

Utilization is Virtually Useless as a Metric!

Adrian Cockcroft – Netflix

We have all been conditioned over the years to use
utilization or %busy as the primary metric for capacity
planning. Unfortunately, with increasing use of CPU
virtualization and sophisticated CPU optimization
techniques such as hyper-threading and power
management the measurements we get from the systems
are “virtually useless”. This paper will explain many of
the ways in which the data we depend upon is distorted,
and proposes that we turn to direct measurement of the
fundamental alternatives, and express capacity in terms
of headroom, in units of throughput within a response
time limit.

1. Background
The main new theme at the CMG 2005 conference
seemed to be CPU virtualization. Many people using
VMware, Xen, Solaris Zones, Hyper-Threading and
other virtualization facilities are finding that their
measurements of CPU utilization don't make sense any
more. The primary performance management vendors
were discussing how they are building some support for
virtualization concepts into their tools. While the
mainframe world has been dealing with virtualization for
many years, the Unix/Linux and Windows world has
now adopted a bewildering variety of virtualization
techniques, with no standard metrics, and often without
any indication that the CPU has been virtualized!

2. The Good Old Days
Lets start by examining the way we have traditionally
collected and manipulated utilization, and highlight the
underlying assumptions we have made in the past. These
assumptions are not always stated, and in many cases
they no longer hold.

Utilization is properly defined as busy time as a
proportion of elapsed time. Utilization can also be
obtained by multiplying the average throughput of the
service by the average service time. If an operation takes
10ms to process and the service is performed 50 times a
second then the utilization will be 50 * 0.010 = 0.5,
usually written as 50%. When applied to a simple queue,
with work arriving at random, we also know that the
response time and the queue length increases at high
utilization.

The most fundamental assumption here is that the
average service time is constant, and does not depend
upon the load level. This is one of the assumptions that
has been broken by virtualization, Hyper-threading and
variable speed power-saving CPUs. We will discuss
these technologies later in this paper.

The simple queue has a single processing element. In
reality, today’s computer systems do not form simple
queues and do not have a single processing element.
Operating systems expose an abstraction that looks like a
simple set of processing elements, and provide metrics to
measure that abstraction, such as overall CPU utilization.

Common capacity planning techniques either assume
that there is a single processing element, or a fixed
number of identical processing elements, with
characteristics that only change on relatively infrequent
“upgrade” events. In fact none of these assumptions can
be relied upon for the most common systems in use
today. This is not an obscure feature of a specialized
system design, it’s baked into the low cost mainstream
products that everyone uses!

Response time for a simple queue with a large number of
users can be modeled as the service time divided by the
unused capacity. For an idle system, utilization is near
zero, so unused capacity (one minus the utilization) is
near one, and the response time is similar to the service
time. For a busy system, utilization is near one, and
unused capacity is much less than one. So dividing into
the service time, the response time is large.

For complex systems the utilization metric is not a
reliable indicator of capacity. In some cases the reported
utilization metric will reach 100% well before the system
is out of capacity, so response time stays low until the
load reaches a much higher throughput level. In other
cases the utilization metric is not linearly related to
throughput, so for example a 10% increase in throughput
could cause the reported utilization metric to increase
from 40% to 80%.

3. I/O Utilization
This paper is mostly concerned with CPU utilization, but
there are lessons to be learned from I/O utilization.

In days of old, when tools like iostat were first written
for Unix systems, a disk was a simple thing. It could
seek, read and write, and while it was doing those things
it was a busy disk and you had to wait for it to finish.
Thus iostat reported disk utilization and when the disk
got busy, the response time got bad. The advent of
intelligent disk controllers changed all that. For example
the SCSI protocol allows multiple commands to be sent
to the disk, with completion in any order. Each disk
consists of a pair of queues in tandem, one of requests
that have not been issued, and one of requests that are
currently inside the disk itself.

Storage virtualization has always been an issue. From
the beginning, disks have been partitioned, and the
utilization metrics of each partition have a complex
relationship to the utilization of the disk as a whole. It is
also very difficult to see the utilization of an individual
file. Partitions can also be combined using a volume
manager into stripes, concatenations, mirrors and RAID
volumes.

Some versions of Unix still have a simplistic iostat that
reports on a single simple logical queue, the more
enlightened iostat commands have more useful options.
For example on Solaris, you can see the iostat data on a
per partition, per disk, per controller and per volume
basis, and it does separate the wait queue metrics from
the active queue metrics. To get per-volume stats you
have to use the bundled Solaris volume manager, add-on
products such as Vertitas Volume Manager don’t work
with iostat. Try iostat –xpnCez (think “expenses” to
remember this combination) to get lots of detailed
information.

Modern disk subsystems are built using storage area
networks (SANs) and cached RAID disk controllers. The
logical units (LUNs) that appear to the operating system
to be single disks, are actually complex combinations of
RAM cache and large numbers of disks.

In a high availability SAN configuration each LUN can
be accessed via four paths. Dynamic multi-pathing
spreads the load over all four paths and transparently
hides failures. The same LUN appears as four separate
LUNs to iostat, which has no way to know the actual
configuration.

Multiple host systems share access to storage over a
SAN. In many cases the same physical disk will be
shared by several hosts. There is no way for each host to
know how much I/O capacity is being used by other
hosts, and poor or unpredictable response times can
sometimes be traced to this effect.

When iostat thinks that a LUN is 100% utilized it makes
the false assumption that a single service element is
processing a single queue of requests. In fact multiple
service elements are processing multiple queues of
requests. A large number of concurrent requests can
usually be processed, but there is no way for the iostat
command to find out what the internal capability of a
LUN is, so it cannot reliably report utilization.

Sophisticated I/O trace based capture and modeling tools
such as Ortera Atlas (http://www.ortera.com) can
determine what is happening at the filesystem and
volume layers, and calculate a new metric called the
“capability utilization” of the underlying LUN.

This problem is directly analogous to the situation we
now find in the CPU realm.

4. Intel Hyper-Threading

Hyper-Threading is used by most recent Intel server
processors. In summary, when a CPU executes code,
there are times when the CPU is waiting for a long
operation such as a memory read to complete. Since the
pipeline of functional units inside the CPU is stalled for
a very short period this is often called a “pipeline
bubble”. By adding a small amount of extra complexity
to the CPU, it can be made to keep track of two separate
execution states at the same time, and two completely
isolated code sequences can share the same pipeline of
execution units. In this way when one thread stalls, the
other thread takes over and the pipeline bubbles are
eliminated.

Intel describes this technology at
http://www.intel.com/technology/hyperthread/ and
Yaniv Pessach of Microsoft describes it at
http://msdn.microsoft.com/msdnmag/issues/05/06/Hyper
Threading/default.aspx. I tried searching for information
on the performance impact and performance monitoring
impact and found several studies that describe
improvements in terms of throughput that ranged from
negative impact (a slowdown) to speedups of 15-20%
per CPU. I didn't see much discussion of the effects on
observability or of effects on response time. The Intel
CPU pipeline is already quite efficient at keeping
pipeline bubbles to a minimum, which is why the
speedup isn’t huge. An improvement of this magnitude
does however represent a useful increase in capacity.

To summarize the information that I could find, the early
measurements of performance included most of the
negative impact cases. Software and hardware
improvements mean that the latest operating systems on
the most recent Intel Pentium 4 and Xeon chipsets have a
larger benefit and minimize any negative effects.

From a software point of view, Intel advises that Hyper-
Threading should be disabled for anything older than
Windows XP, Windows Server 2003 and recent releases
of RedHat and SuSe Linux. Older operating systems are
naiive about Hyper-Threading and while they run, they
don't schedule jobs optimally. In addition older Solaris
x86 releases are also unaware of Hyper-Threading and
Solaris 9 and 10 for x86 include optimized support. I
have also been told that the Linux 2.6 kernel includes
optimizations for Hyper-Threading that have been back-
ported to recent patches for the Linux 2.4 kernel.

From a hardware point of view, the benefit of Hyper-
Threading increases as CPU clock rates and pipeline
lengths increase. Longer waits for pipeline stalls due to
memory references and branch mispredictions create
larger "pipeline bubbles" for the second Hyper-Thread to
run in. It is possible that there may also be improvements
in the implementation of Hyper-Threading at the silicon
level as Intel learns from early experiences and improves
its designs.

The fundamental problem with monitoring a Hyper-
Threaded system is that it invalidates one of the most
basic and common assumptions made by capacity
planners. For many years the CPU utilization of a normal
system has been used as a primary capacity metric since
it is assumed to be linearly related to the capacity and
throughput of a normal system that has not saturated. In
other words, you expect that the throughput at 60% busy
is about twice the throughput at 30% busy for a constant
workload.

Hyper-Threaded CPUs are non-linear, in other words
they do not "scale" properly. A typical two CPU Hyper-
Threaded system behaves a bit like two normal fast
CPUs with two very slow CPUs which are only active
when the system is busy. The OS will always report it as
a four CPU system.

Whereas the service time (CPU used) for an average
transaction remains constant on a normal CPU as the
load increases, the service time for a Hyper-Threaded
CPU increases as the load increases.

If all you are looking at is the CPU %busy reported by
the OS, you will see a Hyper-Threaded system perform
reasonably well up to 50% busy then as a small amount
of additional load is added the CPU usage shoots up and
the machine saturates.

To be clear, the use of Hyper-Threads does normally
increase the peak throughput of the system, they often

provide a performance benefit, but they can make it
difficult to manage the capacity of a system.

5. Sun CoolThreads “Niagara”
The latest member of the Sun SPARC processor family
is the UltraSPARC-T1, also commonly known by its
code-name “Niagara”. In some ways it is similar to Intel
Hyper-Threading but it takes the concept to an extreme
level. Sun provides some details of its features at
http://www.sun.com/processors/UltraSPARC-
T1/details.xml and there are many more links to detailed
discussions from Richard McDougall’s blog entry at
http://blogs.sun.com/roller/page/rmc?entry=welcome_to
_the_cmt_era. The design goal is maximum throughput
per watt for commercial workloads such as Java,
database and web serving. This is a widely used low cost
platform from Sun, so it is important to understand how
to manage it from a capacity planning perspective.

The T1 contains eight CPU cores with four threads each
that process integer calculations only, and a single shared
floating point unit, all on the same chip. The CPU
pipeline design is deliberately kept simple, and if only
one thread is executing a large number of pipeline
bubbles occur. The single thread performance is much
slower than a typical Intel or AMD CPU, but since there
are 32 threads on the T1, its overall throughput is
comparable to several conventional CPUs for integer
work. For floating point calculations, the single shared
floating point unit gives poor performance that does not
scale as more threads are added.

The Solaris operating system reports standard system
monitoring metrics that show a T1 as a 32 processor
system. One single CPU bound thread cannot make it
more than about 3% busy. Unlike the Intel Hyper-
Threaded systems, the first thread on each core does not
come close to fully utilizing that core, so additional
threads get quite good scalability. However, a core
running four busy threads is unlikely to provide four
times the throughput of a single thread, and the actual
scalability ratio is going to be very application
dependent.

The service time per transaction is going to increase at
higher load levels, and the utilization characteristic is
non-linear. The presence of any floating point code in
your transaction is also going to have an impact on
service times in a non-linear manner, as the T1 behaves
like a single CPU system rather than a 32 CPU system
when it is running floating point calculations.

6. CPU Power Management
AMD PowerNow! for the Opteron series of server CPUs
dynamically manages the CPU clock speed based on

Utilization in order to reduce the overall power
consumption of the system. The speed takes a few
milliseconds to change, and it is not clear exactly what
speeds are supported, but one report stated that the
normal speed of 2.6GHz would reduce to as low as
1.2GHz under a light load.
This report also shows detailed CPU configuration.
http://www.gamepc.com/labs/view_content.asp?id=opter
on285&page=3

The problem with this for capacity management is that
there is no indication of the average clock rate in the
standard system metrics collected by capacity planning
tools. PowerNow! is described by AMD at
http://www.amd.com/us-en/0,,3715_12353,00.html and
drivers for Linux and Windows are available from
http://www.amd.com/us-
en/Processors/TechnicalResources/0,,30_182_871_9033,
00.html. In the future, operating systems may be able to
take the current speed into account, and estimate the
capability utilization, but the service time is higher at
low clock rates, so we will always see some confusing
metrics.

The current PowerNow! implementation works on a per-
chip basis, and Opteron’s have two complete CPU cores
per chip that share a common clock rate. In a
multiprocessor system made up of several chips, each
pair of processing cores could be running at a different
speed, and their speed can change several times a
second.

Our basic assumption, that mean service time is a
constant quantity, is invalidated in a very non-linear
manner.

7. Virtualization as an Element of Architecture
The Enterprise Grid Alliance
(http://www.gridalliance.org) has published a reference
architecture that defines layers of virtualization. A
diagram taken from the EGA Reference Architecture is
shown below.

For each physical layer in the areas of storage, compute
and network, there is a corresponding virtualized layer.
Most current metrics and management systems are built
to address the physical layers only, and this represents a
challenge both for tools vendors and for capacity
planning professionals.

8. Virtualized Physical CPU Resources
As shown in the EGA reference architecture diagram,
virtual machine monitors (VMMs), Hypervisors and
Hardware Partitions provide a raw CPU resource that
can host a complete operating system. IBM’s VM on
mainframes is an early example of a VMM, and Sun’s
Dynamic System Domains is an early example of
hardware partitioning. They have been in use for many
years on a small number of high end systems.

The major change in this space is that low cost
commodity hardware now has the same features.
VMware (http://www.vmware.com) and Xen
(http://www.xensource.com) have become popular ways
to host many instances of different operating systems on
a single machine, and low cost hardware such as Sun’s
UltraSPARC-T1 and AMD’s Opteron (for example see
http://www.pantasys.com) have support for flexible
hardware partitioning.

For hardware partitioning, the capacity management
problem is that the number of CPUs in the machine can
change, and most performance management tools do not
collect and report this as a time varying metric. It usually
reported as a system constant. In some cases a reboot is
needed to effect a change, but the trend is to allow a
dynamic change to be made to a running system. Such
changes tend to happen relatively infrequently, perhaps
twice a day at most.

For VMMs, the additional problem for performance
tools is that the CPU allocation is non-integral, a fraction

of a CPU can be provided and that fraction may be
allowed to vary instantaneously. If an operating system
running in a VMM is configured to provide all its idle
time to other co-habiting operating systems, then it is by
definition 100% busy all the time. However its ability to
do more work is completely unrelated to the naive
utilization metric. If all the hosted operating systems in a
VMM get busy at the same time then response times will
increase without any indication from the traditional
system metrics.

In older tools, the number of CPUs reported by an
operating system is not only static, it’s an integer. For
VMMs the average provisioned CPU must be reported in
every time interval along with all the other metrics.
Luckly, the wide use of VMware has already generated a
good awareness for the issues, and there is quite wide
support for VMware specific metrics in performance
management tools from vendors such as BMC,
Teamquest and Hyperic, however these vendors do not
explicitly support Xen as far as I could tell.

9. Virtualized Operating System Resources
In some cases, the overhead of managing a completely
separate operating instance is not needed. If many copies
of the exact same version of the operating system are
required then a resource container may be used to
virtualize operating system resources. The traditional
IBM Mainframe Logical Partition (LPAR) is an
example. Solaris 10 provides zones (N1 Resource
Containers) which can have their own root password, IP
address and a defined share of the overall CPU
resources. Solaris extended system accounting
(http://perfcap.blogspot.com/2005/02/extended-
accounting-in-solaris-8-10.html) collects data on a per
zone basis, but few tools currently make use of this
information. There is no current way to get CPU
utilization on a per zone basis other than by using
extended system accounting’s interval accounting
facility for all the processes in each zone.

An application that is subject to limitations on the share
of the CPU that it can use, will have a response time
characteristic that is dependent upon its share allocation.
For this reason, it is important to collect and report the
average CPU share allocation in an interval along with
all other metrics.

10. Focus on Headroom
So if utilization is no longer useful, what should we
replace it with in all those nice graphs we use for
capacity planning? I propose that we focus on defining a
metric called “headroom”.

For simple systems, headroom reduces to “one minus
margin minus utilization”. So if your simple system is
truly 65% busy and you never want it to be more than
80% busy, you are targeting a 20% margin and have
15% headroom. For simple systems where the amount of
CPU power varies we can use a plot format that is
described in a CMG03 Paper on “Capacity Planning for
the Virtualized Datacenter”. As shown below, the
capacity and margin changes twice a day, to track the
expected daytime utilization peak.

If the CPU clock rate is changing to save power, then the
average CPU clock rate can be used to obtain an estimate
of current capacity, and headroom can be calculated
based upon the capacity at maximum clock rate.
However, unlike a simple change in the number of
CPUs, there is also an impact on service time, since the
service time with reduced clock rate will be higher.

For complex systems, where utilization is not linearly
related to capacity, the focus should shift from utilization
and headroom based on busy time, to headroom based on
throughput and response time.

If we know that a system can sustain a peak throughput
of 5000 transactions per second with four Opteron CPUs
at full clock rate, then if it is running at 4000 transactions
per second it has 20% remaining headroom. We can
replace our utilization graphs with graphs that have
throughput on the Y-axis, and which show the peak
throughput level as a separate line, which varies
according to the average capacity of the system.

We may not know the peak throughput for a particular
workload, but we can often measure response time for
our transactions, either directly at the application level,
or by inference from low level CPU statistics (such as
microstate accounting in Solaris). Since the load varies
over time, we can also make a plot of response time
versus throughput, and fit a curve to it that we can use to

determine the throughput at which response time will
become unacceptable. An example plot, based on
microstate measures of CPU usage is shown below.

11. Some Tools That Handle Virtualization
I have used Dave Fisk’s Ortera Atlas storage analysis
tool (http://www.ortera.com) to model virtualized I/O
subsystems accurately. It uses custom kernel
instrumentation on Solaris and Linux systems to obtain
detailed trace data.
Hyperformix IPS (http://www.hyperformix.com)
includes the ability to model Hyper-Threaded CPUs. I
tried it out for a relatively simple case and the model
made quite accurate predictions of throughput and
response time.
BMC® Performance Manager for Virtual Servers
(http://www.bmc.com) can manage large scale VMware
installations.
Teamquest (http://www.teamquest.com) have support for
VMware.
Hyperic have support for VMware.
(http://www.hyperic.com/products/managed/vmware-
management.htm)

12. Summary
Utilization is useless as a metric and should be
abandoned. It has been useless in virtualized disk
subsystems for some time, and is now useless for CPU
measurement as well. There used to be a clear
relationship between response time and utilization, but
systems are now so complex that those relationships no
longer hold. Instead, you need to directly measure raw
available capacity and response time and relate it to
throughput. Utilization is properly defined as busy time
as a proportion of elapsed time. The replacement for
utilization is headroom which is defined as the unused
proportion of the maximum possible throughput.

