Is DeWitt Wrong? We Have Evidence that Parallel
Databases Do Not Scale.

But Are These Problems Fundamental or Simple Engineering Hurdles?

Daniel Abadi
dna@cs.yale.edu

1. POSITION PAPER

performance across hundreds or thousands of compute rexees,

The amount of data that needs to be stored and processed by ani.f each node runs on identical hardware or on an identicaliair

alytical database systems is exploding. This is partly duthé
increased automation with which data can be produced (mgie b
ness processes are becoming digitized), the proliferafisensors
and data-producing devices, Web-scale interactions witomers,
and government compliance demands along with strategjmeor
rate initiatives requiring more historical data to be kepliree for
analysis. Itis no longer uncommon to hear of companies agm
to load more than a terabyte of structured data per day ieiodhn-
alytical database system and claiming data warehousesefrgire
than a petabyte [6, 1].

Given the exploding data problem, many people believe that p
allel databases will soon become the only reasonable solfiir
performing data analysis. This is due to the fact that pelrdiitabase
systems partition data across a collection of indepengsssibly
virtual, machines, each with local disk and local main memaon-
nected together on a high-speed network, and automaticaibl-
lelize SQL queries over these partitions. Since data aisahyerk-
loads tend to consist of many large scan operations, mmiéidi
sional aggregations, and star schema joins, much of thesdge-
allelization is fairly straight-forward.

Parallel databases have been proven to scale really welthet
tens of nodes (near linear scalability is not uncommon). élex;
there are very few known parallel databases deploymentsstory
of more than one hundred nodes, and to the best of our knoejledg
there exists no published deployment of a parallel databéite
nodes numbering into the thousands. We believe that thiseda
the fact that parallel database systems, as engineerey taataot
scale to such a large number of nodes.

There are a variety of reasons why we believe parallel datzba
generally do not scale well at this level. First, parallelatiases
tend to be designed with the assumption that failures anear@nt
and restart queries if any of the nodes involved in query gssc
ing fails. Yet, given the proven operational benefits anduese
consumption savings of using cheap, unreliable commoditg-h
ware to build a shared-nothing cluster of machines, andréelt
towards extremely low-end hardware in data centers [5]ptob-
ability of a node failure occurring during query processiagn-
creasing rapidly. This problem only gets worse at scaleiatuer
the amount of data that needs to be accessed for analytieaequ
the more nodes are required to participate in query pracgss$his
further increases probability of least least one nodenfgitiuring
query execution. Google, for example, reports an averade2of
failures per analysis job [3]. If a query must restart eachetia
node fails, then long, complex queries are difficult to costgl

Second, parallel databases generally assume a homogeareous
ray of machines, yet it is nearly impossible to get homogaseo

machine. Part failures that do not cause complete nodedaitut
result in degraded hardware performance become more cormmon
scale. Individual node disk fragmentation and softwareigara-

tion errors also can cause degraded performance on soms.node
Concurrent queries (or, in some cases, concurrent prajefse

ther reduce the homogeneity of cluster performance. Owmalirt
ized machines, concurrent activities performed by difierartual
machines located on the same physical machine can cause 2-4%
variation in performance [2]. Parallel databases tendmeithe
amount of work needed to execute a query equally amongst the
nodes in a shared-nothing cluster, and thus are vulburabilet
danger that the time to complete the query will be approxigat
equal to time for the slowest compute node to complete iigiasg

task. A node observing degraded performance thus has ag@pr
tionate affect on total query time.

Third, until recently, there have only been a handful of aypl
tions that required deployment on more than a few dozen rfodes
reasonable performance, so parallel databases have motdsted
at larger scales, and unforeseen engineering hurdles.await

We plan to look at the scalability issues of parallel datebas
more detail, and present some initial results we've beemingn
on Amazon’'s Web Services platform (EC2) that show some of the
scalability limitations of parallel databases. We will thdiscuss
whether these issues are fundamental or just engineeraligobes
that future versions of parallel databases will need to avee.
This will lead to our revealing our position on the MapReduse
Parallel Database debate [4].

2. REFERENCES

[1] http://ww. sybase. com det ai | ?i d=1054047.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, H
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProc. of SOSP, pages 164-177, 2003.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters.@$DI ' 04, pages 137-150,
2004.

[4] D. DeWitt and M. Stonebraker. MapReduce: A major step
backwards. DatabaseColumn Blog.
http://ww:. dat abasecol unm. com 2008/ 01/
mapr educe- a- maj or - st ep- back. htn .

[5] J. Hamilton. Cooperative expendable micro-slice sexve
(cems): Low cost, low power servers for internet-scale
services. IrProc. of CIDR, 2009.

[6] C. Monash. The 1-petabyte barrier is crumblihgt p: / /
www. net wor kwor | d. coni conmuni t y/ node/ 31439.

