E-Manufacturing, the Web, and Things Talking To Things

HPTS Conference October 2007 Wayne Duquaine / Grandview Systems E-mail: grandvu@sonic.net

Objectives

• Give us Database and Transaction processing folks a peek at an "alternate computing universe"

• Take a look at how changes on the factory floor are going to impact our systems over time

Factories are Changing Radically

 Traditionally (10 years ago), the factory "controls guys" talked to the PLC/DAQ controls vendors and made the key factory automation decisions, and the DP managers just listened in.

• Today, those roles have almost completely reversed. The DP managers are now making key factory automation decisions, and the "controls guys" are left listening in.

• The primary mover for this change is "E-Manufacturing"

What Is E-Manufacturing

- Application of Internet and E-business technologies to the manufacturing environment
- Integration of a company's manufacturing activities into a complete process flow system:
 - » Design and Development
 - » Supply-chain
 - » Inventory Stock-On-Hand (SOH), Work In Progress (WIP), ...
 - » Factory Floor scheduling of work and machines
 - routing of parts and supplies

• Key Drivers

- » Web-based Supply-Chain integration allows better control of inventories and enables "build-to-order"
- » Customer demands for mass customization
- » Explosion of intelligence out on the factory floor

Why do we care

- Our databases and will transaction systems will have to accommodate the <u>additional needs</u> that these intelligent factory and sensor-based systems require:
 - » <u>Sensors often need to be paired with calibration values</u>, which are then used to process incoming Raw <u>data</u> into <u>calibrated</u> form
 - » Sensor <u>data</u> often needs to be <u>aggregated</u> and used in <u>time series</u> type of analysis
 - » <u>Output</u> data to factory is often a <u>series of values</u> (not just a single number) in order to drive analog outputs
 - Data often needs to be converted into <u>graphical form</u>, including trending and correlation (HMI)
- In manufacturing industries, over time, <u>Machine-to-Machine</u> <u>communication will dominate all other traffic</u>. It will also be a primary driver (and receiver) of DBMS/TXP interactions
 - » Supply-chain: convert data from customized orders into control data sent to machines on factory floor
 - » Corporate critical data needed for legal reporting/auditing of factory processes forwarded to corporate databases

Key Driver: Mass Customization

- Use of flexible computer-aided manufacturing systems to produce custom output:
 - » Combine low unit costs of mass production processes with the flexibility of individual customization.
 - » Allow customer interaction at the fabrication / assembly stages of the manufacturing processes to create customized products at prices similar to mass-produced products.
- Keys to achieving this:
 - Must have absolute control over costs and inventories
 => more data and more timely reporting and analysis of that data
 - Must be able to re-configure easily and at low cost
 => automate the corporate-level order system with manufacturing line
- Examples
 - » Dell Computer
 - » Boeing (new 787 airliner)

Key Driver: Explosion of Intelligence in Factory

- High horsepower, small size micro-controllers are changing the way data collection works. Are being embedded right down into the factory sensors and actuators. And they all communicate !
- Result is that "digital" intelligence is being pushed further down and further up in the factory - "things talking to things"
- Net-net will be more transactions and data flowing directly from the commercial side to/from the factory side to support:
 - » Mass customization
 - » Supply-chain response
 - » Legal requirements (tracking of temp, stg time, ... for pharmaceuticals, dairies, food processing, ...) non-compliance WILL SHUT YOU DOWN

7

dsPIC33FJ12GP 16-bit microcontroller has as much horsepower as a VAX (40MIPs) but is 1/8 the size of a penny

What's Involved in E-Manufacturing

- Analog/Digital Conversion, Sensors, Actuators
- PLCs
- DAQs
- SCADA
- Ladder Logic Programming

The World is Analog

- Computer people are digital but the "real world" is analog.
- On input, analog data is sampled and converted to digital ADC On output, digital data is converted back to analog - DAC

What is a PLC

- PLC = Programmable Logic Controller
- Is the workhorse on the factory floor
 - » Creates the actual "widgets" drills, cuts, welds, ...
 - » Moves the created widgets to assembly lines conveyors, lift systems, cross-transfers, turn tables, ...
 - » Counts and packages the assembled widgets photocounters, filling machines, weighers, packaging machines,

PLC Usage Detail

It's like RPG on steroids !

What is a DAQ

- DAQ = Data Acquisition system
 Acquisition (or output) and processing of analog signals and waveforms for:
 - » Temperature
 - » Pressure (air or liquid)
 - » Force or Strain, ...

- Principally used for Test and Measurement. Output is to a "Data Log". This log is often then exported in Excel format.
- Usually dependent upon a control computer/PC (e.g. a DAQ is basically a dumbed down PLC)

Simple

How are these things Programmed

- DAQs mixture of graphical and procedural tools
 - » LabView primarily a visually oriented language with some parallelism
 - » SCPI (Standard Commands for Programmable Instruments), or
 - » Visual Studio.

• PLCs - typically Ladder Logic programs (90% of PLC programs)

- » Visually oriented programming language
- » Oriented to handle parallel process flows
- » Gets clumsy when try to do "motion control" (2 and 3 axis movement)

Sample PLC Ladder Logic Program

How are these things controlled

• SCADA = Supervisory Control And Data Acquisition

- » Collects data from various sensors, and then sends this data to a central computer which then manages and <u>controls the data and processes in real-time</u>.
- » SCADA systems monitor and <u>make on-the-fly changes</u> to allow the various machines and processes to function optimally.
- » SCADA systems are normally "closed loop systems" and run with <u>relatively little</u> <u>human intervention</u>. ("Things talking to Things")

• The three most critical aspects of SCADA

- » Communication
- » Data Logging (usually flat files, but should be moved to DBMSes)
- » Data Display/Control (HMI "Human/Machine Interface")
- Primary Communication methods to/from SCADA
 - » DAQs: usually connected via Ethernet, USB, GPIB, RS-232, or VMEbus.
 - » PLCs: usually connected via Ethernet or RS-485

Key Issues

- Proprietary, proprietary + Lack of Open Source Tools
 - » Multiple competing Communication standards to interconnect devices
 - Allen-Bradley: DeviceNet/EtherNetIP
 - Siemens: ProfiBus/ProfiNet
 - GE/Fanuc: Modbus-RTU/Modbus-TCP

» Poor integration with Databases + Lack of Generic Tools for DBMS

- Most of "logged" output data is in Excel CSV format from SCADA system
- Limited choice of OS/Database (Windows/SQL Server)

» Poor integration with Transaction systems

 World is going to JIT, but most manufacturing systems are still islands using one-way Gateways (output data sent to SCADA)

» Poor integration with the Web

- Web Services - what's that ?

And Shoemaker's Children is Still Common

- Critical new material needs to be tested for design+manufacture
 - » Material needs to be tested/analyzed in many different configurations
 - » Each test results in 100-300 data points, is then saved in CSV format file.
 - » Flat CSV files are sent from Staging Server to a Central Flat File Server. Typically takes 1 to 3 days for the test data to finally be available.
 - » Engineers pull CSV files off of the Flat File server and use Excel macros to tweak and plot the data.
 - » Results are then combined into a Central Design Guide used by Designers and Manufacturing.
 - » 1970s based Flat-File Orientation rules ! Databases ? Web Services ?

What my current work involves

- Objective = provide an "open" common environment for E-Manufacturing that combines <u>Web</u>, <u>Database</u>, and <u>SCADA</u>
- Integrating key E-Manufacturing communication standards into PHP - EtherNetIP, ModBus_TCP, ProfiNet.
- Adding "Record Mode" support to PHP. Most PLC/DAQ data is "record" or "struct" oriented, not text.
- Modeling SCADA/HMI Machine Control as Web Services under PHP
- Why PHP ?
 - » Because it dominates the Web.
 - » It's open and does a good job integrating Web and DBMS

