
Scal(a)ing	
 up	
 Machine	
 Learning
and	
 Big	
 Graph	
 Analy7cs

Tyson	
 Condie,	
 Markus	
 Weimer	
 and	
 Raghu	
 Ramakrishnan
Yahoo!	
 Research

Vinayak	
 Borkar,	
 Yingyi	
 Bu	
 and	
 Mike	
 Carey
U.C.	
 Irvine

Joshua	
 Rosen	
 and	
 Neoklis	
 Polyzo7s
U.C.	
 Santa	
 Cruz

Develop a platform for Machine Learning
and Graph analytics on a cluster of

shared-nothing machines

Programming environment
› Specific to ML and Graph domain

Data-parallel runtime
› Supports ML and Graph analytic workflows

 Feature Extraction
› ETL workflow

 Modeling
› Iterative algorithm that fits a model to the data

 Evaluation
› Checks model fidelity

Characteristic Workflow for ML Analytics

11/1/113

Feature
Extraction Modeling Evaluation

What is a Model?

 Global Model
› Aggregate summary of all data points

› Small in size compared to data set

› e.g., regression, classification

 Local Model
› Interdependent parameters for each data point

› Size proportional to the data set

› e.g., topic (graphical) models, clustering, PageRank

11/1/114

Outline

 Case Study
 Modeling in the Cloud
 Our work
 Project roadmap

11/1/115

Outbound Spam Filter for Yahoo! Mail

11/1/116

Ingredient: Client Classification

 Goal:

› Train a spam classifier that can classify outbound messages

 Problem:

› Other mail services won’t tell us if our users send spam

 Solution:

› Take the mail from Yahoo! to Yahoo! and observe how it was
classified by our users

11/1/117

EMail Flow

11/1/118

YMail
SMTP
Server

Mail DB

From: …@yahoo.com
To: …@yahoo.com

YMail
Web

Server
Vote

EMail Flow: Data Sets

11/1/119

YMail
SMTP
Server

Mail DB
YMail
Web

Server

OUTBOUND
LOG

INBOUND
LOG

WEB_LOG

USER_DB NET_DB

Vote

Step I Extract Features

 OUTBOUND_LOG
› [OUT_ID, FROM, IP]

 USER_DB
› [USER_ID, …]

 NET_DB
› [IP, …]

11/1/1110

[OUT_ID,
USER_FEATURE
NET_FEATURES]

JO
IN

Step II: Extract Labels

 OUTBOUND_LOG
› [OUT_ID,FROM,TO,TIME]

 INBOUND_LOG
› [IN_ID,FROM,TO,TIME]

 WEB_LOG
› [IN_ID,VOTE]

11/1/1111

[OUT_ID,VOTE]

JO
IN

Step II: Finding a Label

 OUTBOUND_LOG
› [OUT_ID,FROM,TO,TIME]

 INBOUND_LOG
› [IN_ID,FROM,TO,TIME]

 WEB_LOG
› [IN_ID,VOTE]

11/1/1112

[OUT_ID,VOTE]This needs a
fuzzy join

JO
IN

Step III: Creating the training data

 JOIN labels and features
 Subsample the training data
 Copy to a single machine

11/1/1113

Step IV: Training the model

 Until a satisfactory model is found:
› Train the model using sequential code
› Evaluate the found model in Pig again
› Apply insights to feature extraction, label

generation and learning algorithm

11/1/1114

Recap

11/1/1115

Take-Away

 Usability is bad (took an intern 3 months)
› Many tools and technologies needed
› Fractured workflow, captured in e.g. Oozie

 Subpar solution
› Subsampling hurts classifier fidelity
› Copying data to a single machine is slow

11/1/1116

Now: Parallelize the middle

11/1/1117

What do people do?

 Gradient Boosted Decision Trees

› Popular non-linear modeling algorithm

› Used in Yahoo! search engine to learn the ranking function

 Gradient Descent

› A method for minimizing objective functions

› Written as a sum of differentiable functions

 Latent Dirichlet Allocation (LDA)

› Example of a topic model

› Usually expressed via Graphical Model

11/1/1118

What do people do?

 Gradient Boosted Decision Trees

› Popular non-linear modeling algorithm

› Used in Yahoo! search engine to learn the ranking function

› Solution: Fake mappers that implement MPI

 Gradient Descent

› A method for minimizing objective functions

› Written as a sum of differentiable functions

› Solution: Fake mappers that run aggregation trees

 Latent Dirichlet Allocation (LDA)

› Example of a topic model

› Usually expressed via Graphical Model

› Solution: Fake mappers that implement this graphical model

11/1/1119

Framework I (Global Models): Spark

 Data Model: Resilient Distributed Datasets
› Support for hash and range partitioning

› Transformations or Actions can be added to them

› The results can be materialized in memory
(RDD.cache()) or to disk (RDD.save(…))

 Caching allows fast iteration

11/1/1120

points.cache()
var w = Vector.random(D)
for (i <- 1 to ITERATIONS) {
 val gradient = points.map { p => f(p, w) }
 .reduce ((a, b) => a + b)
 w -= gradient
}

Worker

Worker

Worker

Driver
tasks

results

$ points 1

$ points 2

$ points 3

model

Framework II (Local Models): Pregel
 Graph-oriented API

› UDF that implements single vertex update

› Input messages from neighboring vertices

› Output: outgoing messages and new vertex state

 Bulk synchronous parallel computing
› Runtime executes all vertices with messages

› Model updated and cached in memory

› Checkpoint for fault-tolerance

› Continues until everyone votes to halt

11/1/1121

go

halt?

msg

msg

Worker

Worker

Worker

Driver

model

model

model

Framework: Pros/Cons

 Pros
› Adds the notion of a working set for fast iterations

› Exports a clean API specific to the problem domain

› Abstracts (many) low-level implementation details

 Cons
› Point solutions that mainly focus on modeling

› Limited optimization support

› No external memory operators

11/1/1122

ScalOps + HyracksML

 ScalOps
› Scala DSL for the entire analytic pipeline

› Supports Pig Latin

› Looping construct that captures iteration

 HyracksML + Algebricks
› Data-parallel runtime that runs on a cluster of shared-nothing

machines

› Deductive database extensions to directly support iteration

› Relational algebra and query optimizer that captures the entire
workflow

11/1/1123

Runtime Engine
HyracksML

Scalable File
System

e.g. HyracksFS, HDFS

Compiler/Optimizer
Algebricks

Programming Model
ScalOps

Spam Filter: ScalOps

11/1/1124

object OutboundSpamFilter extends Query {

 // Join Targets
 case class Features(outID: String, features: Vector)
 case class Label(outID: String, label: Double)

 def getLabels(inboundLogs: Queryable[YMail.InboundRecord], outboundLogs: Queryable[YMail.OutboundRecord], webLogs: Queryable[YMail.WebRecord]) =
{
 val inoutmap = join(inboundLogs by (YMail.keyFor(_)), outboundLogs by (YMail.keyFor(_)))
 join(inoutmap by (_._1.inID), webLogs by (_.inID)).map(e => Label(e._1._2.outID, e._2.vote))
 }

 def getFeatures(outboundLogs: Queryable[YMail.OutboundRecord], userDB: Queryable[YMail.User], netDB: Queryable[YMail.IP]) = {
 case class IPInformation(outID: String, ipInfo: YMail.IP)
 case class UserInformation(outID: String, userInfo: YMail.User)
 val users = join(outboundLogs by (_.from), userDB by (_.id)).map(e => UserInformation(e._1.outID, e._2))
 val ips = join(outboundLogs by (_.ip), netDB by (_.ip)).map(e => IPInformation(e._1.outID, e._2))
 join(outboundLogs by (_.outID), users by (_.outID), ips by (_.outID)).map(e => Features(e._1.outID, YMail.extractFeatures(e._1, e._2.userInfo,
e._3.ipInfo)))
 }

 def run {
 val inboundLogs = load[YMail.InboundRecord]("hdfs://ymail/inbound.dat").filter(YMail.isYMail)
 val outboundLogs = load[YMail.OutboundRecord]("hdfs://ymail/outbound.dat").filter(YMail.isYMail)
 val webLogs = load[YMail.WebRecord]("hdfs://ymail/web.dat")
 val userDB = load[YMail.User]("hdfs://y/users.dat")
 val netDB = load[YMail.IP]("hdfs://y/network.dat")

 // Extract labels
 val labels = getLabels(inboundLogs, outboundLogs, webLogs)

 // Extract Features
 val features = getFeatures(outboundLogs, userDB, netDB)

 // Assemble a dataset
 val dataset = join(labels by (_.outID), features by (_.outID)).map(e => new Example(e._1.outID, e._1.label, e._2.features))

 // Train a model
 val model = ML.train(dataset)

 // Evaluate
 val score = dataset.map(ML.evaluate(model, _)).reduce(_ + _) / dataset.count

 }

}

Spam Filter: Hyracks RQ

11/1/1125

Label
Extractio

n

Modeling

Evaluation

Feature
Extractio

n

Spam Filter: Label Extraction

11/1/1126

val inoutmap = join(in by (YMail.keyFor(_)), out by (YMail.keyFor(_)))
val result = join(inoutmap by (_._1.inID), web by (_.inID))
return result.map(e => Label(e._1._2.outID, e._2.vote))

Spam Filter: Feature Extraction

11/1/1127

val users = join(out by(_.from),udb by(_.id)).map(UserInfo(_._1.outID, _._2))
val ips = join(out by (_.ip), net by (_.ip)).map(e => IPInformation(e._1.outID, e._2))
val results = join(users by (_.outID), ips by (_.outID))

return results.map(Features(_._1.outID, YMail.extractFeatures(_._1, _._2.userInfo, _._3.ipInfo)))

11/1/1128

class MyModel(w: VectorType, funcValue: DoubleType) extends Model
val init = new MyModel(VectorType.zeros(1000), Double.MaxValue)
val result = loop(init, (mdl: Model) => mdl.funcValue > eps) { mdl =>
 val gradients = data.map(x => computeGradient(x, mdl))
 mdl.funcValue = gradients.map(x => x._1).reduce(_+_)
 mdl.funcValue += lambda * env.w.norm2
 mdl.w -= gradients.map(x => x._2).reduce(_+_) / gradients.count
 mdl.w *= (1.0 – 0.5 * lambda)
 mdl
}
return result

Spam Filter: Modeling

Spam Filter: Evaluation

11/1/1129

dataset.map(ML.evaluate(model, _)).reduce(_ + _) / dataset.count

Conclusion: Target Algorithms

 Linear Models
› Batch Gradient Descent

› Stochastic Gradient Descent

› Logistic Regression

 Clustering
› K-Means

 Matrix Factorization
 Graph Analysis
› PageRank

› LDA (Graphical Models)

11/1/1130

Coming Attractions

 Recursive data-parallel runtime (HyracksML)

› Deductive Databases, BOOM, Flying Fixed-Point

› Yingyi Bu and Joshua Rosen

 Extended Relational Algebra (Algebricks)

› Captures the entire workflow in an optimizer friendly representation

› Vinayak Borkar

 High-level language (ScalOps)

› Abstractions for Machine learning and Graph-based algorithms

› Markus Weimer

 Executive Producers

› Mike Carey, Tyson Condie, Neoklis Polyzotis and Raghu Ramakrishnan

11/1/1131

