

Managing multicore caches
Silas Boyd-Wickizer, Robert Morris, Nickolai Zeldovich, M. Frans Kaashoek

What this talk is about

● Managing multicore caches more challenging
than uniprocessor caches

● One technique to get better performance from
multicore caches
– Preliminary result

– Curious if approach applies to your applications

Caches invented to avoid DRAM
bottleneck

CPU

DRAM

1

2

3

4

5

6

7

8

Caches invented to avoid DRAM
bottleneck

CPU

DRAM

1

2

3

4

5

6

7

8

300 cycles

Caches invented to avoid DRAM
bottleneck

CPU

DRAMCache

1

2

3

4

5

6

7

8

1

3 cycles

300 cycles

2 3 4

5 6 7 8

 Just made applications
faster. If want to optimize,

just get your working set to fit
in cache

Multicores have lots of cache

● More cores = more cache space
– Instead of 2Mbytes, 16Mbytes!

● Many applications can benefit from more
cache:
– Apache

– memcached

– ClamAV

– ...

Multicore caches are more difficult
to use Simple idea of fiting

working set in cache
space doesn't work

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private cache Private cache Private cache Private cache

Private cache Private cache Private cache Private cache

Multicore caches: duplicate data

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1

Multicore caches: duplicate data

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1 1 1 1

1111

Multicore caches: local allocation

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1

...because a core
can only allocate
from its private

cache

Multicore caches: local allocation

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1

Multicore caches: local allocation

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1

Multicore caches: remote caches
are slow

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1

6

Multicore caches: remote caches
are slow

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

1

6

100-150 cycle
latency

Software should manage caches

● Software already forced to manage cores
● Software must also be aware that:

– remote caches are slow

– risk of duplicating data, reducing effective capacity

– single core can allocate only a small portion of the
cache

● Uniprocessor cache model is too simplistic

XXX all 3 can increase
DRAM refs..old way of

thinking about working set
and cache size won't work

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1

XXX possible
solution is to

migrate thread as
it accesses data

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

Software solution

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

Multicore-aware file cache (MFC)

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

XXX to get a sense
of what is possible

Multicore-aware file cache (MFC)

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

Files in the
file cache

Multicore-aware file cache (MFC)

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

Files in the
file cache

The most
popular

files

Multicore-aware file cache (MFC)

core core core core

core core core core

DRAM

1

2

3

4

5

6

7

8

Private Cache Private Cache Private Cache Private Cache

Private Cache Private Cache Private Cache Private Cache

thread

1 2

7 865

3 4

Files in the
file cacheMigrate

when
access files

The most
popular

files

MFC challenges

● Tracking files
– MFC metadata

● Very popular files
– Replicate

● Unpopular files
– Read with non-caching loads

● Sharing on-chip caches with non-file data
– Hardware event counters

● ...

MFC implementation

● Implemented on top of the Linux file cache

● Modified read to invoke the MFC
– Extended kernel API to support mmap

● About 1,000 lines of C

Implementing migration in Linux

● Linux has a run queue per-core
– MFC adds a thread to the target core's run queue

● Cost is 9 microseconds, not scalable
– So don't migrate to access small files

About as long as it takes to
read a 64Kbyte file from

DRAM...

Does MFC improve file reading
speed?

● Compare Linux w/ MFC and w/o MFC.
● grep reads random files

– Zipfian file selection

● 16-core AMD, 16Mbytes cache

MFC gets speedup with one thread

● Improves single thread performance
– Large working set

512K 1M 2M 4M 8M 16M 32M 64M 128M
0

200

400

600

800

1000

1200

1400

1600

Working set size (log)

Th
ro

u
gh

pu
t

(M
by

te
s/

se
c)

w/ MFC

w/o MFC

Does MFC improve multi-threaded
workloads?

● Ran multiple instances of grep
– Generate parallel workload for MFC

MFC gets speedup with multiple
threads

● Not as much as expected
– Linux thread migration doesn't scale

512K 1M 2M 4M 8M 16M 32M 64M 128M
0

5000

10000

15000

20000

25000

Working set size (log)

Th
ro

u
gh

pu
t

(M
by

te
s/

se
c)

w/ MFC

w/o MFC

Will MFC matter for future
multicores?

● Future chips will have more cores
● But DRAM bandwidth won't scale
● Simulate this future by disabling DRAM

controllers

XXX results aren't
great, simulate more

cores

Expect more speedup on future
chips

512K 1M 2M 4M 8M 16M 32M 64M 128M
0

5000

10000

15000

20000

25000

Working set size (log)

Th
ro

u
gh

pu
t

(M
by

te
s/

se
c)

w/ MFC

w/o MFC

Generalizing MFC

● Showed one experiment with MFC
● Believe ideas generalize to more applications

– ClamAV

– Apache

– Linux

– ...

● Do these ideas apply to your apps?

Related work

● Function shipping is an old CS trick

– Work on NUMA OSs
● Using caches efficiently

– Cache partitioning
– Minimizing cache conflicts
– Scalable locking
– ...

XXX different
hardware, content

addressable,
cache line smaller

than page

Designing software for
multicore hardware that

uses entire cache capacity

Conclusion

● Improve performance by managing multicore
caches
– Simple uniprocessor model doesn't work

● MFC is one approach
– Techniques should be generalizable

I gave three example,
duplication, long

latency, can't allocate
in remote cache

DRAM vs CPU trend

1993 1995 1997 1999 2001 2003 2005 2007 2009
0

20

40

60

80

100

120

Year

In
cr

e
a
se

 r
e
la

ti
v
e
 t

o
 P

1
0

0

Cycles

System bus

DRAM loads

● MFC makes fewer loads from DRAM
– Even for large working set sizes

512K 1M 2M 4M 8M 16M 32M 64M 128M
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
read uni
read uni MFC
read zipf
read zipf MFC

Working set size

D
R

A
M

 b
yt

es
 p

er
 f

ile
 b

yt
e

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

