
Simson L. Garfinkel
Naval Postgraduate School
simsong@acm.org

Instant Drive Forensics with
Statistical Sampling

What if US agents encounter a hard drive at a border crossing?

Or a search turns up a room filled with servers?

2

Question: Can we analyze a 1TB drive in a minute?

If it takes 3.5 hours to read a 1TB hard drive,
what can you learn in 1 minute?

3

4.8 GB (0.48%) is a tiny fraction of the disk.
But 4.8 GB is a lot of data!

Minutes 208 1

Max Data Read 1 TB 4.8 GB

Max Seeks 15 million
17,000

(≈3.5msec per seek)

Hypothesis: The contents of the disk can be predicted by
identifying the contents of randomly chosen sectors.
US elections can be predicted
by sampling a few thousand
households:

4

Hard drive contents can be predicted
by sampling a few thousand sectors:

The challenge is identifying the
content of the sampled sectors.

The challenge is identifying
likely voters.

We use random sampling;
any other approach could be exploited by the enemy.

5

Sector

0

Sector

2,000,000,000

(a)

(b)

(c)

But sampling has an important limitation...

Recall data on hard drives divides into three categories:

Resident Data

Deleted Data

No Data blank sectors

}user files
email messages
[temporary files]

6

.

.

Files

Deleted Files

Zero Blocks

Sampling can distinguish between "zero" and data.
It can't distinguish between resident and deleted.

usr bin

ls cp mv

tmp

slg

/

ba

mail junkbeth

x5 x4

x3 x2

x1

x6

x7

x8

7

Let's simplify the problem.
Can we use statistical sampling to verify wiping?
I bought 2000 hard drives between 1998 and 2006.
Most of were not properly wiped.

8

0

500

1, 000

1, 500

2, 000

2, 500

M
eg

ab
yt

es

Data in the file system (level 0)
Data not in the file system (level 2 and 3)
No Data (blocks cleared)

It should be easy to use random sampling to distinguish
a properly cleared disk from one that isn't.

9

What does it mean if 10,000 randomly chosen sectors
are blank?
If the disk has 2,000,000,000 blank sectors (0 with data)
 The sample is identical to the population

If the disk has 1,999,999,999 blank sectors (1 with data)
 The sample is representative of the population.
 We will only find that 1 sector using exhaustive search.

If the disk has 1,000,000,000 blank sectors (1,000,000,000 with data)
 Something about our sampling matched the allocation pattern.
 This is why we use random sampling.

If the disk has 10,000 blank sectors (1,999,990,000 with data)
 We are incredibly unlucky.
 Somebody has hacked our random number generator!

10

.

. . . .
.

.

Rephrase the problem.
Not a blank disk; a disk with less than 10MB of data.
Sectors on disk: ! 2,000,000,000 (1TB)
Sectors with data: ! 20,000 (10 MB)

Chose one sector. Odds of missing the data:
 (2,000,000,000 - 20,000) / (2,000,000,000) = 0.99999
 You are very likely to miss one of 20,000 sectors if you pick just one.

Chose a second sector. Odds of missing the data on both tries:
 0.99999 * (1,999,999,999-20,000) / (1,999,999,999) = .99998
 You are still very likely to miss one of 20,000 sectors if you pick two.

But what if you pick 1000? Or 10,000? Or 100,000?

11

The more sectors picked, the less likely you are to miss
all of the sectors that have non-NULL data.

12

stored in a database. Periodically, a subset of the meta-

data in the database is published as the NSRL Reference

Dataset (RDS), NIST Special Database 28.[22]

This paper does not address the possibility of retriev-

ing data from a disk sector that has been overwritten: we

assume that when a sector is written with new data the

previous contents of the sector are forever lost. Although

we understand that this issue is a subject to some matter

of debate, we know of no commercial or non-commercial

technology on the planet that can recover the contents of

an overwritten hard drive. Those who maintain otherwise

are invited to publish their experimental results.

1.2 Outline of this paper

Section 2 introduces the technique and applies it to the

problem of sanitization verification. Section 3 shows how

the technique can be extended to other important prob-

lems through the use of file fragment identification tools.

Section 5 discusses specific identifiers that we have writ-

ten and presents a new technique that we have developed

for creating these identifiers using a combination of in-

trospection and grid computing. Section 6 discusses our

application of this work to the classification of a test disk

image created with a 160GB Apple iPod. Section 7.1

presents opportunities for future research.

2 Random Sampling for Verification

Hard drives are frequently disposed of on the sec-

ondary market without being properly sanitized. Even

when sanitizing is attempted, it can be difficult to verify

that the sanitization has been properly performed.

A terabyte hard drive contains roughly 2 billion 512-

byte sectors. Clearly, the only way to verify that all of the

sectors are blank is to read every sector. In order to be sure

with a 95% chance of certainty (that is, with p < 0.05)

that there are no sectors with a trace of data, it would be

necessary to read 95% of the sectors. This would take

such a long amount of time that there is no practical reason

not to read the entire hard drive.

In many circumstances it is not necessary to verify that

all of a disk’s sectors are in fact blank: it may be sufficient

to determine that the vast majority of the drive’s storage

space has been cleared. For example, if a terabyte drive

has been used to store home mortgage applications, and if

each application is 10MB in size, it is sufficient to show

that less than 10MB of the 1TB drive contains sectors that

have been written to establish that the drive does not con-

tain a complete mortgage application. More generally, a

security officer may be satisfied that a drive has less than

10MB of data prior to disposal or repurposing.

2.1 Basic Theory

If the drive has 10MB of data, then 20,000 of the

drive’s 2 billion sectors have data. If a single sector is

sampled, the probability of finding one of those non-null

sectors is precisely:

20, 000
2, 000, 000, 000

= 0.00001 = 10−5
(1)

This is pretty dreadful. Put another way, the probability

of not finding the data that’s on the disk is

2, 000, 000, 000− 20, 000
2, 000, 000, 000

= 0.99999 (2)

Almost certainly the data will be missed by sampling a

single sector.

If two randomly chosen sectors are sampled, the prob-

ability of not finding the data on either sampling lowers

slightly to:

2, 000, 000, 000− 20, 000
2, 000, 000, 000

× 1, 999, 999, 999− 20, 000
1, 999, 999, 999

= 0.99997999960000505 (3)

This is still dreadful, but there is hope, as each repeated

random sampling lowers the probability of not finding one

of those 20,000 sectors filled with data by a tiny bit.

This scenario is an instance of the well-known “Urn

Problem” from probability theory (described here with

nomenclature as in [7]). We are treating our disk as an

urn that has N balls (two billion disk sectors) of one of

two colors, white (blank sectors) and black (not-blank

sectors). We hypothesize that M (20,000) of those balls

are black. Then a sample of n balls drawn without re-

placement will have X black balls. The probability that

the random variable X will be exactly x is governed by

the hypergeometric distribution:

P (X = x) = h(x;n, M, N) =

�M
x

��N−M
n−x

�
�N

n

� (4)

This distribution resolves to a form simpler to compute

when seeking the probability of finding 0 successes (disk

sectors with data) in a sample, which we also inductively

demonstrated above:

P (X = 0) =
n�

i=1

((N − (i− 1))−M)
(N − (i− 1))

(5)

Because this calculation can be computationally inten-

sive, we resort to approximating the hypergeometric dis-

tribution with the binomial distribution. This is a proper

simplification so long as the sample size is at most 5%

of the population size [7]. Analyzing a 1TB hard drive,

we have this luxury until sampling 50GB (which would

be slow enough to defeat the advantages of the fast anal-

ysis we propose). Calculating the probability of finding 0

3

Sampled sectors Probability of not finding data
1 0.99999
2 0.99998

100 0.99900
1000 0.99005

10,000 0.90484
20,000 0.81873
40,000 0.67032
60,000 0.54881
80,000 0.44932

100,000 0.36787
150,000 0.22312
200,000 0.13532
300,000 0.04978
400,000 0.01831
500,000 0.00673

Table 1: Probability of not finding any of 10MB of data for
a given number of randomly sampled sectors. Smaller
probabilities indicate higher accuracy.

Non-null data Probability of not finding data
Sectors Bytes with 10,000 sampled sectors
20,000 10 MB 0.90484
40,000 20 MB 0.81873
60,000 30 MB 0.74081
80,000 40 MB 0.67031

100,000 50 MB 0.60652
200,000 100 MB 0.36786
300,000 150 MB 0.22310
400,000 200 MB 0.13531
500,000 250 MB 0.08206
600,000 300 MB 0.04976
700,000 350 MB 0.03018
800,000 400 MB 0.01830
900,000 450 MB 0.01110

1,000,000 500 MB 0.00673

Table 2: Probability of not finding various amounts
of data when sampling 10,000 disk sectors randomly.
Smaller probabilities indicate higher accuracy.

soid — we say we have some confidence that the vector
of proportions is within this ellipsoid. It is less than ob-
vious what this ellipsoid means to someone who simply
wants to know, “How much of this hard drive has JPEG
data?”

With the large population and sample sizes we are
working with, the confidence ellipsoid can be simplified
to the confidence “brick” that contains the ellipsoid. The
error for each proportion can then be reported as a simple
confidence interval [20, 4].

As in Section 2, clearly the more sectors that are read
as part of the sampling process, the more accurate will be
the statistical prediction.
4 Improving Performance

We have developed two approaches for improving per-
formance: ordering the randomly chosen sectors before
reading them, and sampling with larger “sectors.”
4.1 Sampling with SCAN

The speed that a hard drive can be randomly sam-
pled depends upon many factors, including the drive’s
average seek speed, rotational speed, the interface, the
host OS, and the number of read commands that can be
queued at a time.1 We can significantly decrease the time
to read 10,000 randomly chosen sectors using the well-
known SCAN[23] or “Elevator” algorithm. That is, we
first choose the set of random sector numbers, then sort
the numbers numerically, and finally read the randomly
chosen sectors in linear order. Table 3 shows the time to

1Queuing is only a factor if reads can be re-ordered,
which only happens here if the sectors are read by multi-
ple kernel-level threads.

read 10,000 randomly chosen sectors on a variety of dif-
ferent platforms. Clearly, because this speedup minimizes
disk seeking, it expected that this optimization would only
be relevant to hard drives and magnetic tapes that have a
seek penalty, and not to flash or other electronic storage
systems.

Much to our surprise, ordering disk access by sector
number improves performance on both mechanical hard
drives and on flash storage devices. We hypothesize that
the speedup on flash devices is a result of buffering and
caching that may be taking place in the PNY and Kanguru
storage devices.

4.2 Reading 4096-byte “Sectors”
The second strategy that we have adopted for speeding

performance is to treat the storage device as if it contains
4096-byte sectors, rather than 512-byte sectors. In our ex-
perience it takes only a small amount of additional time to
read eight 512-byte sectors from a modern storage device
than to read a single 512-byte sector—an observation that
is true for both spinning magnetic disks and for flash stor-
age devices.

There are three significant advantages to analyzing the
disk using 4096-byte blocks in preference to 512-byte sec-
tors. First, because the blocks are 8 times larger, there
are only 1

8

th as many of them. This means that we can
achieve comparable levels of statistical accuracy with sig-
nificantly fewer random sampling operations—provided
that the feature size of data is larger than our sampling
size. For example, if the first half of the 512-byte sectors
of a hard drive have data and the second half do not, then
the percentage of blocks will be found to contain data no

5

500,000 blank randomly chosen sectors should be good enough!

Part 2: Can we classify files based on a sector?

A file 30K consists of 60 sectors:

Many file types have characteristics headers and footer:

But what about the file in the middle?

13

newpage.html
<html>... ...</html>

header footer

HTML <html> </html>

JPEG <FF><D8><FF><E0>
<00><10>JFIF<00> <FF><D9>

ZIP PK<03><0D> <00><00><00><00>

Fragment classification:
Different file types require different strategies.
HTML files can be reliably detected with HTML tags

 <body onload="document.getElementById('quicksearch').terms.focus()">
 <div id="topBar">
 <div class="widthContainer">
! <div id="skiplinks">
!
! Skip to:

JPEG files can be identified through the "FF" escape.
 FF must be coded as FF00.
 So if there are a lot of FF00s and few FF01 through FFFF it must be a JPEG.

MPEG files can be readily identified through framing
 Each frame has a header and a length.
 Find a header, read the length, look for the next header.

14

Identifiable:
 Blank sectors
 JPEGs
 Encrypted data
 HTML

Report:
 Audio Data Reported by iTunes: 2.42GB
 MP3 files reported by file system: 2.39GB
 Estimated MP3 usage:

—2.71GB (1.70%) with 5,000 random samples
—2.49GB (1.56%) with 10,000 random samples

Sampling took 118 seconds.

15

This works!
We identify the content of a 160GB iPod in 118 seconds.

Work to date:

Publications:
 Roussev, Vassil, and Garfinkel, Simson, File Classification Fragment---The Case for

Specialized Approaches, Systematic Approaches to Digital Forensics Engineering (IEEE/
SADFE 2009), Oakland, California.

 Farrell, P., Garfinkel, S., White, D. Practical Applications of Bloom filters to the NIST RDS
and hard drive triage, Annual Computer Security Applications Conference 2008,
Anaheim, California, December 2008.

Work in progress:
 Alex Nelson (PhD Candidate, UCSC) summer project
 Using “Hamming,” our 1100-core cluster for novel SD algorithms.
 Roussevʼs Similarity Metric

16

http://simson.net/clips/academic/2009.SADFE.Fragments.pdf
http://simson.net/clips/academic/2009.SADFE.Fragments.pdf
http://simson.net/clips/academic/2009.SADFE.Fragments.pdf
http://simson.net/clips/academic/2009.SADFE.Fragments.pdf
http://simson.net/clips/academic/2008.ACSAC.Bloom.pdf
http://simson.net/clips/academic/2008.ACSAC.Bloom.pdf
http://simson.net/clips/academic/2008.ACSAC.Bloom.pdf
http://simson.net/clips/academic/2008.ACSAC.Bloom.pdf

