Main Memory Performance for Database Systems

Kenneth A. Ross

Columbia University

kar@cs.columbia.edu

1 Introduction

As random access memory gets cheaper, computers with large main memories become increasingly affordable.
Thus for both main memory databases and disk-resident databases, the efficient use of a large main memory
has become an important performance goal. For disk-based databases, CPU and main-memory related
performance has begun to dominate I/O performance as the critical bottleneck [GL01, ADHW99].

It is thus imperative that database architects switch from optimizing their systems for I/O to optimizing
them for memory performance. It is not even clear that monolithic commercial systems can be adequately
tuned for in-memory performance, given the design decisions embedded in their implementations. Systems
such as Monet that are designed for in-memory performance yield orders of magnitude improvements in query
performance over commercial systems for some kinds of workload [BRK98].

In this abstract, we attempt to highlight the critical architectural issues that affect in-memory database
performance, and to outline a research program for designing database systems to fit these architectural
parameters.

2 Architectural Parameters

2.1 Cache Behavior

Cache memories are small, fast static RAM memories that improve program performance by holding recently
referenced data [Smi82]. Memory references satisfied by the cache, called hits, proceed at processor speed;
those unsatisfied, called misses, incur a cache miss penalty and have to fetch the corresponding cache block
from the main memory. Modern architectures typically have two levels of cache (L1 and L2) between the CPU
and main memory. While the L1 cache can perform at CPU speed, the L2 cache and main memory accesses
normally introduce latencies in the order of 10 and 100 cycles respectively. Cache memories can reduce the
memory latency only when the requested data is found in the cache. The effectiveness of a cache mainly
depends on the memory access pattern of the application.

It has been observed by many that while CPU speeds have been improving dramatically over time, memory
latency has been improving only marginally [CLH98]. As a result, the relative cost of a cache miss has been
steadily growing, and is likely to continue to grow in the near future. Thus, unless special care is taken, memory
latency will become an increasing performance bottleneck, preventing applications from fully exploiting the
power of modern hardware.

We cannot simply apply well-known techniques for buffering disk-based data in RAM to the next level of
the memory hierarchy. The cache replacement policies are coded in hardware, meaning that we cannot tune
them to perform well for database workloads. Instead, we need to tune the database algorithms themsleves
to work well with conventional cache replacement hardware.

2.2 Pipelining and Branch Prediction

Conditional branch instructions present a significant problem for modern pipelined CPUs because the CPU
does not know in advance which of the two possible outcomes will happen. CPUs try to predict the outcome
of branches, and have special hardware for maintaining the branching history of many branch instructions. A
mispredicted branch incurs a substantial delay because many instructions in the pipeline have to be flushed, and

some operations undone. [ADHW99] calculates the branch misprediction penalty for a Pentium II processor
as 17 cycles.

2.3 SIMD Technology

SIMD instructions come in various flavors, including “MMX,” “SSE,” and “SSE2” on Intel machines, “VIS”
on UltraSparc machines, and “3DNow!” on AMD machines. Additional vendors with SIMD architectures
include Hewlett-Packard, MIPS, DEC (Compaq), Cyrix, and Motorola. SIMD instructions were designed to
accelerate the performance of applications such as motion video and graphics. Such applications typically use
compute-intensive algorithms to perform repetitive operations on large arrays of numbers.

There are many kinds of SIMD instruction besides comparison, including various arithmetic and logical
operations. Within a single architecture, there are various granularities available for SIMD operation. For
example, there are two additional packed-greater-than instructions in MMX: one compares eight 8-bit values,
and another compares two 32-bit values.

No current compilers for high-level programming languages support SIMD in a way that automatically
identifies parallelizable sections of code [SS00]. Despite the availability of some shared libraries and macro
packages, the most effective way of programming with SIMD extensions is by using assembly language [SS00].
Despite being tedious and error-prone, such an approach allows the greatest flexibility and precision when
coding. For tight inner loops requiring just tens of lines of assembly code, it is practical to write assembly
language code even if one has to rewrite the code for each platform.

2.4 Compilers

Compilers for languages such as C are available across a multitude of platforms. However, in terms of
performance, compilers vary substantially. In order to design algorithms for main-memory performance,
an understanding of the operation of the compiler is often necessary. Further, general purpose compilers
such as gcc do not take advantage of recently introduced special features or instructions available on specific
architectures. On the other hand, some compilers produced by hardware vendors such as Intel take advantage
of such features, but only on Intel architectures.

2.5 Avoiding Architecture Dependence

Modern CPU chips have broad similarities compared to one another. They all have a pipelined architecture,
in which several instructions are active in the pipeline at the same time. They all have a memory hierarchy
involving several levels of cache between the registers and RAM, with similar cache replacement policies coded
in hardware.

On the other hand, modern CPU chips also have numerous specific differences. For example, each has its
own instruction set, and its own degree of internal parallelism. Chip manufacturers face trade-offs in their
designs; improving on one aspect of a chip may lead to compromises in another aspect of the chip. Different
manufacturers choose different trade-offs.

Thus, when developing software that needs to run “close to the metal,” we are faced with the prospect
of making architecture-dependent decisions. One can imagine three levels of architecture dependence: (a)
independence, in which the same code can be run across many platforms; (b) semi-dependence, in which the
same code can be run on various platforms if recompiled with a change in the values of a few system-specific
parameter constants; (c) dependence, in which significant amounts of new code must be written for each
candidate platform.

We should aim for semi-dependence. Code should be written in (a standardized fragment of) a language
like C that can be compiled on many platforms. When we develop a cost model, the choice of values for the
various parameters will depend on the underlying architecture, and possibly also on the compiler. (This is
comparable to conventional disk-based databases, where the optimal choices for parameters such as the disk
block size depend to some degree on the disk device and the operating system.) A model should be broad
enough to include any architecture with pipelines and a memory hierarchy. Some parameters can be measured
at run-time [MBKO00].

One may still be concerned that architectural differences not included in the model may influence the
performance being measured. This is a classic tradeoff between the generality of a model, and its accuracy
when applied to particular real systems. For example, in disk-based systems it is still common to use a model

for a disk that has a single average random I/O cost and a single average sequential I/O cost. Disk device
enhancements, such as track buffering, reordering of requests, and faster data flow on the outer tracks of the
disk, are commonly omitted from the model even though they may affect real disk performance. Including
such detailed behavior would make the model unwieldy.

We face a similar dilemma here. Accounting for pipelined processors and a memory hierarchy is a first
step. We believe that these are the primary influences on performance measurements. Yet there are additional
secondary influences that should be examined in future research.

3 Strategies for Enhancing Main-memory Performance

3.1 Prefetching

The idea of prefetching is to overlap the latency of retrieving data from RAM with useful computation. This
approach is effective if one has advance knowledge of what data will be used in the near future. See [VLOO0]
for a survey. An obvious example of such behavior is a sequential scan of an array. One can prefetch the
soon-to-be-processed elements of the array while performing computations on the current elements of the
array.

3.2 Utilizing the Cache

Another approach involves making sure that the cache is used effectively by clustering contemporaneously
accessed elements within a cache line. [CHL99, CDL99] describe two general-purpose transformations that
can be applied to C programs. One such transformation restructures a struct element so that attributes that
are accessed together are adjacent, and within a cache line. A second transformation modifies the memory
allocation method so that referenced objects are placed in the same cache line as a popular referencing object.

One can do more sophisticated transformations if one is interested in optimizing a particular algorithm
or data structure. For example, [RR99, RR00] show how to define index structures that fit more keys into a
cache line than other proposed methods. As a result, fewer cache lines need to be accessed, and the method
has better cache behavior.

3.3 Avoiding Branch Mispredictions

To avoid branch mispredictions, one approach is to try to avoid conditional branches. For example, to
evaluate the condition £f1(r) && £2(r) && ... && fk(r), a traditional compiler would generate code with
k conditional branches. One could alternatively write the code as £1(r) & £2(r) & ... & fk(r) which has
just one conditional branch. Which of the two methods (or combinations of the methods) is best depends on
the selectivity of the conditions and the cost of the functions, as well as the cost of a branch misprediction.
In submitted work, we have looked at this problem in the context of applying multiple selection conditions to
an array of records. On different parameter ranges, different methods win, often by a factor of two or more
for common examples.

3.4 SIMD

SIMD operations allow low-level operations to be performed on multiple data items in parallel. There seems
to be much opportunity for using such methods in database systems, since many database operations involve
the repetitive processing of data elements.

In submitted work, we have applied SIMD techniques to the problem of indexing. We use the SIMD
instructions to compare the search key with two data elements at the same time, rather than one. Apart from
the improved parallelism, we can additionally avoid branch instructions because the results of the tests are
available as data values that can be manipulated arithmetically.

3.5 Blocked Algorithms

Suppose one wishes to join two relations that are both much larger than the cache. Then one can avoid a
substantial number of cache misses by dividing the relations into blocks that are smaller than the cache, and
perform sub-joins block by block [SKN94]. This technique makes use of temporal data reference locality.

3.6 Miscellaneous Techniques

Other important techniques include code specialization, limited use of nonbasic data types, columnwise storage,
and data alignment. We omit discussion of these techniques here.

4 Putting it all Together

Even if we optimize each piece of the system to perform well in isolation, we may observe degraded performance
when combined. For example, suppose we have implemented a main-memory database system in which there
are many concurrently running processes, each doing some useful work. A process executes for a time-slice,
then is switched out by the operating system until its next time-slice arrives.

In the interim, much computation may have taken place. That computation may have polluted the cache,
leading to poor cache behavior. This effect would be particularly important for methods relying on temporal
locality, such as in Section 3.5. Increased time-slices are possible up to a point, but time-slices cannot be
increased without limit.

High-level design decisions are necessary. These decisions affect most of how the database system will be
implemented. For example, one could try to design the memory management subsystem to allocate memory
in a way that reduces expected data contention. Another example might be the use of a convention that
database algorithms avoid polluting the cache; when possible they read data directly to the registers from
RAM (using special move instructions provided by the hardware). Such a convention will be effective only if
employed consistently by all algorithms in the system.

5 Conclusion

There are many issues to be explored for main-memory performance of database systems. These issues are
important, and will be of increasing importance as CPU-level issues such as the RAM latency come to dominate
the performance.

References

[ADHW99] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a modern
processor: Where does time go? In Proceedings of the International Conference on Very Large
Data Bases, pages 266-277, September 1999.

[BRK98] P. A. Boncz, T. Ruhl, and F. Kwakkel. The drill down benchmark. In Proceedings of the VLDB
Conference, pages 628-632, 1998.

[CDL99] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure definition.
In SIGPLAN Conference on Programming Language Design and Implementation, pages 13-24,
1999.

[CHL99] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-conscious structure layout. In
SIGPLAN Conference on Programming Language Design and Implementation, pages 1-12, 1999.

[CLH98] Trishul M. Chilimbi, James R. Larus, and Mark D. Hill. Improving pointer-based codes through
cache-conscious data placement. Technical Report 98, University of Wisconsin-Madison, Computer
Science Department, University of Wisconsin-Madison Madison, Wisconsin 53706, 1998.

[GLO1] Goetz Graefe and Per-ake Larson. B-tree indexes and cpu caches. In Proceedings of the 20th ICDE
Conference, 2001.

[MBKO00] S. Manegold, P. A. Boncz, and M. L. Kersten. What happens during a Join? - Dissecting CPU
and Memory Optimization Effects. In Proceedings of the International Conference on Very Large
Data Bases, September 2000.

[RR99] Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support in main memory.
In Proceedings of the 25th VLDB Conference, pages 78-89, 1999.

[RROO]

[SKN94]

[Smi82]

[SS00]

[VLOO]

Jun Rao and Kenneth A. Ross. Making B*-trees cache conscious in main memory. In Proceedings
ACM SIGMOD Conference, pages 475-486, 2000.

A. Shatdal, C. Kant, and J.F. Naughton. Cache conscious algorithms for relational query
processing. In Proceedings of the International Conference on Very Large Databases, pages 510—
521, 1994.

Alan J. Smith. Cache memories. ACM Computing Surverys, 14(3):473-530, 1982.

Nathan Slingerland and Alan Jay Smith. Multimedia extensions for general purpose microproces-
sors: A survey. Technical report CSD-00-1124, University of California at Berkeley, 2000.

S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms. ACM Computing Surveys, 32(2):174—
199, 2000.

