
Full circle for Web services transactions?
Submission for High Performance Transaction Systems Workshop, October 2003

Mark Little,
Chief Architect,

Arjuna Technologies Ltd,
 (mark.little@arjuna.com)

Introduction
The concept of atomic transactions has played a cornerstone role in creating today’s
enterprise application environments by providing guaranteed consistent outcome in
complex multiparty business operations and a useful separation of concerns in
applications. While numerous multiparty business applications involve various patterns
based on atomic transactions in order to solve non-trivial business problems, it was not
until recently the word “business transactions” accumulated any concrete meaning. Rapid
developments in Internet infrastructure and protocols has yielded a new type of
application interoperation that makes concepts which could only previously be
considered in an abstract form an implementation reality. The effects of such changes
have been felt most strongly in business environments, fuelling the mindset for a
transition from traditional atomic transactions to extended transaction models better
suited for Internet interoperation.

Most business-to-business applications require transactional support in order to guarantee
consistent outcome and correct execution. These applications often involve long running
computations, loosely coupled systems and components that do not share data, location,
or administration and it is thus difficult to incorporate traditional ACID transactions
within such architectures. For example, an airline reservation system may reserve a seat
on a flight for an individual for a specific period of time, but if the individual does not
confirm the seat within that period it will be unreserved.

In 2001, a consortium of companies including Hewlett-Packard, Oracle and BEA began
work on the OASIS Business Transaction Protocol (BTP), which was aimed at business-
to-business transactions in loosely coupled domains such as Web Services [1]. The
specification developed two new models for “transactions”, requiring business- level
decisions to be incorporated within the transaction infrastructure. By April 2002 it had
reached the point of a committee specification. Hewlett-Packard quickly followed this
with the first commercial product based on this specification.

However, notable by their absence from BTP were Web Services heavy weights IBM and
Microsoft, who in August 2002 released their own specifications: Web Services
Coordination (WS-C) [2] and Web Services Transactions (WS-T) [3]. Although the WS-
T specification also defines two “transaction” models, they are both very much grounded
in existing transactional infrastructures. In particular, business applications would use
WS-T in the same way applications use traditional transaction systems; there is no
attempt to force this business logic into the transactional infrastructure.

Unfortunately for developers who require transaction support in their Web Services, the
release of two competing specifications has effectively frozen the market. Is this a case of
the “not invented here syndrome” (sometimes known as “my protocol is better than
yours”) or is there some fundamental reason why two different protocols have arisen?
Have requirements really changed so much in the last two years?

Why two protocols?
In order to answer this question it is first necessary to give some (brief) background on
what each specification provides and what has driven its development.

OASIS BTP

To ensure atomicity between multiple participants, BTP uses a two-phase completion
protocol: during the first phase (prepare), an individual participant must make durable
any state changes that occurred within the scope of the transaction, such that those
changes can either be undone (cancelled) or made durable (confirmed) later once
consensus has been achieved. Although BTP uses a two-phase protocol, it does not imply
ACID semantics. How implementations of the prepare, confirm and cancel phases are
provided is a back-end implementation decision. Issues to do with consistency and
isolation of data are also back-end choices and not imposed or assumed by BTP.

Because the traditional two-phase algorithm does not impose any restrictions on the time
between executing the first and second phases, BTP took the approach of using this to
allow business- logic decisions to be inserted between the phases. What this means is that
users have to drive the two phases explicitly in what BTP terms an open-top completion
protocol. The application has complete control over when transactions prepare, and
using use whatever business logic is required later determine which transactions to
confirm or cancel. Prepare becomes part of the service business logic, for example.

BTP introduced two types of extended transactions, both using the open-top completion
protocol:

• Atom: The outcome of an atom is guaranteed to be atomic;

• Cohesion: this type of transaction was introduced in order to relax atomicity. The
two-phase protocol for a cohesion is parameterised to allow a user to specify
precisely which participants to prepare, cancel or confirm.

WS-C/T

The fundamental idea underpinning WS-Coordination is that there is a generic need for a
coordination infrastructure in a Web services environment. The WS-Coordination
specification defines a framework that allows different coordination protocols to be
plugged-in to coordinate work between clients, services and participants.

Whatever coordination protocol is used, and in whatever domain it is deployed, the same
generic requirements are present:

• Instantiation (or activation) of a new coordinator for the specific coordination
protocol, for a particular application instance;

• Registration of participants with the coordinator;

• Propagation of context;

The WS-Transaction specification plugs into WS-C and proposes two distinct models,
where each supports the semantics of a particular kind of B2B interaction:

• Atomic Transaction: is similar to traditional ACID transactions and intended to
support short-duration interactions where ACID semantics are appropriate.

• Business Activity: is designed specifically for long-duration interactions, where
exclusively locking resources is impossible or impractical. In this model services
are requested to do work and may provide compensators to be executed if the
business-to-business interaction aborts. How services do their work and provide
compensation mechanisms is not the domain of the WS-Transaction specification,
but an implementation decision for the service provider.

Comparing and contrasting
Although at first glance it may seem like there is commonality between the two
specifications (both support a two-phase completion protocol, for example), there are
significant differences from both a protocol and implementation perspective.

Pros and Cons of BTP

As you might expect from a specification that took over a year to develop, on the plus
side the BTP specification is well formed and complete. Unfortunately, although the
protocol is not complex to understand, the specification is nearly 200 pages! It is thus not
an easy sell for customers or analysts (and sometimes implementers).

What does it mean to be a user of a Web services transaction? Initially it may seem like a
good idea to let business logic directly affect the flow of a transaction from within the
“commit” protocol, but in practice it doesn’t really work: it blurs the distinction between
what you would expect from a transaction protocol (guarantees of consistency, isolation
etc.) which are essentially non-functional aspects of a business “transaction”, with the
functional aspects (reserve my flight, book me a taxi, etc.) In BTP, because business logic
is encoded within the transaction protocol, it essentially means that a user had to be
closely tied to the (or perhaps even be a) coordinator! Business information, such as the
ability for a participant to remain “prepared” (e.g., hold onto a hotel room) for a specific
period of time is propagated from the participant to the coordinator, but there is nothing
within the protocol to allow this information to filter up to the application/client where it
really belongs!

In fact, in order to use cohesions it is also necessary for Web services to expose back end
implementation choices about participants: in order to parameterise the two-phase
completion protocol, the terminator of the cohesion obviously needs to be able to say
“prepare A and B and cancel C and D”, where A, B, C and D are participants that have
been enrolled in the cohesion by services (such as a flight reservation system). In a
traditional transaction system users don’t see the participants (imagine if you had to
explicitly tell all of your XA resource managers to prepare and commit?) Naturally this is

something that programmers don’t feel comfortable with and it goes against the Web
services orthodoxy. Because BTP requires transaction control to use the “open top”
approach, it is difficult to leverage existing enterprise transaction implementations.

Furthermore, the BTP specification expends great efforts to ensure that two-phase
completion does not imply ACID semantics. This is good in so far that traditional ACID
transactions are not suitable for all types of Web services interactions. However,
everything is left up to back-end implementation choices and there is nothing in the
protocol (implicit or explicit) to allow a user to determine what choices have been made.
Therefore, it is impossible to reason about the ultimate correctness of a distributed
application. For example, if you wanted to use BTP for ACID transactions, then of course
services could use traditional XA resource managers (for example) wrapper by BTP
participants. Unfortunately, there is no way within the BTP for those services to inform
external users that this is what they have done so that they can safely be used within the
scope of a BTP “ACID” transaction.

Pros and Cons of WS-T

Both the WS-C and WS-T specifications are smaller than BTP, at about 45 pages in total.
It is apparent from the specifications that simplicity and interoperability with existing
transaction infrastructures played a key role in their development. Unfortunately they are
also incomplete and have several protocol errors. For example, although heuristic
outcomes are inevitable in distributed transactions, no support is provided in WS-T.
Likewise, distributed recovery is paid very little attention. However, these are all issues
that subsequent revisions can obviously address.

On the plus side, the separation of coordination from transactions is good: coordination is
a more fundamental requirement and a separate framework offers the chance for a cleaner
separation of concerns [4]. Because WS-C does not imply transactionality or a specific
protocol implementation, it can therefore be used in more places than other protocols that
have use of coordination but are tied to transactions (such as BTP).

The fact that WS-T Atomic Transactions are meant specifically for closely-coupled
interactions with ACID semantics makes integration with back-end infrastructures easier.
Web Services are for interoperability as much as for the Internet. As such,
interoperability of existing transaction processing systems will be an important part of
Web Services transactions: such systems already form the backbone of enterprise level
applications and will continue to do so for the Web services equivalent. Business-to-
business activities will involve back-end transaction processing systems either directly or
indirectly and being able to tie together these environments will be the key to the
successful take-up of Web Services transactions. It also takes away any ambiguity from
users and services: they know a priori what semantics to expect.

In the realm of “extended transactions”, the WS-T Business Activity also plays very well.
It gives service developers complete freedom to define compensation mechanisms that
best suit their services (for example, using Atomic Transactions where necessary), whilst
at the same time providing a simple model for the users of these services. In addition, it
ties in well with Web services choreography techniques.

What does this mean for transaction vendors?
Two years ago the world of Web services and transactions looked like a new frontier,
requiring new techniques to address the problems that it presented. BTP was seen as the
solution to those problems. Unfortunately, with the benefit of hindsight it did not address
what users really want: the ability to use existing enterprise infrastructures and
applications and for “Web services transactions” to operate as the glue between different
corporate domains. And it had better be simple to use and understand as well!

The BTP model is superior to WS-T in several respects, but crucially it does not address
the issues of transaction interoperability: most enterprise transaction systems do not
expose their coordinators through the two-phase protocol. In addition, BTP has many
subtle (and some not-so-subtle) impacts on implementations, both at the transaction level
but more importantly at the user/service level.

So does this mean that the answer to Web services transactions is what we have had for
the past 20+ years but using XML and SOAP? Yes and no! If we had the luxury to start
from scratch and force everyone to throw away their corporate investments in
infrastructure, training etc., then something based on BTP might be the answer. In the
real world, however, we can’t do that and it is unreasonable to assume otherwise. The
investment in transaction processing systems over the past few decades has cost $billions
and any scheme to leverage that investment rather than replace it is the way forward.

Much has been made of the fact that ACID transactions aren’t suitable for loosely
coupled environments like the Web. However, very little attention has been paid to the
fact that these loosely coupled environments tend to have large strongly coupled
corporate infrastructures behind them! When BTP started, the question should not have
been “what can replace ACID transactions?”, but rather “how can we leverage what
already exists?”

References
[1] BTP Committee specification, http://www.oasis -open.org/committees/business-transactions/,

April 2002.

[2] Web Services Coordination Specification,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
coordination.asp, August 2002.

[3] Web Services Transactions Specification,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
transaction.asp, August 2002.

[4] “A Framework for Implementing Business Transactions on the Web”, Hewlett-Packard initial
submission to BTP, March 2001, http://www.oasis -open.org/committees/business-
transactions/

