

Bridging the NoSQL Gap with Scale Independence

Michael Armbrust, Kristal Curtis, Tim Kraska Armando Fox, Mike Franklin, David Patterson HPTS 2011 – Poster Session

Web2.0: The NoSQL Heresies

"SQL databases are fundamentally non-scalable, and there is no magical pixie dust that we, or anyone, can sprinkle on them to suddenly make them scale."

-Adam Wiggins - Heroku

The NoSQL 'Solution'

- Throw out declarative queries, let developers write get/put calls themselves.
- Trivial to reason about performance!

Common Ground?

A New Kind of Data Independence

Scale Independence: Queries must perform a constant number of constant time operations *independent of the size of the database*

PIQL: A Performance Insightful Query Language

- Designed for interactive web applications
- Library leverages K/V stores for:
 - Predictable performance
 - Scalability
 - Consistency

Preserving Performance Predictability

Scale-Independent Optimization

- Choose query plans that bound the # storage ops in the worst case
- Automatically calculate required indexes / materialized views

Query Language Extensions

- Queries over unbounded amounts of data with PAGINATE and LIMIT
- Relationship cardinality constraints

SLO Compliance Modeling

Use performance models to predict query response time distribution

New Objective Function for Optimization

• Example: subscriber intersection query

```
SELECT * FROM SUBSCRIPTIONS
WHERE target = <target user> AND
owner IN <friends of current user>
```

Cost-based optimizer: Average user has 126 followers. Do an index scan! (even if smart engineers create a composite index)

Performance of Cost-based Plan

Great for unpopular users:

Sometimes disastrous:

mother monster http://www.ladvgaga.com

1,064 141,259 14,871,229 221,428
Tweets Following Followers Listed

Subscriber Intersection Query 99th% Response Time

Unbounded Index Scan Plan
 Bounded Random Lookup Plan

Project Status

- Prototype optimizer w/ simple secondary indexes [VLDB 12]
 - TPC-W scales linearly with 150+ machines
- Future Work: Leverage materialized views
 - Bound computation for incremental maintenance

Questions?

Want to learn more?

http://amplab.cs.berkeley.edu/blog

http://github.com/radlab/scads

Scale Independent Optimization

(a) Query (b) Logical Query Plan Stop 10 SELECT thoughts.* FROM subscriptions s JOIN Sort timestamp thoughts t WHERE t.owner = s.target Selection AND s.owner = $\langle uname \rangle$ owner = <uname> AND s.approved = true approved=true ORDER BY t.timestamp DESC Join LIMIT 10 s.target=t.owner Subscriptions Thoughts

Scale Independent Optimization

SLO Compliance Prediction

SLO Compliance Prediction

