
  

Managing multicore caches
Silas Boyd-Wickizer, Robert Morris, Nickolai Zeldovich, M. Frans Kaashoek



  

What this talk is about

● Managing multicore caches more challenging 
than uniprocessor caches

● One technique to get better performance from 
multicore caches
– Preliminary result

– Curious if approach applies to your applications



  

Caches invented to avoid DRAM 
bottleneck
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Caches invented to avoid DRAM 
bottleneck
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  Just made applications 
faster.  If want to optimize, 

just get your working set to fit 
in cache



  

Multicores have lots of cache

● More cores = more cache space
– Instead of 2Mbytes, 16Mbytes!

● Many applications can benefit from more 
cache:
– Apache

– memcached

– ClamAV

– ...



  

Multicore caches are more difficult 
to use Simple idea of fiting 

working set in cache 
space doesn't work
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Multicore caches: duplicate data
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Multicore caches: local allocation
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Multicore caches: remote caches 
are slow
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Multicore caches: remote caches 
are slow
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Software should manage caches

● Software already forced to manage cores
● Software must also be aware that:

– remote caches are slow

– risk of duplicating data, reducing effective capacity

– single core can allocate only a small portion of the 
cache

● Uniprocessor cache model is too simplistic

XXX all 3 can increase 
DRAM refs..old way of 

thinking about working set 
and cache size won't work



  

Software solution
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Software solution
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Multicore-aware file cache (MFC)
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XXX to get a sense 
of what is possible
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MFC challenges

● Tracking files
– MFC metadata

● Very popular files
– Replicate

● Unpopular files
– Read with non-caching loads

● Sharing on-chip caches with non-file data
– Hardware event counters

● ...



  

MFC implementation

● Implemented on top of the Linux file cache

● Modified read to invoke the MFC
– Extended kernel API to support mmap

● About 1,000 lines of C



  

Implementing migration in Linux

● Linux has a run queue per-core
– MFC adds a thread to the target core's run queue

● Cost is 9 microseconds, not scalable
– So don't migrate to access small files

About as long as it takes to 
read a 64Kbyte file from 

DRAM...



  

Does MFC improve file reading 
speed?

● Compare Linux w/ MFC and w/o MFC.
● grep reads random files

– Zipfian file selection

● 16-core AMD, 16Mbytes cache



  

MFC gets speedup with one thread

● Improves single thread performance
– Large working set
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Does MFC improve multi-threaded 
workloads?

● Ran multiple instances of grep
– Generate parallel workload for MFC



  

MFC gets speedup with multiple 
threads

● Not as much as expected
– Linux thread migration doesn't scale
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Will MFC matter for future 
multicores?

● Future chips will have more cores
● But DRAM bandwidth won't scale
● Simulate this future by disabling DRAM 

controllers

XXX results aren't 
great, simulate more 

cores



  

Expect more speedup on future 
chips
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Generalizing MFC

● Showed one experiment with MFC
● Believe ideas generalize to more applications

– ClamAV

– Apache

– Linux

– ...

● Do these ideas apply to your apps?



  

Related work

● Function shipping is an old CS trick

– Work on NUMA OSs
● Using caches efficiently

– Cache partitioning
– Minimizing cache conflicts
– Scalable locking
– ...

XXX different 
hardware, content 

addressable, 
cache line smaller 

than page

Designing software for 
multicore hardware that 

uses entire cache capacity



  

Conclusion

● Improve performance by managing multicore 
caches
– Simple uniprocessor model doesn't work

● MFC is one approach
– Techniques should be generalizable

I gave three example, 
duplication, long 

latency, can't allocate 
in remote cache



  



  

DRAM vs CPU trend
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DRAM loads

● MFC makes fewer loads from DRAM
– Even for large working set sizes
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