
Transactions in Interactive 
Applications

Alan Geller

Microsoft



Scenario: Web Spreadsheet

• Imagine a spreadsheet built as a Web app, with the recalc
engine running in the cloud
– Allows huge spreadsheets
– Fast recalc using parallelism across many servers

• Problem: this means large latencies on recalc, even of small 
spreadsheets

• Solution: asynch recalc – start recalc and give control back 
to the user

• New problem: multiple parallel recalcs need to be isolated
– Simple isolation isn’t enough: the user has started these recalcs

in a specific order, and expects them to be processed in that 
order



Concurrency and Ordering

• “Standard” serializability is enough to guarantee 
isolation, but doesn’t guarantee that the user will see 
what they expect
– “Equivalent to any ordering” vs. “equivalent to the order 

the user initiated the actions”
– If the user types “c” “a” “t”, they don’t want to see “act” in 

the text buffer

• In this scenario, transactions (recalcs) have to be 
committed in the same order they were started
– “Start-order serializable”, not just “serializable”
– Interestingly, this is the same as instruction retirement in 

an out-of-order CPU



Other Uses

• Standard client applications that have complex 
processing in response to user actions

– Without start-ordered isolation, you can’t process 
multiple user actions in parallel

• Other time-ordered transaction sequences

– Web-based source code control

– ???



Summary

• Sometimes simple serializability isn’t sufficient

• Isolation coupled with ordering requirements is 
not supported by much current software
– Nor is it taught in schools, or written about in 

journals…

• There is both theoretical and practical work to be 
done here
– In the local, in-memory case, there’s a fairly simple 

scheduling algorithm using multiple versions

– The distributed case is open…


