
A Performance Puzzle: B-Tree Insertions
are Slow on SSDs

or
What Is a Performance Model for SSDs?

Bradley C. Kuszmaul
MIT CSAIL, & Tokutek

0

5000

10000

15000

20000

25000

30000

0 20,000,000 40,000,000 60,000,000 80,000,000 100,000,000 120,000,000 140,000,000

R
o

w
s/

S
ec

o
nd

Rows Inserted

iiBench - SSD Insert Test

InnoDB - Intel SSD TokuDB 1.1.3 - Intel SSD InnoDB - RAID10 TokuDB 1.1.3 - RAID10

Motivation: I want to understand SSD performance so
I can design fast data structures. HPTS 2009

1

Poor MYSQL B-Tree SSD Performance?

0

5000

10000

15000

20000

25000

30000

0 20,000,000 40,000,000 60,000,000 80,000,000 100,000,000 120,000,000 140,000,000

R
o

w
s/

S
ec

o
nd

Rows Inserted

iiBench - SSD Insert Test

InnoDB - Intel SSD TokuDB 1.1.3 - Intel SSD InnoDB - RAID10 TokuDB 1.1.3 - RAID10

Surprisingly, disk almost as good as SSD. InnoDB’s
insertion buffer helps. Not CPU bound.

2

Intel X25E Specifications
• Read bandwidth up to 250 MB/s.
•Write bandwidth up to 170 MB/s.
• Random 4KB read rate: 35 KIO/s.
• Random 4KB write reate: 3.5 KIO/s.

Disk bandwidth (5 disk RAID):
• Read/Write bandwidth about 400 MB/s.
• Random Read/Write rate: 600/s (with the wind at

your back.)
So why isn’t the SSD giving InnoDB a 6x
performance boost?

3

MySQL Complex⇒Measure Berkeley
DB

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

In
se

rt
io

ns
 p

er
 S

ec
on

d Out of BDB cache (into OS cache)

 Out of OS cache

Trending to 4500 writes per second (still dropping...)
4

Berkeley DB too complex⇒ Try File I/O
Method:
• Build a 12GB file on a machine with 3GB RAM.
• Perform random reads and writes of various sizes.
• Build a performance model.

Still strange and unpredictable.

5

A Performance Model
Can I make the following performance model work?
When reading a block of size B,
• There is a startup cost, S, (“seek time”)
• There is bandwidth, W , (“transfer rate”).

The simple model is thus
TR = SR +B/WR
TW = SW +B/WW

6

Read Performance as a Function of Block
Size

 0

 50

 100

 150

 200

 250

 300

 8 10 12 14 16 18 20 22

B
an

dw
id

th
 (

M
B

/s
)

lg(Block Size)

7

A Model from the Data Sheet?
The Manufacturer’s 35 KIO/s and 250 MB/s suggests
this (poor) model:

TB = 16µs+B/(250MB/s).

 0

 50

 100

 150

 200

 250

 300

 8 10 12 14 16 18 20 22

B
an

dw
id

th
 (

M
B

/s
)

lg(Block Size)

8

A Model from the Data Sheet?
The bandwidth looks good, but I never saw anything
like 35,000 IO/s on any workload. Actual read
performance is about 10,000 IO/s:

TB = 200µs+B/(250MB/s).

 0

 50

 100

 150

 200

 250

 300

 8 10 12 14 16 18 20 22

B
an

dw
id

th
 (

M
B

/s
)

lg(Block Size)

9

Small Blocks A Little Misleading
For block sizes of less than 4096, the OS first does a
read (of 4KB) and then a write.

 0

 50

 100

 150

 200

 250

 300

 8 10 12 14 16 18 20 22

B
an

dw
id

th
 (

M
B

/s
)

lg(Block Size)

Surprisingly, this doesn’t affect the curve much.

10

Up to 10,000 reads/s with Multithreading

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5 10 15 20 25 30 35

4K
B

 r
ea

ds
/s

Number of threads

1000/s + 1800/s/thread, max=11,000

11

Write Performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 8 10 12 14 16 18 20 22

B
an

dw
id

th
 (

M
B

/s
)

lg(Block Size)

Spec sheet: 300us/write + 170MB/s

Actual: 100us/write + 100MB/s

12

Read-Write Performance

Mixing reads and writes gives the worst of both.

startup (S) bandwidth (W)
read 200µs 250MB/s
write 100µs 100MB/s
mixed 200µs 100MB/s

13

What Block Size To Use?

For point-queries, B-trees are insensitive to block size.
As soon as you have any reasonable fanout you do
well.

For range queries, the block size is important.

Tension:
• Large block sizes make range queries faster.
• Large block sizes make point queries slower.

14

Half-power point
Idea: Set block size so that half the time is accounted
for the “seek time”, and half the time by “bandwidth”.

“Half Power Point”
SSD Rotating Disk

read 50KB 0.5MB–1MB
write 10KB 0.5MB–1MB
read/write mix 21KB 0.5MB–1MB

15

Cache-Oblivious Approach
• Use data structures that are fast for any block size.
• Can also speed insertions without slowing searches.

0

5000

10000

15000

20000

25000

30000

0 20,000,000 40,000,000 60,000,000 80,000,000 100,000,000 120,000,000 140,000,000

R
o

w
s/

S
ec

o
nd

Rows Inserted

iiBench - SSD Insert Test

InnoDB - Intel SSD TokuDB 1.1.3 - Intel SSD InnoDB - RAID10 TokuDB 1.1.3 - RAID10

Tokutek’s MySQL storage engine uses these ideas.
16

