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Challenges

® Semiconductor Roadmap
e CPU Roadmaps

® Memory Bottleneck

® Packaging Technology

® Power and Cooling

® Fabric Interconnect

® Exploiting Parallelism




Major Bottlenecks Ahead

® Scaling CPU Performance

® Scaling Memory Bandwidth

® Scaling Interconnect
® Scaling Input/Output

® Managing Power
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Semiconductor Technology Roadmap

2008 ITRS Update - Technology Trends vs Actuals and Survey
[including Final Litho Printed Gate Length Proposal]
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Semiconductor Technology Roadmap
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Emerging Devices

® |ots of Research on New Materials

Carbon Nano-Tubes (CNT)
Graphene Nanoribbons
Ferroelectric Materials
Phase-Change Materials

Nano-ionic Memories

® Challenge is to find out which are worthy

Long road from research lab to volume production




Silicon Roadmap Predictions

® [28X increase in transistors per chip by 2022

e |K Core CPUs
e 5|2 Gbit DRAM

e 8Tbit FLASH

® What does this mean for data-intensive applications?




Cores per CPU Socket over Time
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CPU Module [Socket] Roadmap

Year
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Clock Rate
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Amazing but this is what technology predicts




The CPU Challenge

® CPU Clock Rates increasing at ~ 5%/ Year
® CPU Cores doubling every other year
® Cache sizes and efficiencies also improving

® Primary constraint is power
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Microchannel Fluidic Heatsinks

Back-side integrated Back-side integrated

Conventional fluidic heat sink using fluidic heat sink and

thermal Interconnects

Back and front-side

\\ inlets/outlets / / < tube

TIM and inlets/outlets

Thermal
interface
Material

fluidic




Power Efficiency (Power per Throughput)

Power / Throughput

—

Frequency

Power = Clock * Capacitance * Vdd”*2

Higher-frequency designs consume much more power




CPU Power Strategy

® With fixed power density, clock rates look flat

® Increasing power densities is very challenging

® Best solution appears to be liquid cooling at device level

® High clock rates are less power efficient

® Higher frequency CPUs require higher voltage levels

® Power increases quadratically with voltage

® TJo reduce power, simplify CPU architecture

® |ower memory latency simplifies pipelines

® New Memory Interfaces and integrated I/O subsystems

® Most savings are from better packaging




The Memory Bandwidth Challenge

® Memory bandwidth must grow with throughput
® 2022 CPU needs > 100X the memory bandwidth
® Traditional Package I/O pins are basically fixed

® FElectrical signaling hitting speed limits

® How to scale memory bandwidth!?

® Solution: Multi-Chip 3D Packaging




Multi-Chip 3D Packaging

Thru-Si via Stacking

Need to combine CPU + Memory on one Module




High-density 3D Multi-Chip Module (MCM)
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Benefits of MCM Packaging

® Enables much higher memory bandwidth
® More channels, wider interfaces, faster 1/O
® Greatly reduces memory I/O power

® Memory signals are local to MCM

® Reduces system size and power




Challenges with MCM Packaging

® TJotal Memory Size is limited to ~ 64 devices
® With 64 GB/device, that is 4 TBytes

® Assuming |K cores, that is 4 GByte per core
e Consistent with today’s systems but no better

® Applications must fit this profile




MCM Enables Fabric I/O Integration

e 2010: I*4X QDR (32 Gbps / direction)

e 2020:6*12X XDR (1.72 Tbps / direction)
® Mesh or Higher Radix Fabric Topologies
® |2X Copper for Module-Module Traces
e |2X Optical for Board-Board, Rack-Rack

® Support for global memory addressing




Benefits of integrating Router with CPU

® Best way to get highest message rate

® Match Injection and Link Bandwidth

® No congestion on receive

® Avoids intermediate bus conversions

® Eliminates half of the I/O pins and power
® | owest cost and lowest power design

® Separate router chips are |/O Bound




What is the Best Fabric for Exascale?

® Optimal solution depends on economics

® Cost of NIC, Router, Optical Interconnect

® Combination of mesh and tree look promising

® Good global and local bandwidth

® Higher radix meshes significantly reduce hop-count

®  Pure 3D Torus for Exascale system is too large

® Robust Dynamic Routing desirable

® Needed for load balancing and to recover from hardware failures




Expected Link Data Rate
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ExaScale Storage

® Forget Hard Disks

e Disks are not going any faster

e Useful as a tape replacement

e At 100 MB/sec per disk, 1 TB/sec would require 10,000 disks
e Solid State Storage

® Arriving just in time

e Rapid Performance Improvements

e Rapid Cost-reduction expected




Today’s SSD vs HDD

« Conventional 2.5” HDD  Solid State 2.5” SSD
15K RPM, 146 GB 0 RPM, 64 GB
180 Write IOPS 8K Write IOPS
320 Read IOPS 35K Read IOPS

$1 per IOPS $0.10 per IOPS




Sun Flash DIMMs
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Sun F5100 Flash Storage Array




Sun F5100 Flash Array

1U Chassis with 80 Flash DIMM
64 SAS 2.0 Channels
> 1M IOPS




Oracle/Sun TPC-C World Record:
7,717,510 tpm-C with 4800 Flash DIMMs

e E— T,
2x Brocade 1Gbs

I

24 Sun Fire X4170 " : =3
2 2.53GHz Intel 12 Sun SPARC Enterprise T5440 60 X4275 COMSTAR
Xeon E5540 QC 4 1.6GHz UltraSPARC T2 Plus 5 1TB SATA disks
48GB Memory 512GB Memor Sun F5100 Flash Array
300GB SAS disk y 1.92TB
2 300GB 10K rpm SAS disks
3 8Gbs FC dual port éjﬂgOCEMSTA?
2 4Gbs FC dual port rrays w
4RU High 24 1TB SATA disks ea.
24 ST6140

16 300GB 15K rpm disks
4GB write cache

Source: www.tpc.org




Flash Experience So Far

Not that easy to get to Millions of IOPS
e Limitation is the I/O controllers, not the FLASH
e Needs lots of controllers and Flash channels
Writes are a problem
e \Wear leveling algorithms far from perfect
e \Write performance degrades over time

SAS/SATA interface is not optimal
e Significant command processing times
e SATA/SAS HBAs not designed for high 1/O rates
Direct PCI-Express interface looks more promising
e (Can support many more Flash channels per controller

e |ower latency and more throughput




Flash in the Memory Hierarchy

e Flash is not random-access memory
e Block access oriented, not random access
e Almost 1000X longer read latency than DRAM
® Flash can be used as stable storage
e \Writes are committed writes
e Supercap magic behind the scenes
® Tremendous Throughput and Size
e Terabytes of capacity cost-effective short term
e (Gigabytes/sec throughput
® Today’s Limitation is the Controller
e SAS/SATA has high overhead

e Direct PCle looks more promising




Flash Access Times Roadmap
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Flash Throughput Roadmap

I Transfer Rate per Device MB/s
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Gartner Flash Forecast (August 2008)

CAGR 07-12
Gigabytes (M) 64.1 229.3 703.1 1,945 4,684 10,415 22,074 42,022 75,101 107.7%
Bit Growth 222% 258% 207% 177% 141% 122% 112% 90% 79%
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Source: Gartner, August 2008




Flash Summary

® Density doubling each year

® Costs falling by 50% per year

® Access times falling by 50% per Year

® Throughput doubling every year

® Controllers improving rapidly

® |Interface moving from SATA to PCI Express
® Multi-GB/sec per PCl Controller

® Very large-scale I/O looks feasible




Technology Summary

e Moore’s Law will continue for at least 10 Years

Transistors per area will double ~ every 2 year
128X increase in density by 2022

® Frequency Gains are more difficult

Power increases super-linear with clock rate

Must exploit parallelism with more cores

e Need to increase memory and I/0O bandwidth

Need to scale with throughput
Need a factor of 128X by 2020

e Most promising technology is memory stacks and Flash

Supports lots of channels to scale bandwidth

Very high bandwidth and transaction rates appears feasible




The Software Challenge

¢ The limits of application parallelism
® [nstruction set parallelism
e Number of cores per CPU Module
e Number of CPU modules per system
® Need to exploit parallelism at all levels
e Quality of compiler code generation
e Functional parallelism within node
e Data parallelism across nodes
e Ultimate question is application parallelism
e Will require re-architecting of applications

e Not all applications will scale to Exascale




