
1!

Crossing the Software
Education Chasm Using SaaS

& Cloud Computing!
Armando Fox & Dave Patterson,
{fox,patterson}@cs.berkeley.edu!

HPTS “poster” session!

Graphic: Googleʼs “Testing on
the Toilet” program!

Whatʼs the problem?!
•  New dev hires good at coding, debugging* !
•  New hires are NOT good at:!

–  testing!
– working in teams!
– communicating with customers!
– dealing with legacy software!

•  Complaint: SWE courses teach outdated
methodologies, avoid these real problems!

•  Constraint: Undergrad spends ~12 hr./week
per course = 3 work-weeks during semester!

*Sources: Google, eBay, Amazon, Microsoft, Facebook, & Begel et al. 2008 study! 2!

Approach: SW Eng. With SaaS!

•  Teach SaaS & cloud computing using Rails!
– High productivity!
– Great testing tools, ease of public deployment!

•  Emphasizes testing at all levels!
– 2 of 16 projects: 100% unit test (statement)

coverage, 100ʼs integration tests!
•  Small-team, Agile development !

– Projects varied in amount of functionality—not
code quality!

– Agile is great fit for classroom!
3!

A typical 1-week iteration  
(6-8 times in 1 semester course)!

App idea!

Lo-fi UI sketches, storyboards!

XHTML & Cascading Stylesheets!

User stories & scenarios!

Scenarios => Class-Responsibility-Collaborator Cards!

Scenarios => Design patterns!

Behavior Driven Design: identify code you wish you had!

Test Driven Development to get code running!

Compute Velocity (rate of feature delivery)!

Deploy using cloud computing!
4!

Feature idea!

Pl
an

ni
ng
!

D
ev

el
op

in
g!

Learn By Doing!
•  Software arch., design pat-

terns, coding practices (10 hr.)!
•  Test-first development, unit

testing (5 hr.)!
•  Behavior-driven design,

integration testing (3 hr.)!
•  Agile, iteration-based project

management (2 hr.)!
•  Version management &

collaboration skills (3 hr.) !
•  SaaS technologies,

deployment & operations (7 hr)!

•  Ruby & Rails 
!

•  RSpec 
!

•  Cucumber 
!

•  Pivotal Tracker 
!

•  Git & Github  
!

•  Cloud computing:
EC2, Heroku! 5!

Example: User Stories in
Cucumber!

Feature: staff can add admit to meeting with open slot
 As an EECS staff member
 So that I can accommodate last-minute requests
 I want to manually tweak a faculty member's schedule

Scenario: add an admit to a meeting with an open slot
 Given "Velvel Kahan" is available at 10:20
 When I select "Velvel Kahan" from the menu for the 10:20

 meeting with "Armando Fox"
 And I press "Save Changes"
 Then I should be on the master meetings page
 And I should see "Velvel Kahan added to 10:20AM meeting."
 And "Armando Fox" should have a meeting with "Velvel

 Kahan" at 10:20

Scenario: remove admit from meeting

 ...etc.! 6!

Survey Results from 2 sets of
students (Fall 09, Fall 10)!

7!

What was useful?!

8!

Legacy Code!

•  all industrial partners concerned about this!
•  Proposal: use Feathersʼs approach in

Working Effectively with Legacy Code!
–  “Legacy code == code without tests”!

•  Have students add feature to large (~30
KLOC) existing code base!

9!

Good code! Not-so-good code!

Has tests! Use TDD! Refactor first, then TDD!

Lacks tests! Create tests, then
TDD!

Create tests so can
refactor, then TDD!

Mid-course student survey!
Iʼm writing more lines of tests than lines of code!
We're not writing much code, just reusing a lot of stuff 

(~50% of projects integrate with external API like
Facebook, Google Maps, etc.)!

BDD is weird, usually I just sit down and start coding!
What do you mean, we have to search for answers on

[Google, StackOverflow, PeepCode, blogs, ...]!
I donʼt grok language feature X  

(trans.: X isnʼt in Java or C++)!
Learning curves for Ruby, Rails, tools!
!(learning on job, multi-language houses the norm) !

!
10!

The SaaS Love Triangle!

SaaS +  
Cloud!

Agile!Rails!

SW Eng
using
SaaS!

“Frequent release”
culture ó weekly
progress during

semester!
!

High productivity, cloud
deployment ó Projects

work & have
immediate, global

visibility!

“Incremental” testing discipline  
& great testing tools ó  

testing as root of process, not after-chore!

11!

