Transactions,
Dogma, & Karma

The More | Know about Transactions,
the More Confused I Get...

Pat Helland
HPTS Oct 2011



Introduction

Pat Says:
1970s to “There’s ACID transactions and there’s EVIL”
mid-1
d-1990s We LOVE Two-Phase-Commit
Pat Says:
mid-1990s “Natural Selection Will Handle Applications Depending on 2PC”
to 2011
Two-Phase-Commit Is Too Brittle for Practical Use... Deal with It
Pat Says:
2011 to “Two Phase Commit Is Great... Sometimes...”
27?7
- Some New Cases Offer Great Cost/Benefit Tradeoffs
Summary:

Never Believe a Damn Thing | Ever Say!

Including This Talk...




Life on ACID...
the 1970s and 1980s Were Great!

* | grew up worshipping at the altar of ACID transactions...
— Those smart old guys at IBM and Tandem made that shit up...
— They were working down the hall at Tandem on Relational Databases
— That relational stuff REALLY counted on transactions...

— ACID transactions were like Atlas holding up the World...

They Weren’t Using Transactions... They Weren’t Using Locks!

Those Luddites Didn’t CARE They Were Inconsistent...

They Just Stuffed Data Out There and Did What They Wanted !!! I




Brittleness, Cynicism, and Apostac

Life beyond Distributed Transactions:

an Apostate’s Opinion
Position Paper

Pat Helland

Amazon.Com
705 Fifth Ave South
Seattle, WA 98104

PHelland@Amazo m

ns expressed in this paper are
pinions and do not in any way reflect
ns of my employer Amazon.co

ABSTRACT

Many decades of work have been invested in the
area of distributed transactions including
protocols such as 2PC, Paxos, and various
approaches to quorum. These protocols provide

Instead, applications are built using different
techniques which do not provide the same
transactional guarantees but still meet the needs
of their businesses.

This paper explores and names some of the
practical approaches used in the implementations
of large-scale mission-critical applications in a
world which rejects distributed transactions. We
discuss the management of fine-grained pieces of




Immutability and Replication in
Massive Datastores

* Recently, we see MASSIVE datastores with highly available immutable data
— GFS (Google): Massive storage of immutable files
— Cosmos (Microsoft Bing): Massive storage of immutable byte streams
* Triple redundant automatically replication storage of chunks (extents)
— The system automatically keeps at least three replicas
— The data is very highly available

The Data Is Smeared across the Cluster

We Expect Each Computer May Fail

The Availability of the Immutable Data Is MUCH Higher!




Deltas and Immutable Datasets

 BigTable, HBase, and others allow changeable data by key
— Updates are captured as deltas which are written as immutable bytestreams
— The base set of records is captured as immutable bytestreams
— Deltas are captured as immutable bytestreams
* We have changeable records built on top of immutable data
— Pretty similar to what databases have done for a while
* We have extremely highly available and updateable records!

— Because the underlying bytestreams are highly available, we can make highly
available updateable key-value records!



Percolator, Cosmos, and More...

Percolator: Google’s plumbing for the Caffeine web-index generation

— Supports full transactional update across ANY record across tens/hundreds of
petabytes across tens of thousands of computers (in one data center)

Cosmos: Evolving to support transactional random update of records

— Will support full transactional update across ANY record across tens/hundreds
of petabytes across tens of thousands of computers (in one data center)

The state of the Two Phase Commit of each transaction is stored within the
records comprising the transaction
— The state of a participating record is stored in the record (pointing to a master)
— The outcome of the transaction is captured in a “master” record
— The services to advance the transaction are restartable in seconds/minutes

Transactional changes are highly available
— The state is triple-replicated as records
— The service to advance the state is quickly restartable

— The transaction is not brittle!!!




Dogma and Karma

| Have a Track Record for Spouting
Dogma about Transactions

Transactions Have a Karma that Keeps
Running over My Dogma...

You Should Never Believe a Damn Thing | Ever Say!




Takeaways

Transactions (and distributed transactions) lower the app complexity barrier
— It is much easier to write an application with transactions to handle failures
— It is much easier to write a composite app spanning many components with Txs.
— Some of us (including me) had strong opinions that transactions are essential
The availability of the application using distributed transactions has been
(pretty much) the intersection of the availability of the servers touched

— This has led to many transactional applications that work well in test and are a
major problem when deployed in the real world

— Some of us (including me) had strong opinions that distributed transactions
should be associated with winning the Darwin Award

New scalable systems are emerging which represent transactions as state in
records made highly available over tens of thousands of computers

— Spanning tens of thousands of computers but in one datacenter

— Highly available record state means highly available distributed transactions

Emerging cases: the benefit of large 2-phase commit may exceed the cost

— The availability of 2-Phase-Commit (across H/A records in a datacenter is GREAT)
— The application is much easier

— The participating applications must trust the infrastructure.




