Search in the Cloud

Text Retrieval Task

Text viewed as a sequences of terms in fields
Document and position for each term are indexed

Query is a sequence of terms (typically many more than
user actually types)

Text Retrieval

Scores computed by merging occurrences of terms in
query

Only top scoring documents are kept

Deletion and document edits done by adding new
documents and keeping deletion list

Traditional Scaling

Sharding

N
n/4+1...n/2 n/2+1...3n/4 3n/4+1...n

Replication

Traditional Scaling

Sharding

N
n/4+1...n/2 n/2+1...3n/4 3n/4+1...n

Replication

Traditional Scaling

Sharding

N ?
n/4+1..n/2 n/2+1..3n/4 3n/4+1..n *

Replication

Consistent Hashing

Consistent Hashing

Consistent Hashing

0

VAV

Problems

Presumes objects can be moved individually
Has very high insertion/deletion rate
Has disordered access patterns

Often exhibits content/placement correlations

Micro Sharding

map

reduce

for (t in types)
yield [key:(t, h(key)7%shardCnt),
value:doc]

LIS

g

Retrieval Indexer #n

LIS

N

Content Indexer #m

n,m >> number of search nodes

Search Architecture

presentation
layer

Retrieval Engine #|

'—’u federator

Retrieval Engine #2

Retrieval Engine #n

Content Indexer #1

Content Indexer #m

5
alu
S5
®
s

Control Architecture

Quick Results

No deletion/insertion in indexes at runtime
Reloading micro-shards allows large sequential transfers

Random placement guided by balancing policy gives near
optimal motion

Node addition and failure are simple, reliable

Random sharding also near optimal
local = global statistics, 2x query time improvement
load balancing
uniform management

Building Blocks

EC2 - elastic compute

Zookeeper - reliable coordination

Katta - shard and query management

Hadoop - map-reduce, RPC for Katta

Lucene - candidate set retrieval, index file storage

Deepdyve search algorithms - segment scoring

Building Blocks

EC2 - elastic compute

Zookeeper - reliable coordination

Katta - shard and query management

Hadoop - map-reduce, RPC for Katta

Lucene - candidate set retrieval, index file storage

Deepdyve search algorithms - segment scoring

Zookeeper

Replicated key-value in-memory store

Minimal semantics
create, read, replace specified version
sequential and ephemeral files
notifications

Very strict correctness guarantees
strict ordering
quorum writes
no blocking operations

High speed
50,000 updates per second
200,000 reads per second

Building Blocks

EC2 - elastic compute

Zookeeper - reliable coordination

Katta - shard and query management
Hadoop - map-reduce, RPC for Katta

Lucene - candidate set retrieval, index file storage

Deepdyve search algorithms - segment scoring

Katta Interface

Simple Interface

Client - horizontal broadcast for query, vertical broadcast for update
InodeManaged - add/removeShard

Pluggable Application Interface

Pluggable Return Policy
Given current return state
return < 0 => done
return 0 => return result, allow updates
return n => wait at most n milliseconds

Comprehensive Results
Results, exceptions, arrival times

Horizontal/Vertical
Broadcast

N
n/4+1...n/2 n/2+1...3n/4 3n/4+1...n

-
O
=)

(g,
=
a
)
a'd

Horizontal/Vertical
Broadcast

N
n/4+1...n/2 n/2+1...3n/4 3n/4+1...n

-
O
=)

(g,
=
a
)
a'd

Horizontal/Vertical
Broadcast

/~ \
v N
|..n/4 [4+1...n/ n/2+1...3n/4 3n/4+1...n

-
O
=)

(g,
=
a
)
a'd

Operations

—>|Retrieval Engine #2

~

zookeeper
katta / X
master /

indexer

federator

Impact of Cloud
Approach

Scale-free programming

Deployed in EC2 (test) or in private farm (production)
No single point of failure

Real-time scale up/down

Extensible to real-time index updates

Resources

- My blog
- http://tdunning.blogspot.com/
- The web-site

-www.deepdyve.com
- Source code

- Katta (sourceforge)
-Hadoop (Apache)
- Lucene (Apache)

http://tdunning.blogspot.com
http://tdunning.blogspot.com
http://www.deepdyve.com
http://www.deepdyve.com

