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Develop a platform for Machine Learning
and Graph analytics on a cluster of

shared-nothing machines

Programming environment
› Specific to ML and Graph domain

Data-parallel runtime
› Supports ML and Graph analytic workflows



 Feature Extraction
› ETL workflow

 Modeling
› Iterative algorithm that fits a model to the data

 Evaluation
› Checks model fidelity

Characteristic Workflow for ML Analytics
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What is a Model?

 Global Model
› Aggregate summary of all data points

› Small in size compared to data set

› e.g., regression, classification

 Local Model
› Interdependent parameters for each data point

› Size proportional to the data set

› e.g., topic (graphical) models, clustering, PageRank
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Outline

 Case Study
 Modeling in the Cloud
 Our work
 Project roadmap
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Outbound Spam Filter for Yahoo! Mail
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Ingredient: Client Classification

 Goal:

› Train a spam classifier that can classify outbound messages

 Problem:

› Other mail services won’t tell us if our users send spam

 Solution:

› Take the mail from Yahoo! to Yahoo! and observe how it was
classified by our users
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EMail Flow
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EMail Flow: Data Sets
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Step I Extract Features

 OUTBOUND_LOG
› [OUT_ID, FROM, IP]

 USER_DB
› [USER_ID, …]

 NET_DB
› [IP, …]
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Step II: Extract Labels

 OUTBOUND_LOG
› [OUT_ID,FROM,TO,TIME]

 INBOUND_LOG
› [IN_ID,FROM,TO,TIME]

 WEB_LOG
› [IN_ID,VOTE]
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Step II: Finding a Label

 OUTBOUND_LOG
› [OUT_ID,FROM,TO,TIME]

 INBOUND_LOG
› [IN_ID,FROM,TO,TIME]

 WEB_LOG
› [IN_ID,VOTE]

11/1/1112

[OUT_ID,VOTE]This needs a
fuzzy join

JO
IN



Step III: Creating the training data

 JOIN labels and features
 Subsample the training data
 Copy to a single machine
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Step IV: Training the model

 Until a satisfactory model is found:
› Train the model using sequential code
› Evaluate the found model in Pig again
› Apply insights to feature extraction, label

generation and learning algorithm
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Recap
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Take-Away

 Usability is bad (took an intern 3 months)
› Many tools and technologies needed
› Fractured workflow, captured in e.g. Oozie

 Subpar solution
› Subsampling hurts classifier fidelity
› Copying data to a single machine is slow
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Now: Parallelize the middle
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What do people do?

 Gradient Boosted Decision Trees

› Popular non-linear modeling algorithm

› Used in Yahoo! search engine to learn the ranking function

 Gradient Descent

› A method for minimizing objective functions

› Written as a sum of differentiable functions

 Latent Dirichlet Allocation (LDA)

› Example of a topic model

› Usually expressed via Graphical Model
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What do people do?

 Gradient Boosted Decision Trees

› Popular non-linear modeling algorithm

› Used in Yahoo! search engine to learn the ranking function

› Solution: Fake mappers that implement MPI

 Gradient Descent

› A method for minimizing objective functions

› Written as a sum of differentiable functions

› Solution: Fake mappers that run aggregation trees

 Latent Dirichlet Allocation (LDA)

› Example of a topic model

› Usually expressed via Graphical Model

› Solution: Fake mappers that implement this graphical model
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Framework I (Global Models): Spark

 Data Model: Resilient Distributed Datasets
› Support for hash and range partitioning

› Transformations or Actions can be added to them

› The results can be materialized in memory
(RDD.cache()) or to disk (RDD.save(…))

 Caching allows fast iteration
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points.cache()
var w = Vector.random(D)
for (i <- 1 to ITERATIONS) {
  val gradient = points.map { p => f(p, w) }
                                   .reduce ((a, b) => a + b)
  w -= gradient
}
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Framework II (Local Models): Pregel
 Graph-oriented API

› UDF that implements single vertex update

› Input messages from neighboring vertices

› Output: outgoing messages and new vertex state

 Bulk synchronous parallel computing
› Runtime executes all vertices with messages

› Model updated and cached in memory

› Checkpoint for fault-tolerance

› Continues until everyone votes to halt
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Framework: Pros/Cons

 Pros
› Adds the notion of a working set for fast iterations

› Exports a clean API specific to the problem domain

› Abstracts (many) low-level implementation details

 Cons
› Point solutions that mainly focus on modeling

› Limited optimization support

› No external memory operators
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ScalOps + HyracksML

 ScalOps
› Scala DSL for the entire analytic pipeline

› Supports Pig Latin

› Looping construct that captures iteration

 HyracksML + Algebricks
› Data-parallel runtime that runs on a cluster of shared-nothing

machines

› Deductive database extensions to directly support iteration

› Relational algebra and query optimizer that captures the entire
workflow
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Spam Filter: ScalOps
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object OutboundSpamFilter extends Query {

  // Join Targets
  case class Features(outID: String, features: Vector)
  case class Label(outID: String, label: Double)

  def getLabels(inboundLogs: Queryable[YMail.InboundRecord], outboundLogs: Queryable[YMail.OutboundRecord], webLogs: Queryable[YMail.WebRecord]) =
{
    val inoutmap = join(inboundLogs by (YMail.keyFor(_)), outboundLogs by (YMail.keyFor(_)))
    join(inoutmap by (_._1.inID), webLogs by (_.inID)).map(e => Label(e._1._2.outID, e._2.vote))
  }

  def getFeatures(outboundLogs: Queryable[YMail.OutboundRecord], userDB: Queryable[YMail.User], netDB: Queryable[YMail.IP]) = {
    case class IPInformation(outID: String, ipInfo: YMail.IP)
    case class UserInformation(outID: String, userInfo: YMail.User)
    val users = join(outboundLogs by (_.from), userDB by (_.id)).map(e => UserInformation(e._1.outID, e._2))
    val ips = join(outboundLogs by (_.ip), netDB by (_.ip)).map(e => IPInformation(e._1.outID, e._2))
    join(outboundLogs by (_.outID), users by (_.outID), ips by (_.outID)).map(e => Features(e._1.outID, YMail.extractFeatures(e._1, e._2.userInfo,
e._3.ipInfo)))
  }

  def run {
    val inboundLogs = load[YMail.InboundRecord]("hdfs://ymail/inbound.dat").filter(YMail.isYMail)
    val outboundLogs = load[YMail.OutboundRecord]("hdfs://ymail/outbound.dat").filter(YMail.isYMail)
    val webLogs = load[YMail.WebRecord]("hdfs://ymail/web.dat")
    val userDB = load[YMail.User]("hdfs://y/users.dat")
    val netDB = load[YMail.IP]("hdfs://y/network.dat")

    // Extract labels
    val labels = getLabels(inboundLogs, outboundLogs, webLogs)

    // Extract Features
    val features = getFeatures(outboundLogs, userDB, netDB)

    // Assemble a dataset
    val dataset = join(labels by (_.outID), features by (_.outID)).map(e => new Example(e._1.outID, e._1.label, e._2.features))

    // Train a model
    val model = ML.train(dataset)

    // Evaluate
    val score = dataset.map(ML.evaluate(model, _)).reduce(_ + _) / dataset.count

  }

}



Spam Filter: Hyracks RQ
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Spam Filter: Label Extraction
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val inoutmap = join(in by (YMail.keyFor(_)), out by (YMail.keyFor(_)))
val result = join(inoutmap by (_._1.inID), web by (_.inID))
return result.map(e => Label(e._1._2.outID, e._2.vote))



Spam Filter: Feature Extraction
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val users = join(out by(_.from),udb by(_.id)).map(UserInfo(_._1.outID, _._2))
val ips = join(out by (_.ip), net by (_.ip)).map(e => IPInformation(e._1.outID, e._2))
val results = join(users by (_.outID), ips by (_.outID))

return results.map(Features(_._1.outID, YMail.extractFeatures(_._1, _._2.userInfo, _._3.ipInfo)))
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class MyModel(w: VectorType, funcValue: DoubleType) extends Model
val init = new MyModel(VectorType.zeros(1000), Double.MaxValue)
val result = loop(init, (mdl: Model) => mdl.funcValue > eps) { mdl =>
  val gradients = data.map(x => computeGradient(x, mdl))
  mdl.funcValue = gradients.map(x => x._1).reduce(_+_)
  mdl.funcValue += lambda * env.w.norm2
  mdl.w -= gradients.map(x => x._2).reduce(_+_) / gradients.count
  mdl.w *= (1.0 – 0.5 * lambda)
  mdl
}
return result

Spam Filter: Modeling



Spam Filter: Evaluation
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dataset.map(ML.evaluate(model, _)).reduce(_ + _) / dataset.count



Conclusion: Target Algorithms

 Linear Models
› Batch Gradient Descent

› Stochastic Gradient Descent

› Logistic Regression

 Clustering
› K-Means

 Matrix Factorization
 Graph Analysis
› PageRank

› LDA (Graphical Models)
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Coming Attractions

 Recursive data-parallel runtime (HyracksML)

› Deductive Databases, BOOM, Flying Fixed-Point

›      Yingyi Bu and Joshua Rosen

 Extended Relational Algebra (Algebricks)

› Captures the entire workflow in an optimizer friendly representation

›      Vinayak Borkar

 High-level language (ScalOps)

› Abstractions for Machine learning and Graph-based algorithms

›      Markus Weimer

 Executive Producers

›     Mike Carey, Tyson Condie, Neoklis Polyzotis and Raghu Ramakrishnan
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