). The Res

Manager has a set of PL/SQL based packages that allow the administrator to define the scheduling policy for

load. The key components of the Resource Manager interface are as follows:

• Resource consumer group: A resource consumer group is a group of active user sessions and defines a l

component of a workload. This is a concept specified by the administrator. Resource consumer groups m

defined at the granularity of the user so that all sessions created by a particular user are assigned to the

group. Group association for a user session may be changed dynamically from the user’s default so that

fine-grained division of CPU time can be achieved across user-sessions.

• Resource plan: A resource plan is a description of how CPU time should be allocated between different

sumer groups. Conceptually, a resource plan is a node in a directed acyclic graph of CPU allocations kno

theresource plan schema. A child of a resource plan is either another resource plan (non-leaf node in the p

schema) or a consumer group (a leaf node).

• Resource plan directive: Weighted directed arcs within a resource plan are known asResource Plan Directives.

A child of a resource plan directive is either a resource consumer group or another resource plan.

Example: A mixed-mode workload with an OLTP/DSS component (described earlier). can be run accordi

two different plans depending on the time of day. This can be described by the following single-level plan sch

The Database Resource Manager allows the administrator to dynamically switch between DAY_PLAN and

NIGHT_PLAN as needed.

How Does the Database Resource Manager Work?
The Database Resource Manager controls the number of concurrently running Oracle processes at any

time. The number of concurrently running processes roughly equals the number of CPUs on the host machin

Oracle’s partition of the host machine). By only having a small number of OS runnable processes at any give

the Database Resource Manager takes scheduling decisions away from the OS scheduler; the OS schedule

choice but to run the processes which are runnable. Running processes calculate their CPU usage and yield

Oracle processes (as chosen by the Database Resource Manager) when their quantum expires.

The Database Resource Manager is a module, not a process. Each running Oracle process or thread mus

the Resource Manager scheduling code periodically. This code determines whether the running process can c

to run or must yield to another Oracle process. If it must yield, the Resource Manager code determines which p

can run in its place. It then signals this process and the process whose quantum had just expired simply puts

DAY_PLAN NIGHT_PLAN

OLTP DSS

80% 20% 10% 90%

 CPU

hose

 [3],

r

source

e admin-

The sys-

se rules

the pro-

s_2.

 used to

dhere to

ified 75

hly run

 is: Why

the OS

is

weight

anager

no way

ng

me OS

el, it

differ-

y run on

gle

alf of an

 dura-

esses

ely

er infor-

 them.

s mem-

ated to

anager.
sleep. Using this method, the Database Resource Manager can portably adhere to an administrator specified

scheduling plan.

Existing Operating System Resource Managers
Most large operating systems provide functionality to support user-supplied scheduling plans, similar to t

described in the previous section. Some examples are Sun Microsystems’ Solaris Resource Manager (SRM)

Hewlett-Packard’s HP/UX Process Resource Manager (PRM) [2], and IBM’s OS/390 / AIX Workload Manage

(WLM) [1]. The fair-share scheduling component of these OS resource managers are all fairly similar. The re

managers allow the system administrator to group processes or threads into different scheduling classes. Th

istrator can then allocate either percentages of CPU time or CPU shares to the different scheduling classes.

tem administrator can set up “rules” which specify which processes belong to which scheduling classes. The

may be based on, but are not limited to, the owner of the process, name of the process, and which executable

cess is running. For example, the administrator could specify that all processes owned by “Bob” belong to

Scheduling_Class_1. Or, any process which runs the executable /usr/games/fun belongs to Scheduling_Clas

Once all processes have been assigned a scheduling class, the OS scheduler takes over. The algorithms

implement fair share scheduling differ between OS resource managers, yet the goal is always the same: to a

the scheduling policies set forth by the system administrators. For example, say the system administrator spec

shares of CPU to Scheduling_Class_1, and 25 shares to Scheduling_Class_2. The OS scheduler would roug

processes in Scheduling_Class_1 three times as often as those in Scheduling_Class_2.

Benefits of Managing CPU at the Application Level
Since most large operating systems have implemented CPU resource management a common question

not simply propagate database administrator specified Oracle CPU resource requirements to the OS and let

scheduler manage CPU resources between Oracle processes? This is a bad idea for several reasons:

• Knowledge of Oracle resources - Since it runs within the Oracle kernel, the Database Resource Manager

aware of what Oracle processes are executing and when shared Oracle resources such as latches (light

mutual exclusion primitives) and enqueues (database locks) are held. Therefore, the Database Resource M

is able to do intelligent scheduling - e.g. it would allow lower priority processes to run if they hold shared

resources that are needed by higher priority processes. This avoids priority inversion problems. There is

for the OS to know this type of information and thus schedule intelligently.

• Process Grouping - Most rules used by OS resource managers to group processes into different scheduli

classes are insufficient for differing Oracle processes. For example, all Oracle processes belong to the sa

userid and run the same executable. Yet, since the Database Resource Manager runs in the Oracle kern

knows which process is running on behalf of which Oracle user (note that the concept of an Oracle user is

ent from the concept of an OS user). This gets even more complicated since some Oracle processes ma

behalf of different Oracle users at different times. For example, using Oracle’s shared-server feature a sin

server process can service multiple database users. Similarly, parallel slaves which are spawned on beh

Oracle coordinator process should inherit the Oracle userid of the originating coordinator, but only for the

tion of that particular parallel operation. The Database Resource Manager is able to associate these proc

with the correct Oracle users.

• Integration with other resource management features - The Database Resource Manager is currently clos

tied with Oracle’s parallel execution feature. The parallel execution code uses Database Resource Manag

mation to intelligently decide how many parallel slaves to spawn and on which Oracle instances to spawn

In the future, the Database Resource Manager CPU management code may be tied directly with Oracle’

ory management code and/or temporary space management code. It would be quite difficult and complic

share information back and forth between Oracle kernel components and an outside OS CPU resource m

etely

ager is

ent, Ora-

ource

.g.

 group.

 not be

ly

anage-

we

t task.

ys-

m config-

 fine-

tem

s are

kloads -

and com-

ercial

easible

tabase
• Portability and consistency - Since the Database Resource Manager runs in the Oracle kernel, it is compl

portable on all platforms on which Oracle is supported. Also, the behavior of the Database Resource Man

consistent across all platforms. If the OS resource managers were to take over Oracle resource managem

cle would have to ensure that this worked across all OS platforms (impossible since not all OS’s have res

managers) as well as ensure that the behavior was consistent on different operating systems.

• Statistics gathering - The Database Resource Manager currently gathers many statistics while running - e

average run queue length per consumer group, average wait time per group, total CPU consumption per

This information is gathered and can by displayed using the standard Oracle system views. The OS may

able to give the same, consistent statistics to the administrator.

• Stability - Oracle will most likely be adding new features to the Database Resource Manager and possib

changing existing features based on user feedback. If Oracle hands off implementation of CPU resource m

ment to the OS, it will be quite difficult, if not impossible, to change or add functionality. To accomplish this,

would needall OS vendors to agree to changes and implement them. This would prove to be quite a difficul

• Dynamic reconfiguration and adaptability - Many operating systems support dynamic reconfiguration of s

tem resources - e.g. CPU, memory. The Database Resource Manager is able to adapt to changing syste

urations without having to bring down the database instance, thus increasing availability.

Conclusion
The Oracle Database Resource Manager has a powerful DBMS CPU management mechanism allowing

grained control over the utilization of processing time among differing Oracle processes. Many operation sys

resource managers have similar functionality, allowing system administrators control over how CPU resource

allocated among generic OS processes. We believe OS resource managers are very valuable for certain wor

e.g. a set of smaller, more homogenous applications running on a single large machine. Yet, due to the size

plexity of an application such as Oracle (which contains a Virtual Operating System running on top of a comm

operating system) letting a fair share OS scheduler schedule amongst differing Oracle processes was not a f

option. The best solution was to implement a portable, consistent, internal CPU scheduler within our own Da

Resource Manager.

References
1. Gfroerer, D., Castro, C.,AIX 5L Workload Manager, IBM Corporation, 2000.
2. Hewlett-Packard Corporation,http://www.software.hp.com
3. McDougall, R., A. Cockcroft, E. Hoogendoorn, E. Vargas,Sun Blueprints Resource Management,Sun Microsys-

tems Press, 1999.
4. Rhee, A.,Functional Specification for the Database Resource Manager Oracle8i, Oracle Corporation, May,

1998.

	The Oracle Database Resource Manager:
	Scheduling CPU Resources at the Application Level
	Ann Rhee, Sumanta Chatterjee, Tirthankar Lahiri
	Oracle Corporation
	500 Oracle Parkway
	Redwood Shores, CA 94065
	ann.rhee@oracle.com, sumanta.chatterjee@oracle.com, tirthankar.lahiri@oracle.com
	Introduction
	The Need for Database CPU Management
	Overview of Database Resource Manager
	How Does the Database Resource Manager Work?

	Existing Operating System Resource Managers
	Benefits of Managing CPU at the Application Level
	Conclusion
	References
	1. Gfroerer, D., Castro, C., AIX 5L Workload Manager, IBM Corporation, 2000.
	2. Hewlett-Packard Corporation, http://www.software.hp.com
	3. McDougall, R., A. Cockcroft, E. Hoogendoorn, E. Vargas, Sun Blueprints Resource Management, Su...
	4. Rhee, A., Functional Specification for the Database Resource Manager Oracle8i, Oracle Corporat...

