
  
Utilization is Virtually Useless as a Metric! 

 
Adrian Cockcroft – Netflix 

 
 

 
 

We have all been conditioned over the years to use 
utilization or %busy as the primary metric for capacity 
planning. Unfortunately, with increasing use of CPU 
virtualization and sophisticated CPU optimization 
techniques such as hyper-threading and power 
management the measurements we get from the systems 
are “virtually useless”. This paper will explain many of 
the ways in which the data we depend upon is distorted, 
and proposes that we turn to direct measurement of the 
fundamental alternatives, and express capacity in terms 
of headroom, in units of throughput within a response 
time limit. 
 
1. Background 
The main new theme at the CMG 2005 conference 
seemed to be CPU virtualization. Many people using 
VMware, Xen, Solaris Zones, Hyper-Threading and 
other virtualization facilities are finding that their 
measurements of CPU utilization don't make sense any 
more. The primary performance management vendors 
were discussing how they are building some support for 
virtualization concepts into their tools.  While the 
mainframe world has been dealing with virtualization for 
many years, the Unix/Linux and Windows world has 
now adopted a bewildering variety of virtualization 
techniques, with no standard metrics, and often without 
any indication that the CPU has been virtualized! 
 
2. The Good Old Days 
Lets start by examining the way we have traditionally 
collected and manipulated utilization, and highlight the  
underlying assumptions we have made in the past. These 
assumptions are not always stated, and in many cases 
they  no longer hold. 
 
Utilization is properly defined as busy time as a 
proportion of elapsed time. Utilization can also be 
obtained by multiplying the average throughput of the 
service by the average service time. If an operation takes 
10ms to process and the service is performed 50 times a 
second then the utilization will be 50 * 0.010 = 0.5, 
usually written as 50%. When applied to a simple queue, 
with work arriving at random, we also know that the 
response time and the queue length increases at high 
utilization.  
 

The most fundamental assumption here is that the 
average service time is constant, and does not depend 
upon the load level. This is one of the assumptions that 
has been broken by virtualization, Hyper-threading and 
variable speed power-saving CPUs. We will discuss 
these technologies later in this paper. 
 
The simple queue has a single processing element. In 
reality, today’s computer systems do not form simple 
queues and do not have a single processing element. 
Operating systems expose an abstraction that looks like a 
simple set of processing elements, and provide metrics to 
measure that abstraction, such as overall CPU utilization. 
 
Common capacity planning techniques either assume 
that there is a single processing element, or a fixed 
number of identical processing elements, with 
characteristics that only change on relatively infrequent 
“upgrade” events. In fact none of these assumptions can 
be relied upon for the most common systems in use 
today. This is not an obscure feature of a specialized 
system design, it’s baked into the low cost mainstream 
products that everyone uses! 
 
Response time for a simple queue with a large number of 
users can be modeled as the service time divided by the 
unused capacity.  For an idle system, utilization is near 
zero, so unused capacity (one minus the utilization) is 
near one, and the response time is similar to the service 
time. For a busy system, utilization is near one, and 
unused capacity is much less than one. So dividing into 
the service time, the response time is large. 
 
For complex systems the utilization metric is not a 
reliable indicator of capacity. In some cases the reported 
utilization metric will reach 100% well before the system 
is out of capacity, so response time stays low until the 
load reaches a much higher throughput level. In other 
cases the utilization metric is not linearly related to 
throughput, so for example a 10% increase in throughput 
could cause the reported utilization metric to increase 
from 40% to 80%. 
 
3. I/O Utilization 
This paper is mostly concerned with CPU utilization, but 
there are lessons to be learned from I/O utilization. 
 



In days of old, when tools like iostat were first written 
for Unix systems, a disk was a simple thing. It could 
seek, read and write, and while it was doing those things 
it was a busy disk and you had to wait for it to finish. 
Thus iostat reported disk utilization and when the disk 
got busy, the response time got bad. The advent of 
intelligent disk controllers changed all that. For example 
the SCSI protocol allows multiple commands to be sent 
to the disk, with completion in any order. Each disk 
consists of a pair of queues in tandem, one of requests 
that have not been issued, and one of requests that are 
currently inside the disk itself. 
 
Storage virtualization has always been an issue. From 
the beginning, disks have been partitioned, and the 
utilization metrics of each partition have a complex 
relationship to the utilization of the disk as a whole. It is 
also very difficult to see the utilization of an individual 
file. Partitions can also be combined using a volume 
manager into stripes, concatenations, mirrors and RAID 
volumes. 
 
Some versions of Unix still have a simplistic iostat that 
reports on a single simple logical queue, the more 
enlightened iostat commands have more useful options. 
For example on Solaris, you can see the iostat data on a 
per partition, per disk, per controller and per volume 
basis, and it does separate the wait queue metrics from 
the active queue metrics. To get per-volume stats you 
have to use the bundled Solaris volume manager, add-on 
products such as Vertitas Volume Manager don’t work 
with iostat. Try iostat –xpnCez (think “expenses” to 
remember this combination) to get lots of detailed 
information. 
  
Modern disk subsystems are built using storage area 
networks (SANs) and cached RAID disk controllers. The 
logical units (LUNs) that appear to the operating system 
to be single disks, are actually complex combinations of 
RAM cache and large numbers of disks. 
 
In a high availability SAN configuration each LUN can 
be accessed via four paths. Dynamic multi-pathing 
spreads the load over all four paths and transparently 
hides failures. The same LUN appears as four separate 
LUNs to iostat, which has no way to know the actual 
configuration. 
 
Multiple host systems share access to storage over a 
SAN. In many cases the same physical disk will be 
shared by several hosts. There is no way for each host to 
know how much I/O capacity is being used by other 
hosts, and poor or unpredictable response times can 
sometimes be traced to this effect. 
 

When iostat thinks that a LUN is 100% utilized it makes 
the false assumption that a single service element is 
processing a single queue of requests. In fact multiple 
service elements are processing multiple queues of 
requests. A large number of concurrent requests can 
usually be processed, but there is no way for the iostat 
command to find out what the internal capability of a 
LUN is, so it cannot reliably report utilization. 
 
Sophisticated I/O trace based capture and modeling tools 
such as Ortera Atlas (http://www.ortera.com) can 
determine what is happening at the filesystem and 
volume layers, and calculate a new metric called the 
“capability utilization” of the underlying LUN. 
 
This problem is directly analogous to the situation we 
now find in the CPU realm. 
 
4. Intel Hyper-Threading 

Hyper-Threading is used by most recent Intel server 
processors. In summary, when a CPU executes code, 
there are times when the CPU is waiting for a long 
operation such as a memory read to complete. Since the 
pipeline of functional units inside the CPU is stalled for 
a very short period this is often called a “pipeline 
bubble”. By adding a small amount of extra complexity 
to the CPU, it can be made to keep track of two separate 
execution states at the same time, and two completely 
isolated code sequences can share the same pipeline of 
execution units. In this way when one thread stalls, the 
other thread takes over and the pipeline bubbles are 
eliminated. 
 
Intel describes this technology at 
http://www.intel.com/technology/hyperthread/ and 
Yaniv Pessach of Microsoft describes it at 
http://msdn.microsoft.com/msdnmag/issues/05/06/Hyper
Threading/default.aspx. I tried searching for information 
on the performance impact and performance monitoring 
impact and found several studies that describe 
improvements in terms of throughput that ranged from 
negative impact (a slowdown) to speedups of 15-20% 
per CPU. I didn't see much discussion of the effects on 
observability or of effects on response time. The Intel 
CPU pipeline is already quite efficient at keeping 
pipeline bubbles to a minimum, which is why the 
speedup isn’t huge. An improvement of this magnitude 
does however represent a useful increase in capacity. 
 
To summarize the information that I could find, the early 
measurements of performance included most of the 
negative impact cases. Software and hardware 
improvements mean that the latest operating systems on 
the most recent Intel Pentium 4 and Xeon chipsets have a 
larger benefit and minimize any negative effects. 



 
From a software point of view, Intel advises that Hyper-
Threading should be disabled for anything older than 
Windows XP, Windows Server 2003 and recent releases 
of RedHat and SuSe Linux. Older operating systems are 
naiive about Hyper-Threading and while they run, they 
don't schedule jobs optimally. In addition older Solaris 
x86 releases are also unaware of Hyper-Threading and 
Solaris 9 and 10 for x86 include optimized support. I 
have also been told that the Linux 2.6 kernel includes 
optimizations for Hyper-Threading that have been back-
ported to recent patches for the Linux 2.4 kernel. 
 
From a hardware point of view, the benefit of Hyper-
Threading increases as CPU clock rates and pipeline 
lengths increase. Longer waits for pipeline stalls due to 
memory references and branch mispredictions create 
larger "pipeline bubbles" for the second Hyper-Thread to 
run in. It is possible that there may also be improvements 
in the implementation of Hyper-Threading at the silicon 
level as Intel learns from early experiences and improves 
its designs. 
 
The fundamental problem with monitoring a Hyper-
Threaded system is that it invalidates one of the most 
basic and common assumptions made by capacity 
planners. For many years the CPU utilization of a normal 
system has been used as a primary capacity metric since 
it is assumed to be linearly related to the capacity and 
throughput of a normal system that has not saturated. In 
other words, you expect that the throughput at 60% busy 
is about twice the throughput at 30% busy for a constant 
workload. 
 
Hyper-Threaded CPUs are non-linear, in other words 
they do not "scale" properly. A typical two CPU Hyper-
Threaded system behaves a bit like two normal fast 
CPUs with two very slow CPUs which are only active 
when the system is busy. The OS will always report it as 
a four CPU system. 
 
Whereas the service time (CPU used) for an average 
transaction remains constant on a normal CPU as the 
load increases, the service time for a Hyper-Threaded 
CPU increases as the load increases. 
 
If all you are looking at is the CPU %busy reported by 
the OS, you will see a Hyper-Threaded system perform 
reasonably well up to 50% busy then as a small amount 
of additional load is added the CPU usage shoots up and 
the machine saturates. 
 
To be clear, the use of Hyper-Threads does normally 
increase the peak throughput of the system, they often 

provide a performance benefit, but they can make it 
difficult to manage the capacity of a system. 
 
5. Sun CoolThreads “Niagara” 
The latest member of the Sun SPARC processor family 
is the UltraSPARC-T1, also commonly known by its 
code-name “Niagara”. In some ways it is similar to Intel 
Hyper-Threading but it takes the concept to an extreme 
level. Sun provides some details of its features at 
http://www.sun.com/processors/UltraSPARC-
T1/details.xml and there are many more links to detailed 
discussions from Richard McDougall’s blog entry at 
http://blogs.sun.com/roller/page/rmc?entry=welcome_to
_the_cmt_era. The design goal is maximum throughput 
per watt for commercial workloads such as Java, 
database and web serving. This is a widely used low cost 
platform from Sun, so it is important to understand how 
to manage it from a capacity planning perspective. 
 
The T1 contains eight CPU cores with four threads each 
that process integer calculations only, and a single shared 
floating point unit, all on the same chip. The CPU 
pipeline design is deliberately kept simple, and if only 
one thread is executing a large number of pipeline 
bubbles occur. The single thread performance is much 
slower than a typical Intel or AMD CPU, but since there 
are 32 threads on the T1, its overall throughput is 
comparable to several conventional CPUs for integer 
work. For floating point calculations, the single shared 
floating point unit gives poor performance that does not 
scale as more threads are added. 
 
The Solaris operating system reports standard system 
monitoring metrics that show a T1 as a 32 processor 
system. One single CPU bound thread cannot make it 
more than about 3% busy. Unlike the Intel Hyper-
Threaded systems, the first thread on each core does not 
come close to fully utilizing that core, so additional 
threads get quite good scalability. However, a core 
running four busy threads is unlikely to provide four 
times the throughput of a single thread, and the actual 
scalability ratio is going to be very application 
dependent. 
 
The service time per transaction is going to increase at 
higher load levels, and the utilization characteristic is 
non-linear. The presence of any floating point code in 
your transaction is also going to have an impact on 
service times in a non-linear manner, as the T1 behaves 
like a single CPU system rather than a 32 CPU system 
when it is running floating point calculations. 
 
6. CPU Power Management 
AMD PowerNow! for the Opteron series of server CPUs 
dynamically manages the CPU clock speed based on 



Utilization in order to reduce the overall power 
consumption of the system.  The speed takes a few 
milliseconds to change, and it is not clear exactly what 
speeds are supported, but one report stated that the 
normal speed of 2.6GHz would reduce to as low as 
1.2GHz under a light load. 
This report also shows detailed CPU configuration. 
http://www.gamepc.com/labs/view_content.asp?id=opter
on285&page=3 
 
The problem with this for capacity management is that 
there is no indication of the average clock rate in the 
standard system metrics collected by capacity planning 
tools. PowerNow! is described by AMD at  
http://www.amd.com/us-en/0,,3715_12353,00.html and 
drivers for Linux and Windows are available from 
http://www.amd.com/us-
en/Processors/TechnicalResources/0,,30_182_871_9033,
00.html. In the future, operating systems may be able to 
take the current speed into account, and estimate the 
capability utilization, but the service time is higher at 
low clock rates, so we will always see some confusing 
metrics. 
 
The current PowerNow! implementation works on a per-
chip basis, and Opteron’s have two complete CPU cores 
per chip that share a common clock rate. In a 
multiprocessor system made up of several chips, each 
pair of processing cores could be running at a different 
speed, and their speed can change several times a 
second. 
 
Our basic assumption, that mean service time is a 
constant quantity, is invalidated in a very non-linear 
manner. 
 
7. Virtualization as an Element of Architecture 
The Enterprise Grid Alliance 
(http://www.gridalliance.org) has published a reference 
architecture that defines layers of virtualization. A 
diagram taken from the EGA Reference Architecture is 
shown below. 

 
 
For each physical layer in the areas of storage, compute 
and network, there is a corresponding virtualized layer. 
Most current metrics and management systems are built 
to address the physical layers only, and this represents a 
challenge both for tools vendors and for capacity 
planning professionals. 
 
8. Virtualized Physical CPU Resources 
As shown in the EGA reference architecture diagram, 
virtual machine monitors (VMMs), Hypervisors and 
Hardware Partitions provide a raw CPU resource that 
can host a complete operating system. IBM’s VM on 
mainframes is an early example of a VMM, and Sun’s 
Dynamic System Domains is an early example of 
hardware partitioning. They have been in use for many 
years on a small number of high end systems. 
 
The major change in this space is that low cost 
commodity hardware now has the same features. 
VMware  (http://www.vmware.com) and Xen 
(http://www.xensource.com) have become popular ways 
to host many instances of different operating systems on 
a single machine, and low cost hardware such as Sun’s 
UltraSPARC-T1 and AMD’s Opteron (for example see 
http://www.pantasys.com) have support for flexible 
hardware partitioning. 
 
For hardware partitioning, the capacity management 
problem is that the number of CPUs in the machine can 
change, and most performance management tools do not 
collect and report this as a time varying metric. It usually 
reported as a system constant. In some cases a reboot is 
needed to effect a change, but the trend is to allow a 
dynamic change to be made to a running system. Such 
changes tend to happen relatively infrequently, perhaps 
twice a day at most. 
 
For VMMs,  the additional problem for performance 
tools is that the CPU allocation is non-integral, a fraction 



of a CPU can be provided and that fraction may be 
allowed to vary instantaneously. If an operating system 
running in a VMM is configured to provide all its idle 
time to other co-habiting operating systems, then it is by 
definition 100% busy all the time. However its ability to 
do more work is completely unrelated to the naive 
utilization metric. If all the hosted operating systems in a 
VMM get busy at the same time then response times will 
increase without any indication from the traditional 
system metrics. 
 
In older tools, the number of CPUs reported by an 
operating system is not only static, it’s an integer. For 
VMMs the average provisioned CPU must be reported in 
every time interval along with all the other metrics. 
Luckly, the wide use of VMware has already generated a 
good awareness for the issues, and there is quite wide 
support for VMware specific metrics in performance 
management tools from vendors such as BMC, 
Teamquest and Hyperic, however these vendors do not 
explicitly support Xen as far as I could tell. 
 
9. Virtualized Operating System Resources 
In some cases, the overhead of managing a completely 
separate operating instance is not needed. If many copies 
of the exact same version of the operating system are 
required then a resource container may be used to 
virtualize operating system resources. The traditional 
IBM Mainframe Logical Partition (LPAR) is an 
example. Solaris 10 provides zones (N1 Resource 
Containers) which can have their own root password, IP 
address and a defined share of the overall CPU 
resources. Solaris extended system accounting 
(http://perfcap.blogspot.com/2005/02/extended-
accounting-in-solaris-8-10.html) collects data on a per 
zone basis, but few tools currently make use of this 
information. There is no current way to get CPU 
utilization on a per zone basis other than by using 
extended system accounting’s interval accounting 
facility for all the processes in each zone. 
 
An application that is subject to limitations on the share 
of the CPU that it can use, will have a response time 
characteristic that is dependent upon its share allocation. 
For this reason, it is important to collect and report the 
average CPU share allocation in an interval along with 
all other metrics. 
 
10. Focus on Headroom 
So if utilization is no longer useful, what should we 
replace it with in all those nice graphs we use for 
capacity planning? I propose that we focus on defining a 
metric called “headroom”. 
 

For simple systems, headroom reduces to “one minus 
margin minus utilization”. So if your simple system is 
truly 65% busy and you never want it to be more than 
80% busy, you are targeting a 20% margin and have 
15% headroom. For simple systems where the amount of 
CPU power varies we can use a plot format that is 
described in a CMG03 Paper on “Capacity Planning for 
the Virtualized Datacenter”. As shown below, the 
capacity and margin changes twice a day, to track the 
expected daytime utilization peak. 

 
 
If the CPU clock rate is changing to save power, then the 
average CPU clock rate can be used to obtain an estimate 
of current capacity, and headroom can be calculated 
based upon the capacity at maximum clock rate. 
However, unlike a simple change in the number of 
CPUs, there is also an impact on service time, since the 
service time with reduced clock rate will be higher. 
 
For complex systems, where utilization is not linearly 
related to capacity, the focus should shift from utilization 
and headroom based on busy time, to headroom based on 
throughput and response time. 
 
If we know that a system can sustain a peak throughput 
of 5000 transactions per second with four Opteron CPUs 
at full clock rate, then if it is running at 4000 transactions 
per second it has 20% remaining headroom. We can 
replace our utilization graphs with graphs that have 
throughput on the Y-axis, and which show the peak 
throughput level as a separate line, which varies 
according to the average capacity of the system. 
 
We may not know the peak throughput for a particular 
workload, but we can often measure response time for 
our transactions, either directly at the application level, 
or by inference from low level CPU statistics (such as 
microstate accounting in Solaris). Since the load varies 
over time, we can also make a plot of response time 
versus throughput, and fit a curve to it that we can use to 



determine the throughput at which response time will 
become unacceptable. An example plot, based on 
microstate measures of CPU usage is shown below. 

 
 
11. Some Tools That Handle Virtualization 
I have used Dave Fisk’s Ortera Atlas  storage analysis 
tool (http://www.ortera.com) to model virtualized I/O 
subsystems accurately. It uses custom kernel 
instrumentation on Solaris and Linux systems to obtain 
detailed trace data. 
Hyperformix IPS (http://www.hyperformix.com) 
includes the ability to model Hyper-Threaded CPUs. I 
tried it out for a relatively simple case and the model 
made quite accurate predictions of throughput and 
response time. 
BMC® Performance Manager for Virtual Servers 
(http://www.bmc.com) can manage large scale VMware 
installations. 
Teamquest (http://www.teamquest.com) have support for 
VMware.  
Hyperic have support for VMware. 
(http://www.hyperic.com/products/managed/vmware-
management.htm)  
 
12. Summary  
Utilization is useless as a metric and should be 
abandoned. It has been useless in virtualized disk 
subsystems for some time, and is now useless for CPU 
measurement as well. There used to be a clear 
relationship between response time and utilization, but 
systems are now so complex that those relationships no 
longer hold. Instead, you need to directly measure raw 
available capacity and response time and relate it to 
throughput. Utilization is properly defined as busy time 
as a proportion of elapsed time. The replacement for 
utilization is headroom which is defined as the unused 
proportion of the maximum possible throughput. 
 
 


