
UC Berkeley

SCADS: Performance Safe
Queries for Interactive Web

Applications
HTPS

October 2009

Michael Armbrust, Armando Fox, Michael
Franklin, David Patterson, Nick Lanham,

Beth Trushkowsky, Jesse Trutna,
Stephen Tu



Motivation
• Most popular websites

follow the same pattern
– Rapidly (one weekend)

developed on a
relational database

– Become popular and
realize scaling
limitations

– Build large, complicated
ad-hoc systems to deal
with scaling limitations
as they arise

• Websites that can’t
scale fast enough lose
customers



NoSQL?

• Recently lots of buzz about key/value stores
– Trivial scaling
– Predictable performance
– Great performance through relaxed consistency

• Some nonstandard data models (column
families, etc)

• End up implementing many things by hand
– Imperative queries
– Indexes
– Optimization
– Parallelism
– Session guarantees



SCADS: YeSQL

• Developers specify ahead of time:
– Entities
– Relationships and cardinalities
– Queries

• Constraints
– All queries are specified ahead of time
– Only allow equ-joins over pre-specified

relationships with fixed cardinalities
– Require that all intermediate steps and final

results are bounded



Implementation

• SCADS compiles this to a library that
allows them to interact with the underlying
key/value store
– entities -> classes
– queries -> methods

• Queries that return an unbounded number
of results can either return top-k or use
efficient pagination



Benefits

• Guaranteed scaling for all queries
• Automatic index selection and

maintenance
• Library ensures eventual consistency in

the face of failures
• Automatic parallelization of queries
• Session guarantees on a per query basis



Where are we going?

• Status
– We have a simple heuristic optimizer that can

answer many queries
– We hope to be able to implement Twitter

/Facebook / E-Bay by December
• Future Work

– Tunable consistency per query
– Predicting performance
– Aggregates



Questions?



Declaring Entities

ENTITY user
{

string name,
string password,
string email,
string profileData
PRIMARY(name)

}

ENTITY thought
{

date time,
string thought
PRIMARY(owner,
time)

}

ENTITY subscription
{

bool approved
PRIMARY(following,
target)

}

ENTITY topic
{

string name
PRIMARY(reference,
name)

}



Relationships
RELATIONSHIP owner FROM user TO MANY thought
RELATIONSHIP following FROM user TO 5000

subscription
RELATIONSHIP target FROM subscription TO ONE user
RELATIONSHIP hashtag FROM thought TO 10 topic
RELATIONSHIP references FROM thought TO 10 user



Queries

QUERY userByName
FETCH user
WHERE user.name = [1:name]

QUERY myThoughts
FETCH thought

OF user BY owner
WHERE user=[this]
PAGINATE [1: numperpage] MAX 10



Complicated Queries

QUERY thoughtstream
FETCH thought
OF user friend BY owner
OF subscription BY target
OF user me BY following

WHERE me=[this] AND
subscription.approved = true

ORDER BY timestamp
LIMIT [1:count] MAX 100


