
Is DeWitt Wrong? We Have Evidence that Parallel
Databases Do Not Scale.

But Are These Problems Fundamental or Simple Engineering Hurdles?

Daniel Abadi
dna@cs.yale.edu

1. POSITION PAPER
The amount of data that needs to be stored and processed by an-

alytical database systems is exploding. This is partly due to the
increased automation with which data can be produced (more busi-
ness processes are becoming digitized), the proliferationof sensors
and data-producing devices, Web-scale interactions with customers,
and government compliance demands along with strategic corpo-
rate initiatives requiring more historical data to be kept online for
analysis. It is no longer uncommon to hear of companies claiming
to load more than a terabyte of structured data per day into their an-
alytical database system and claiming data warehouses of size more
than a petabyte [6, 1].

Given the exploding data problem, many people believe that par-
allel databases will soon become the only reasonable solution for
performing data analysis. This is due to the fact that parallel database
systems partition data across a collection of independent,possibly
virtual, machines, each with local disk and local main memory, con-
nected together on a high-speed network, and automaticallyparal-
lelize SQL queries over these partitions. Since data analysis work-
loads tend to consist of many large scan operations, multidimen-
sional aggregations, and star schema joins, much of the needed par-
allelization is fairly straight-forward.

Parallel databases have been proven to scale really well into the
tens of nodes (near linear scalability is not uncommon). However,
there are very few known parallel databases deployments consisting
of more than one hundred nodes, and to the best of our knowledge,
there exists no published deployment of a parallel databasewith
nodes numbering into the thousands. We believe that this is due to
the fact that parallel database systems, as engineered today, cannot
scale to such a large number of nodes.

There are a variety of reasons why we believe parallel databases
generally do not scale well at this level. First, parallel databases
tend to be designed with the assumption that failures are a rare event
and restart queries if any of the nodes involved in query process-
ing fails. Yet, given the proven operational benefits and resource
consumption savings of using cheap, unreliable commodity hard-
ware to build a shared-nothing cluster of machines, and the trend
towards extremely low-end hardware in data centers [5], theprob-
ability of a node failure occurring during query processingis in-
creasing rapidly. This problem only gets worse at scale: thelarger
the amount of data that needs to be accessed for analytical queries,
the more nodes are required to participate in query processing. This
further increases probability of least least one node failing during
query execution. Google, for example, reports an average of1.2
failures per analysis job [3]. If a query must restart each time a
node fails, then long, complex queries are difficult to complete.

Second, parallel databases generally assume a homogeneousar-
ray of machines, yet it is nearly impossible to get homogeneous

performance across hundreds or thousands of compute nodes,even
if each node runs on identical hardware or on an identical virtual
machine. Part failures that do not cause complete node failure, but
result in degraded hardware performance become more commonat
scale. Individual node disk fragmentation and software configura-
tion errors also can cause degraded performance on some nodes.
Concurrent queries (or, in some cases, concurrent processes) fur-
ther reduce the homogeneity of cluster performance. On virtual-
ized machines, concurrent activities performed by different virtual
machines located on the same physical machine can cause 2-4%
variation in performance [2]. Parallel databases tend to divide the
amount of work needed to execute a query equally amongst the
nodes in a shared-nothing cluster, and thus are vulburable to the
danger that the time to complete the query will be approximately
equal to time for the slowest compute node to complete its assigned
task. A node observing degraded performance thus has a dispropor-
tionate affect on total query time.

Third, until recently, there have only been a handful of applica-
tions that required deployment on more than a few dozen nodesfor
reasonable performance, so parallel databases have not been tested
at larger scales, and unforeseen engineering hurdles await.

We plan to look at the scalability issues of parallel databases is
more detail, and present some initial results we’ve been running
on Amazon’s Web Services platform (EC2) that show some of the
scalability limitations of parallel databases. We will then discuss
whether these issues are fundamental or just engineering challenges
that future versions of parallel databases will need to overcome.
This will lead to our revealing our position on the MapReducevs.
Parallel Database debate [4].

2. REFERENCES
[1] http://www.sybase.com/detail?id=1054047.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProc. of SOSP, pages 164–177, 2003.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. InOSDI ’04, pages 137–150,
2004.

[4] D. DeWitt and M. Stonebraker. MapReduce: A major step
backwards. DatabaseColumn Blog.
http://www.databasecolumn.com/2008/01/
mapreduce-a-major-step-back.html.

[5] J. Hamilton. Cooperative expendable micro-slice servers
(cems): Low cost, low power servers for internet-scale
services. InProc. of CIDR, 2009.

[6] C. Monash. The 1-petabyte barrier is crumbling.http://
www.networkworld.com/community/node/31439.


