
© 2009 IBM Corporation

Building a Problem Determination Database

Carolyn Norton, IBM

© 2009 IBM Corporation2

The Question

What are the characteristics of a good
knowledge base, one that lends itself to easy
population with, analysis of, and generation of,
useful symptom definitions?

© 2009 IBM Corporation3

What makes a good programming language?

 Speed – of execution, of compilation, of writing

 Expressiveness – does it suit the problem domain?

 Readability

 Language, Framework, Runtime

 Reuse --
– What don’t you have to implement yourself ? libraries, services
– Can you make existing pieces “fit together” easily
– Writability and Readability

 Simplicity

 Definiteness

 Orthogonality

 Expressiveness

 Implementability

 Efficiency

 Principle of Least Astonishment

© 2009 IBM Corporation4

What makes a good symptom definition tool?

 Easy Observations

– The collection produced needs to be “useful enough, often enough”
• critical mass

– The “natural domain” should be
• Problems that are not too hard.
• Problems that are not too easy.
• Problems that really happen. And happen often.

– It should be easy for authors to
• Formulate a rule
• Start to define rules
• Define a rule
• Test a rule
• Deploy a rule

– Make it easy for users to
• Find your tool
• Decide when to use your tool

© 2009 IBM Corporation5

What makes a good symptom definition tool?

 More Observations
– The “rules” should be persistent.

• Over releases, not just over time.

 Open Questions
– Start with problems or technology?
– How do you define “rules”? Programmatically? Manually? Systematically? Open-

source?

© 2009 IBM Corporation6

Backup

© 2009 IBM Corporation7

 Scoping the project
– Aim to be “Useful enough, often enough”

• This is NOT a long-tail space. “Often” is good enough. 80-20 Rule.
• What do computers do well/quickly and people do poorly/slowly?
• Can your tool be useful even when it’s not?

– Aim to “Prevent the most customer pain with the least effort.”
• Not too hard, not too easy.
• T-shaped knowledge?
• Beware of single-release symptoms. Added-value, not core value.

– Consider the natural domain…
• You get what you ask for.
• Start with problems, not technology.

 How will you create symptom definitions?
– Programmatically?
– Manually?

• Systematically? By whom? How do you identify the right authors?
• Open-source?

– Semi-automatically?

© 2009 IBM Corporation8

 Make it easy for authors to
– Formulate a symptom definition

• When does it NOT apply?
• Which versions does it apply to?
• Beware of rules that are easier to describe than code.

– Start to define rules
• What tooling is needed? How hard is it to install? How hard is it to learn?
• Consumability is key!

– Define a rule
• Can you partially automate the process?

– Test a rule
– Deploy a rule

 Make it easy for users to
– Find your tool
– Decide when to bother with your tool

