Stratosphere
Parallel Analytics in the Cloud beyond Map/Reduce

14th International Workshop
on High Performance Transaction Systems (HPTS)
Poster Sessions, Mon Oct 24 2011

Thomas Bodner
T.U. Berlin

{ Stratosphere

Above the Clouds

“ The Stratosphere Project”

Explore the power of Cloud
Use-Cases computing for complex
= - E ' information management

applications

Database-inspired approach

m Analyze, aggregate, and
{ StratoSphere Query Processor query

Above the Clouds

m Textual and (semi-)
Infrastructure as a Service structured data

= =1

=)

m Research and prototype a
web-scale data analytics
infrastructure

* FOR 1306: DFG funded collaborative project among TU Berlin, HU Berlin and HPI Potsdam

Stratosphere: Information Management above the Clouds

G‘ Outline

m Architecture of the Stratosphere System

m The PACT Programming Model

Stratosphere: Information Management above the Clouds

d\ Architecture Overview

Hive, JAQL,
Pig

Map/Reduce

Programming
Model

Hadoop

Hadoop Stack

Stratosphere: Information Management above the Clouds

“ Architecture Overview

Hive, JAQL,
Pig

SCOPE,
DryadLINQ

Map/Reduce

Programming
Model

Hadoop

Dryad

Hadoop Stack

Dryad Stack

Stratosphere: Information Management above the Clouds

“ Architecture Overview

Hive, JAQL,
Pig

SCOPE,
DryadLINQ

Map/Reduce

Programming
Model

Hadoop

Dryad Hyracks

Hadoop Stack

Dryad Stack ASTERIX Stack

Stratosphere: Information Management above the Clouds

" Architecture Overview -

Hive, JAQL, SCOPE, Hive, JAQL,
Pig DryadLINQ Pig, ?

Map/Reduce PACT

Programming Programmin
Model c Model

Hadoop Dryad Hyracks Nephele

Hadoop Stack Dryad Stack ASTERIX Stack Stratosphere
Stack

Stratosphere: Information Management above the Clouds

" Architecture Overview g

Hive, JAQL, SCOPE, Hive, JAQL,
Pig DryadLINQ Pig, ?

Map/Reduce
Programming
Model

Hadoop Dryad Hyracks Nephele

Hadoop Stack Dryad Stack ASTERIX Stack Stratosphere
Stack

Stratosphere: Information Management above the Clouds

“ Data-Centric Parallel Programming

Map / Reduce

Mag
Reduce

|l _Map || Map |
Reduce Reduce

Relational Databases

i

T
o

(0]

m Schema Free

m Many semantics hidden inside the
user code (tricks required to push
operations into map/reduce)

m Single default way of parallelization

Schema bound (relational model)

Well defined properties and
requirements for parallelization

Flexible and optimizable

—

GOAL: Advance the M/R Programming Model

Stratosphere: Information Management above the Clouds

G‘ Stratosphere in a Nutshell .

m PACT Programming Model
o Parallelization Contract (PACT) l
0 Declarative definition of data parallelism
0 Centered around second-order functions
0 Generalization of map/reduce

m Nephele
o Dryad-style execution engine
o Evaluates dataflow graphs in parallel
o Data is read from distributed filesystem
o Flexible engine for complex jobs

m Stratosphere = Nephele + PACT
o Compiles PACT programs to Nephele dataflow graphs
o Combines parallelization abstraction and flexible execution
o Choice of execution strategies gives optimization potential

Stratosphere: Information Management above the Clouds

G‘ Intuition for Parallelization Contracts

m Map and reduce are second-order functions
o Call first-order functions (user code)

o Provide first-order functions with subsets of the input data

m Define dependencies between the
records that must be obeyed when
splitting them into subsets

o Required partition properties

m Map

o All records are independently
processable

m Reduce

0 Records with identical key must
be processed together

Input set

Key

{1}

—_—

Value

SRR A 28N

Stratosphere: Information Management above the Clouds

subse

—_

Independent

ts

<

G‘ Contracts beyond Map and Reduce

m Cross
o Two inputs

0 Each combination of records from the two inputs
is built and is independently processable

m Match

o Two inputs, each combination of records with
equal key from the two inputs is built

o Each pair is independently processable

m CoGroup
o Multiple inputs
0 Pairs with identical key are grouped for each input

0 Groups of all inputs with identical key
are processed together

E

. AN A
Sl sl s[=sh

Stratosphere: Information Management above the Clouds

q‘ Parallelization Contracts (PACTs)

m Second-order function that defines properties on the input and
output data of its associated first-order function

First-order

function
user code

m Input Contract

o Specifies dependencies between records
(a.k.a. "What must be processed together?")

0 Generalization of map/reduce

o Logically: Abstracts a (set of) communication pattern(s)
- For "reduce": repartition-by-key
- For "match" : broadcast-one or repartition-by-key

m Output Contract
o Generic properties preserved or produced by the user code
- key property, sort order, partitioning, etc.
o Relevant to parallelization of succeeding functions

Stratosphere: Information Management above the Clouds

“ Optimizing PACT Programs

m For certain PACTs, several distribution patterns exist that
fulfill the contract
o Choice of best one is up to the system

m Created properties (like a partitioning) may be reused for
later operators

o Need a way to find out whether they still hold after the user code
o Output contracts are a simple way to specify that
o Example output contracts: Same-Key, Super-Key, Unique-Key

m Using these properties, optimization across multiple
PACTs is possible

o Simple System-R style optimizer approach possible

Stratosphere: Information Management above the Clouds

“ From PACT Programs to Data Flows

PACT code _
(grouping) P

function match(Key k, Tuple vall,
Tuple val2)
-> (Key, Tuple)
{
Tuple res = vall.concat(val2) ;
res.project(...);

invoke () :
while (!'input2.eof)
KVPair p = input2.next();
hash-table.put(p.key, p.value);

while (!'inputl.eof)
KVPair p = inputl.next();
KVPait t = hash-table.get(p.key) ;
if (t !'= null)
KVPair[] result =

Key k = res.getColumn (1) ; I UF.matcl.l(p.kev. p.value, t.value);
Return (k, res); I output.write (result) ;
\} I 7end
) / \/ -1
\ , X I
\\\ / \ /
\ Nephele codg ,
AN Jfcommunicationk I
——\ In-Memor \ |
UF1 \ // Channel \\ |
\
ma nanm
Ry N g e
UF2
(map) Network
Channel

PACT Program

Nephele DAG

Spanned Data Flow

Stratosphere: Information Management above the Clouds

" Additional Information

16

www.stratosphere.eu provides publications,
open-source release and examples

,INephele: Efficient Parallel Data Processing in the Cloud",
D. Warneke et al., MTAGS 2009

~Nephele/PACTs: a programming model and execution
framework for web-scale analytical processing", D. Battrée
et al., SoCC 2010

,~Massively Parallel Data Analysis with PACTs on Nephele",
A. Alexandrov et al. PVLDB 2010

,~MapReduce and PACT - Comparing Data Parallel
Programming Models", A. Alexandrov et al., BTW 2011

Stratosphere: Information Management above the Clouds

