Application Connector Parallelism
in
Enterprise Application Integration (EAI) systems

Pranta Das

Core Technology, CrossWorlds Software, Inc.

577 Airport Blvd.

Burlingame, CA 94010

pranta.das@crossworlds.com
Abstract

Advances in multiprocessor architecture and sophisticated multithreaded software constructs have very quickly made sequential processing a thing of the past, especially when it comes to the design of scaleable mission-critical transaction processing systems. The need for Application Connector Parallelism in EAI systems arises from the fact that most application API libraries to which these Application Connectors are tied to, have the following limitations:

· They lack thread-safety, which precludes the use of multi-threading in the Application Connector

· They lack re-entrance within the same process, which sometimes restricts Application Connectors to a single connection, session or activity to the application.

Thus, a single synchronization point in the Application Connector that serializes all calls to the application, whether for asynchronous event delivery or for synchronous requests, becomes the crux of a performance bottleneck in most Application Connectors. In other words, in spite of multiple requests coming into the Application Connector at any point in time, they are all sequentially executed on their entry into the application. This dramatically affects the overall throughput of the system and the latency of individual requests.

Moreover, with the advent of the web-enabled user-interfaces, the latency of individual requests to an EAI system becomes even more critical to an end-user.

In an attempt to solve this problem, this paper adopts a variant of Server Classes (used by most TP monitors as explained in [1] Gray/Reuter) called Resource Classes. The idea behind resource classes is to dedicate a pool of Application Connector processes, each of which have a devoted connection to the underlying application, for a given class of requests. All these resource pools are managed together as a cache of available Application Connector processes, which allows for scavenging of resources between pools.

This solution proposed by this paper promotes application independent, infrastructure-provided parallelism.

1 Introduction

This paper discusses a new approach in overcoming the scalability limitations of application connectivity in Enterprise Application Integration (EAI) systems. It first briefly describes EAI systems in general. It then delves into the nitty-gritty of the scalability issues faced in existing systems and how they can be overcome.

2 EAI systems: State-of-the- Art

Enterprise Application Integration (EAI) systems are those that allow a company’s internal enterprise applications to operate together. EAI vendors offer everything from a low-level transport technology that must be heavily customized to meet a customer’s needs, to integration-specific software tools that help build custom solutions, to more complete, product-based integration solutions. A more recent hybrid of EAI systems are Business to Business Integration (B2Bi) systems which permit a company to automate its interactions with suppliers and customers over the Internet. These relationships are based on standards such as EDI, XML and variants such as RosettaNet and CIDX. B2Bi solutions range in type from internally custom-built, to product-based, to out-sourced trading community and logistics solutions.

2.1 Architecture of EAI systems

EAI systems can be broadly classified under point-to-point systems and hub & spoke systems. The architectures of these are explained below.

2.1.1 Point-to-Point integration architecture

A traditional point-to-point integration scheme comprises of dedicated custom connectors from each application system pair as depicted in the Figure 1 below:

[image: image2.wmf]

Obviously, a point-to-point architecture is not easily extensible because for each additional application system that needs to be integrated, the number of connectors will increase exponentially.

2.1.2 Hub & Spoke integration architecture

On the other hand, a hub & spoke integration scheme comprises of an integration hub and several spoke connectors (one for each application system to be integrated) as depicted in the Figure 2 below:

The integration hub typically contains:

· a generic business object model,

· a transformation engine that maps all application specific business objects to the generic form and vice versa during the integration process and,

· a collaboration engine that executes any business process logic that is part of the integration synchronization process.

Whenever a new application needs to be integrated, only a single new connector needs to be added in such a scheme.

2.2 Performance and Scalability of EAI systems

Since EAI systems are usually poised in the heart of an enterprise’s information system, their performance and scalability become critically important.

Although, there is no current industry standard benchmark metric for measuring the performance of an integration system such as TPC-C, the performance of integration systems typically can be measured using two broad metrics:

· Business Process Transactions per unit time: This is a measure of throughput of integration transactions made through the integration hub.
· Average Response Time for Synchronous Requests: This is a measure of average latency of a synchronous request made to an EAI system.
For point-to-point EAI systems, typical scaling solutions involve the manual addition of extra processing nodes (application connectors), each of which unnecessarily complicate management and administration of the overall integration solution.

On the other hand, while most hub & spoke EAI systems are fairly well geared in scaling the Integration Hub, very little or nothing has been done to address the scalability of the spokes.

The solution espoused by this paper is applicable to both integration architectures. However, for the sake of simplicity, the illustrations used are based on a hub & spoke EAI system.

3 Limitations of current connectors

3.1 Single-threaded application APIs and non-reentrant application libraries

For connectors for applications that have thread-safe APIs, there are no inherent scalability problems, since the underlying connector can be multi-threaded and we can make concurrent connections to the underlying applications.

However, most application APIs are not thread-safe and some applications do not even allow more than one connection from the same process. In such cases, a mutex (mutual exclusion lock) needs to be held prior to making the application API call as shown in Figure 3 below:

3.2 Lack of dedicated connection resources for synchronous requests

With the advent of the web-enabled user-interfaces, the latency of individual synchronous requests to an EAI system becomes even more critical to an end-user. Most connector architectures do not cater to this need.

4 Resource Classes

In an attempt to solve the shortcomings of existing connectors, this paper adopts a variant of Server Classes (used by most TP monitors as explained in [1] Gray/Reuter) called Resource Classes. The idea behind resource classes is to dedicate a pool of Application Connector processes, each of which have a devoted connection to the underlying application, for a given class of requests

In a typical EAI environment, there are two primary types of requests:

(i) Event Triggered Requests that originate from asynchronous events generated by an application, and

(ii) Call Triggered Requests that originate from external clients such as a web-browser

The objectives are to minimize the average latency for Call-Triggered Requests, while at the same time ensure acceptable average latency for Event-Triggered Requests and achieve optimal throughput for the overall system. Therefore, we would need to dedicate a separate Resource Class to handle each type of request.

In order to be able to distinguish each type of request, each request will need to be tagged in the Integration Hub before it flows into the application Connector process.

5 Master-slave paradigm

The new proposed connector architecture adopts a master-slave paradigm, where the connector master process merely acts as a dispatcher of incoming requests and routes these requests to separate pools of Connector Slaves.

These Connector Slave pools all belong to a shared Resource cache, so that in order to optimize the utilization of resources, and hence avoid any wastage, slave processes can be scavenged from different pools in case of a shortage in that pool.

This new architecture is depicted in Figure 4 below.

The resource ParallelProcessDegree will indicate the degree of parallelism of the application Connector. It will have a default value of 1 (one). This value will emulate serial mode of execution.

The value of this resource will determine the total number of slave processes that will be spawned by the Master Connector process to handle incoming requests.

This resource is dynamically configurable. This means that if this is reconfigured, then the Connector process will not need to be restarted for it to take effect. When increased, additional slave processes will be spawned. When decreased, the required number of existing slave processes, once they complete what they are doing, will be terminated.

The allocation of the resource ParallelProcessDegree will be allocated among two Resource Classes viz. Event Triggered Requests and Call Triggered Requests. Each of these will incorporate a maximum percentage allocation and a minimum percentage allocation of the total resource. This concept is depicted below:

	Resource

	ParallelProcessDegree

	Resource Pool Allocation

	Resource Class
	Minimum
	Maximum

	Event Triggered Requests
	15%
	30%

	Call Triggered Requests
	25%
	70%

The maximum allocation percentage is the actual allocation and the total maximum allocations must add up to a 100%.

The minimum allocation percentages denote the minimum allotment of resources that will always be available in a pool, since resources may be scavenged/borrowed by other pools to ensure minimum resource wastage.

6 Performance Metrics

A study on the performance metrics for varying degrees of parallelism and latency yielded the results shown in Figure 5:

[image: image1.wmf]Parallel Connector Performance Scalability

0

100

200

300

400

500

600

700

800

Latency (in milliseconds)

Business Process Transactions (in

internal units)

1

2

4

8

16

ParallelProcessDegree

point of diminishing returns

linear scaling

 2000 ms 1000 ms 500 ms

Figure 5: Scalability results

As is apparent from the above graph, the higher the latency of individual requests, the more the degrees of parallelism that can be serially scaled to. For lower latencies, we will quickly reach a point of diminishing returns, beyond which the cost of maintaining additional processes outweigh the utilization and thus benefit of additional slave processes. Typical latencies for API calls into applications such as SAP and Siebel range from 2000 ms to 5000 ms and thus this is a fairly representative sample set.

7 Conclusion

The scalability of EAI systems is heavily dependent on the applications involved in the integration process. Application Connector Parallelism is a way to overcome the limitation of single-threaded and non-reentrant application API libraries so as to provide maximum throughput and minimum average response times in an EAI system.

8 References

[1] Gray/Reuter: Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques. Morgan Kaufmann (1993) San Mateo, CA

Application Systems = n, Connectors = n *(n-1)

Figure 1: Point-to-Point Integration architecture

Application Systems = n, Connectors = n

Figure 2: Hub & Spoke Integration architecture

Integration Hub

Thread

pool

Resource Class Request Queues

Connector Slave Processes

Resource Class Pools and Slave Coordinators

Request Dispatcher (dispatches to queue based on request tag)

Resource Cache

Distributed Object Transport

Single-threaded application

API

Application

Thread

pool

Connector

Integration Hub

 Listener

Collaboration

Mutex

Connector Master Process

Integration Hub

 Listener

Collaboration

Application

Figure 3: Serial Process Connector Architecture

Figure 4: Parallel Process Connector Architecture

 … … …

� Paper for the Ninth International Workshop on High Performance Transaction Systems (HPTS), Oct. 14-17, 2001. (� HYPERLINK "http://research.microsoft.com/~jamesrh/hpts2001" �http://research.microsoft.com/~jamesrh/hpts2001�)

_1061703842.xls
Chart5

		30.55		60.35		122.35		243.3		478.15

		60		119.65		239.8		474.05		709.05

		110.65		231.5		464.2		730.95		712.95

ParallelProcessDegree

point of diminishing returns

linear scaling

2000 ms 1000 ms 500 ms

1

2

4

8

16

Latency (in milliseconds)

Business Process Transactions (in internal units)

Parallel Connector Performance Scalability

Sheet1

		

Sheet1

		30.55		60.35		122.35		243.3		478.15

		60		119.65		239.8		474.05		709.05

		110.65		231.5		464.2		730.95		712.95

ParallelProcessDegree

point of diminishing returns

linear scaling

2000 ms 1000 ms 500 ms

1

2

4

8

16

Latency (in milliseconds)

Business Process Transactions (in internal units)

Parallel Connector Performance Scalability

Sheet2

		

Sheet3

		

