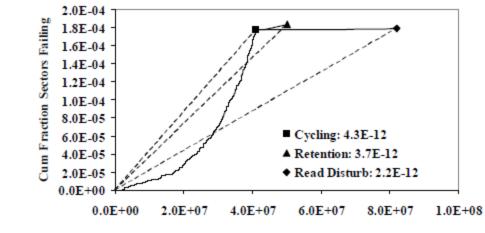
Three Surprises Concerning SSDs

Ted Wobber

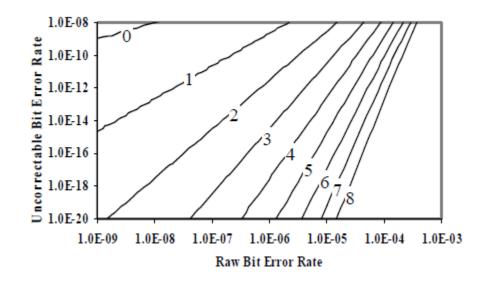

MSR Silicon Valley

HPTS – October 2009

NAND-flash media errors

- Program/erase cycle errors
- Retention errors
- Read-disturb errors

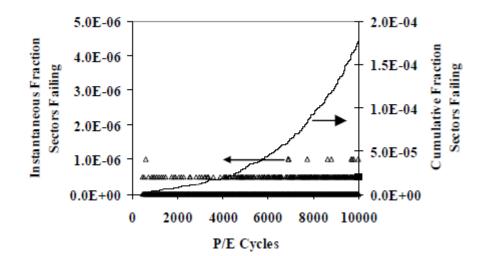
With 72nm MLC, rated at 10000 cycles, and 1-bit ECC:



Bits Read per Sector

Graphs from Mielke, et al, 46th Annual International Reliability Physics Symposium, 2008

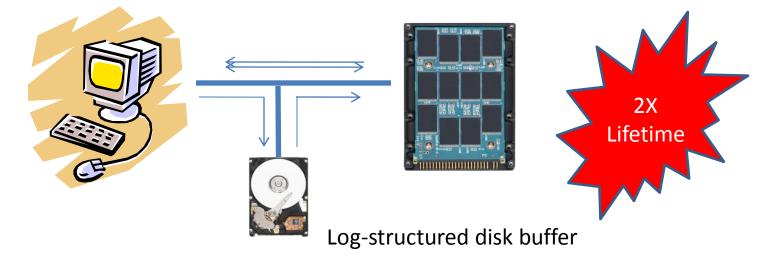
ECC is your friend


- As scale decreases ... bit error rate increases
- More ECC bits imply:
 - more memory to store them
 - more logic to compute them
 - larger codeword

Program/erase cycle errors dominate

- Lifetime is defined by cycle count
- These numbers are beginning to get big!
- I don't like the shape of this curve!

(the graph doesn't go beyond 10000 cycles \bigcirc)



Surprise #1

- <u>Greater SSD capacity -> longer lifetime</u>
 - with the same workload
 - assuming appropriate wear-leveling
- No such correlation for rotating disks
- The FTL distributes the write load
- More flash chips = more aggregate write cycles
- Given a workload, you can compute lifetime

Surprise #2

- SSD lifetime varies with workload
 - Reads vs. writes
 - Random I/O vs. sequential I/O
 - FTL efficiency: write-amplification varies
- Rotating disk lifetime is time-based

Surprise #3

- Forget about the "R" in SSD-RAID
 - a clever RAID5 of SSDs will load-balance writes
 - intent is to distribute parity-bits
 - so ... SSDs will all fail at same time
 - not optimal for long-term redundancy
- Greater variance in rotating disk failures
- Better to distribute write load unevenly?
- Better yet ... redundancy at flash chip level

The End

- I'm out of surprises.
- Questions?