Too Much Middleware

By

Michael Stonebraker

Cohera Corporation

Abstract

The movement from client-server computing to multi-tier computing has created a potpourri of so-called middleware systems, including application servers, workflow products, portals, EAI systems, ETL systems and federated data systems. In this paper we argue that the explosion in middleware has created a myriad of poorly integrated systems with overlapping functionality. The world would be well served by considerable consolidation, and we present some of the ways this might happen.

1. Introduction

A typical Fortune 1000 company has a myriad of mission critical data systems on which the enterprise depends. Such systems include ERP systems, sales tracking systems, HR systems, etc. Over the last twenty years, the conventional wisdom was to implement such applications using a two-tier client-server computing model, with the application running on the client desktop connected to a DBMS on a shared server.

Recently, several factors have rendered client-server computing completely obsolete. First, the web forces a thin client world, whereby only a portion of the application can run at the desktop and the remainder must run in a middle tier, commonly called “middleware”. In addition, application systems must often communicate with each other, creating the necessity of middle tier messaging systems. Process flow applications also require middle tier messaging systems. These are but examples of a variety of reasons for multi-tier architectures.

This switch in architecture has facilitated new classes of middleware products. In Section 2 we will briefly review the major classes of products that fit in this category. Then, in Section 3 we show that the various product classes have dramatic overlap in functionality. Moreover, this overlap will likely increase in the future. We then argue that this product overlap is very bad for customers, leading to complex and inefficient environments. Lastly, in Section 4 we project some scenarios, whereby a consolidation of middleware products could occur.

2 Middleware Products

In this section we will discuss six classes of middleware products, namely application servers, enterprise application integration (EAI) systems, workflow systems, extract, transform and load (ETL) products enterprise portals, and data federation systems.

2.1 Application Servers

Application servers have been in existence for more than twenty-five years. Historically, they were called TP monitors, the most popular being the IBM Customer Information and Control Systems (CICS). Recently, the category has been renamed application servers, and includes products such as Silverstream, Dynamo from ATG, WebLogic from BEA Systems, Bluestone, Cold Fusion from Allaire and WebSphere from IBM.

TP monitors and application servers provide application activation. To perform efficiently, they also provide multi-threading of applications (that were written to allow threading), connection multiplexing distributed transactions, and load balancing. Lastly, most provide a security module including authentication, single site login, and access control.

2.2 EAI Products

A typical large enterprise has more than 5000 major application systems. Such systems are always logically interconnected. To service the needs of interacting application, a class of products called enterprise application integration (EAI) systems arose. The core functionality is to reliably deliver a message from one application to a second one, which needs to be alerted concerning an action taken by the first one. Since the two communicating systems, which were written independently, never agree on the syntax and semantics of application constructs, there is a need for message transformation between the originator and the recipient. Lastly, EAI products typically support adaptors to popular packages, so the user is spared from learning the details of the product API.

The basic functionality provided by EAI systems is message delivery and transformation. Products in this category include NEON, Vitria, Crossworlds, CommerceQuest, MQSeries from IBM, and Tibco. Some of these products (e.g. MQSeries) have morphed into the EAI space from pure messaging; others (e.g. Tibco, Vitria) have an origin as a publish/subscribe system.

2.3 Workflow Systems

Workflow systems have also been in existence for many years. The early systems were oriented toward procurement, and the focus was on process flow. Many adopted a “boxes and arrows” GUI to describe the business rules that determine process flow.

Workflow diagrams are typically compiled into some sort of middleware framework for execution. Products in this category include Domino from Lotus, Versata, Process Integrator from BEA, and Flowmark from IBM.

2.4 ETL Systems

A large enterprise has more than 5000 major application systems that hold data critical to the efficient functioning of the enterprise. There is an obvious need for data integration, so that a business analyst can get a more complete picture of the enterprise and how to optimize it.

The conventional wisdom for performing this task is to buy a giant machine located in a safe place (say under Mount Washington). Periodically, desired data is “scraped” from each operational data system using an adaptor for the source system and copied to Mount Washington. Of course, the various operational systems never have a common notion of enterprise objects, such as a purchase order. Hence, there is a requirement to transform source data to a common format before loading it onto the Mount Washington machine.

Large common machines came to be known as warehouses, and the software to access, scrape, transform, and load data into warehouses, become known as extract, transform, and load (ETL) systems. In a dynamic environment, one must perform ETL periodically (say once a day or once a week), thereby building up a history of the enterprise.

The requirement for historical data integration has driven the ETL market, and products are available from Informatica, Ardent, Data Mirror, and the major data base vendors.

2.5 Portals

Portal software has also been in existence for many years. Historically, they began as executive information systems, fulfilling a need for casual, ad-hoc interaction with corporate data systems. Obviously, such systems have moved to the web. Moreover, the reach of such systems has been extended beyond top-level executives in two dimensions. The first area is enterprise self-service, i.e. casual, ad-hoc access to enterprise systems by end users. The second area is to provide easy-to-use interfaces for business intelligence applications. Hence, the EIS vendors have broadened their focus to employee self-service and business intelligence and renamed their products to be portals. Notice that portal software is increasingly providing services similar to ETL and EAI products.

2.6 Data Federation Systems

The conventional wisdom is to use data warehousing and ETL products to perform historical data integration. In contrast, there is also a need to integrate live (operational) data. Operational data integration arises in B2B commerce applications such as assembling product data from multiple enterprises or divisions of a single enterprise and managing inventory in a multi-enterprise supply chain. The only way to guarantee correct operational data integration is to fetch information at the time it is needed from the originating system.

The need for live data integration has created a market for data federation systems. These products construct a composite view of disparate data systems and allow a user to run SQL commands, including retrieves and updates to this composite view. The best of breed products in this category support transactions, integrate non-identical schemas, and contain adaptors for many source data systems. Products in this category include systems from Cohera, IBM, and Sybase.

3. Commonality
The various kinds of middleware described in the previous section were motivated by very different requirements, as noted above. A typical large enterprise has needs in each area, and therefore has purchased at least one product from each class of system. Some enterprises have more than one system in each category. Although the classes of systems started with different objectives, they have grown to have highly overlapping functionality. This is explored more fully by revisiting each of the system categories, and indicating the current functionality of the best-of-breed participants.

In order to provide transformations, an EAI system must be able to activate transformation functions. This functionality requires an application server, and most EAI products embed at least a lightweight application server. In addition, many transformations require more than one step. Hence, the best-of breed EAI systems provide multi-step transformations, and typically use a workflow model to support this.

ETL systems must provide transformations and thereby must include at least a simple application server and multi-step transformations entail workflow. As such, the major difference between ETL and EAI is that ETL focuses on bulk data movement while EAI deals with real-time movement.

Let us move to data federation systems. Since all real world schemas that need to be integrated are heterogeneous, the best-of-breed systems support transformations to a common format during data access. As such, they also provide function activation for transformations, which typically combine SQL with custom code in an object-relational style. Finally, they support the ability to construct new tables from queries on existing tables. The execution of such queries can invoke transformations to a common schema. As such, they provide, in effect, an ETL system as a portion of their functionality.

Portals also provide access to multiple data sources, though it is up to a user to do any required multi-site integration. Moreover, they require adapters to connect to legacy systems, as well as transformations to a common format for disparate data. Such transforms, of course, require function activation, and most portals have an application server bundled into their product offering.

Figure 1 summarizes this overlap in functionality among the various kinds of systems.

There are three major problems with the state of affairs in Figure 1. The first one concerns duplication of effort. Since major enterprises are running most, if not all, of these classes of products, they are running an example from each row in Figure 1. Since each product has its own transformation system, the enterprise must re-implement each transform as many as six times. For example, if the enterprise needs a transform that converts French francs to US dollars, the chances are great that it will re-implement this transform several times.

functionality
function

activation
transforms
adapters
application

messaging
bulk

transfer
distributed

query
distributed

transactions
process

flow

system

application

server
yes

yes

EAI
yes
yes
yes
yes

yes

workflow
yes

yes

ETL
yes
yes
yes

yes

yes

portal
yes
yes
yes

yes

data

federation

system
yes
yes
yes

yes
yes
yes

 Function Overlap

 Figure 1

Of course, it would be great to have an enterprise-wide metadata and transformation repository, but few enterprises have this capability. Also, few products are capable of importing transforms from such a repository. Lastly, most products have a proprietary transformation system and do not obey popular transform protocols, such as J2EE.

As a result, there is likely to be considerable duplicated effort.

A second problem is that each class of product has its own:

1) tuning considerations

2) memory management model

3) security model

4) debugging environment

5) development environment

6) crash recovery procedures

7) fault model

In effect, each product requires a system administrator. A potpourri of products makes such system administration more difficult and expensive.

A final problem is that this potpourri of systems tends to generate political fiefdoms, each with its own chosen technology. Moreover, with such overlap in functionality, there are multiple fiefdoms in which any task can be implemented, leading to a more complex task design. Lastly, there are more kinds of moving parts for management to understand, leading to extra complexity.

In summary, there is duplication of effort and added complexity. The obvious solution to this situation is to have fewer moving parts. This is the topic of the next section.

4. Reduction of Middleware Components

In this section we present some possible reductions in the middleware chaos. These are ones that are technically logical; no attempt has been made to apply marketplace politics to this situation. Hence, marketplace acceptance of these ideas is unknown.

Data Federations Subsume ETL

As mentioned earlier, data federation systems offer a pure superset of the functionality of ETL systems. Hence, they should simply subsume ETL systems as a special case. For this subsumption to take place, something like the transformation development environments of some of the popular ETL products must get integrated into one or more data federation systems.

The result of this subsumption is that enterprises will have a uniform environment for physical warehouses (all the data in one place) and virtual warehouses (assemble the data on demand from the owner of the data). Physical warehouses are optimized for historical access, while virtual ones do best on operational data.

EAI Subsumes Workflow

It is clear that EAI is moving into process flow. It appears that EAI offers a broader vision than workflow, and thereby may be able to subsume this category.

Portals and Application Servers Integrate Data Federation Systems
Application servers typically allow a user to run transactions that span multiple sites, typically providing a two-phase commit protocol to guarantee data consistency across sites. However, the application program must know where the data resides and how to break down a cross-system task into single-site pieces. Hence, they must apply CODASYL-like logic for cross-system tasks. A valuable addition to such an application server would be a data federation system to extend its capabilities with declarative logic for these tasks.

A similar discussion applies to portal vendors. Again, the application developer must understand how to produce multi-site data retrieval tasks. Again, a valuable addition would be a data federation system.

EAI and Application Servers Converge

This is already starting to occur in some of the popular products.

5. Summary

In summary, I see consolidation of the various classes of middleware products into a much smaller set. This consolidation will occur using two principles.

First, broader products will subsume the functionality of narrower products. I expect EAI to subsume workflow and federations to subsume ETL as noted above. Second, I expect products in various categories to be merged into “super products”. I expect that to occur in EAI, application servers and federation systems. Such super products will increasingly offer all required middleware functionality in a single integrated environment, requiring only one kind of middleware system administrator. Customers will benefit from this consolidation by having a simpler environment to administer and having a single place where transformations have to be written, registered and executed.

