Beyond Active Databases and Publish/Subscribe

�Christoph Bussler, Dieter Gawlick

�Oracle Corporation�500 Oracle Parkway�Redwood Shores, CA 94065, USA�Dieter.Gawlick@Oracle.com, Chris.Bussler@Oracle.com�

Introduction

Active databases and publish/subscribe have been considered as very distinct subjects. As it turns out, both technology have severe limitations. Once these limitations are recognized and removed, it becomes clear that both technologies are a projection of a much broader approach.

A List of Problems

Active Databases have been supported by major database vendors. The technology is based on triggers and provides a means to specify actions based on database activities. For a in-depth review see [1]. There are, however, a set of major issues:

The trigger technology is limited to database events. Extensibility for non-database events in application systems (for example application events in an enterprise resource planning system, ERP) are not supported.

The trigger technology is typically not scaleable, only a small number of triggers can be defined (<<10**6).

The trigger technology is designed for checking business policies. It does not ‘actively’ inform interested parties about changes of relevant information, e.g., trigger technology hardly creates active databases.

The publish/subscribe paradigm has been around for a very long time, newspapers and cable TV are some of the best examples. Publish/subscribe technology has been adapted to the computer environment. Stock tickers and auctions are some of the most visible examples. Computer technology added the ability to customize the information needs. A customer can select a subset of the information that has been published.

Today’s publish/subscribe technology, however, has a series of shortcomings:

Publishers determine what is of (general) interest by the fact that he controls what is published. Subscribers are limited to accept all or a subset of the offered information, i. e. subscribers react to publishers.

Publishers determine the content of publications. Publishers decide what of the interesting information is being published. Subscribers are limited to accept all or an extract of the offered information since they have no influence in the decision of what is published.

Publishers determine the categorization of the offered information. Subscriber have to accept the given categorization.

Publishers determine which communication mechanism can be used by subscribers. They can only select a subset of the given communication channels.

Data capturing, data staging, propagation/notification, and consumption are not provided as building blocks for defining publish/subscribe.

There is no for support standard data types, including extensibility equivalent to database extensibility. Examples are XML documents or business object documents (BODs) like purchase orders.

There is no standard for a subscription language and existing languages are rarely aligned with data query languages.

There is a lack of support for accountability, auditing, tracking, and non-repudiation. This functionality has to be automated.

The publication and delivery does not provide choices for QOS (quality of service) for desired operational characteristics.

Existing Technologies

This is not the place to review and evaluate a series of products. Database triggers and publish/subscribe technology have been widely applied in the industry. A good description can be found in [1] and examples can be found in [2]. How not to do it can be found in [5]. Our thesis is that by exposing and combining existing pieces of functionality from databases and database applications, we can implement an efficient framework that simultaneously generalizes triggers and publish/subscribe.

The Elements of a Solution

Provide an extensible trigger framework, e.g., provide a trigger system with is open to a wide range of trigger types. Example for trigger types would be the UPDATE trigger of a specific database table, or the PURCHASE ORDER CREATION of a specific ERP installation. Part of the description of a trigger is the structure of the instance information, potentially identifying a subset to be used for filtering.

Provide an interface for defining actions to be executed, when a trigger happens, and a filter to be matched against the trigger type and instance information. These filter represent the queries, which are used to evaluate the information from an trigger instance. Support for the full set of - extensible - SQL/XML expressions is assumed. Part of the description of each action is the list of the interested subscribers or groups of subscribers.

If a trigger instance happens, the extensible trigger framework provides a list of all matching actions to the computing environment which created the trigger. Obviously, the trigger framework has to identify all matching expressions matching a trigger instance. Another way to express this idea is: ‘the data are used to query the queries.’ One challenge is to provide an engine, which can deal with large numbers (10**7) of actions and can be optimized to various environments. Modern databases have significant technologies to deal with this problem.

Allow actions to capture relevant information into a (set of) staging area(s). Queues are important staging areas, depending on the application, however, other types of staging areas may be required (like database tables).

So far we have discussed a extensible and scaleable framework for capturing data according to needs of the subscribers. Now we have to discuss the communication.

We assume that the staging area can organize the captured information according to subscribers, priorities, and time or delivery. We further assume that the staging area provides SQL/XQL like access, that captured information can be retained, and that any activity will be automatically documented. Time of creation, time of consumption, identification of publisher should be included in the documented information. Moreover, documentation should be extensible and easy related to the information (VIEW concept).

We assume there is a directory of the subscribers along with their communication channels and addresses (telephone, e-mail, pager), their security information, and their characteristics (and process) of delivery based on type and content of the information, time, and other information.

We assume there is a set of distribution mechanisms are able to propagate information to users and document the interaction as required, including non-repudiation information. This information will be amended to information in the staging area.

The discussed functionality represents a B2B/C scenario in which legally relevant information is exchanged. Naturally, we assume that QOS required can be reduced for less demanding cases.

Component Layout

The fundamental idea for a solution separates the publish/subscribe mechanism from the publisher itself. Figure 1 introduces the concept of separation. Traditionally each system like an information system or a database system has its own publish/subscribe mechanism. The concept of separating it from those allows to provide the necessary abstraction and is central in the following.

� EMBED Word.Picture.6 ���

Figure 1: Separation of Publish/Subscribe Technology

The publish/subscribe system has the following subsystems (see Figure 2):

Trigger definition. This subsystem supports the definition of trigger types as discussed above. A trigger type has an action like “create” and a target object like “purchase order”. Furthermore, it specifies the payload as a structured data type like the purchase order header as well as the line items.

Filter matching. This subsystem supports the definition and execution of filters. A filter in general is a query defined against a trigger type. Once a trigger fires, the filters are executed (i. e. the queries) and the selected triggers are passed to the action subsystem.

Action execution. The action subsystem supports the definition of actions. An action is a projection of data of a trigger’s payload. That selection can join arbitrary data with it. The result of an action is data passed on to the staging area. Filter and actions together can be used to implement particular categorizations independent of the trigger’s payloads.

Staging area and subscription matching. The staging area collects all results of actions and matches the subscriptions of subscribers against results of actions. Each matching subscription causes the result of action to be sent to the subscriber.

Publisher and subscriber directory. The publisher and subscriber directory contains the actual list of publishers and subscribers, their communication channels as well as their triggers and subscriptions. For example, the subscribers communication channels are used to propagate the results of actions per their subscriptions.

Propagation. The propagation component uses the channel definitions to forward data (i.e. results of actions).

History and non-repudiation. An underlying component is the history and non-repudiation component. It records whatever was published or propagated so that it can be reconstructed at any point in time.

� EMBED Word.Picture.6 ���

Figure 2: Publish/Subscribe System

State of the Art

The intention here is to put the focus on some less familiar technologies, which can be partly found in Oracle9i, the Oracle DB/Application Server platform, and Oracle11i, the Oracle ERP application. In [3] and [4] details can be found about Oracle’s current business event management implementation.

References

[1] Widom, J.; Ceri, S.: Active Database Systems : Triggers and Rules for Advanced Database Processing. The Morgan Kaufmann Series in Data Management Systems, September 1995, Morgan Kaufmann Publishers; ISBN: 1558603042

[2] www.tibco.com

[3] Oracle Corporation. Oracle8i Integration Server Overview. Release 3 (8.1.7). See Section on Business Events

[4] Oracle Corporation. Oracle8i Application Developer's Guide - Fundamentals. Release 2 (8.1.6). See Section on Advanced Queuing

[5] Jacobsen, A.; L
