Global Netflix

Replacing Datacenter Oracle with Global Apache Cassandra on AWS

October 24th, 2011
Adrian Cockcroft

@adrianco #netflixcloud
http://www.linkedin.com/in/adriancockcroft

Netflix Inc.

With over 25 million members in the United States,
Canada and Latin America, Netflix, Inc. is the world's
leading Internet subscription service for enjoying
movies and TV shows.

International Expansion

Netflix, Inc., the leading global Internet movie
subscription service, today announced it will expand
to the United Kingdom and Ireland in early 2012.

Source: http://ir.netflix.com N ETELI X

Building a Global Netflix Service

Netflix Cloud Migration

Highly Available and Globally
Distributed Data

Scalability and Performance

Why Use Public Cloud?

Get stuck with wrong conmig
Wai Waie Flle tickets

Ask permission Wait Wait

V=i Things We Don’t Do WWat

Run out of space/power
Plan capacity in advance

Have meetings with IT VU2

Better Business Agility

ol R
NETELIK .
REIE o Netflix could not
Sty T build new
datacenters fast

enough

Capacity growth is accelerating, unpredictable
Product launch spikes - iPhone, Wii, PS3, XBox

Out-Growing Data Center

http://techblog.netflix.com/2011/02/redesigning-netflix-api.html

Netflix APl : Growth in Requests

25

Billions

37x Growth Jan
2010-Jan 2011

Netflix.com is now ~100% Cloud

A few small back end data sources still in progress
All international product is cloud based

USA specific logistics remains in the Datacenter
Working aggressively on billing, PCl compliance on AWS

Netflix Choice was AWS with our
own platform and tools

Unique platform requirements and
extreme agility and flexibility

Leverage AWS Scale
“the biggest public cloud”

AWS investment in features and automation

Use AWS zones and regions for high availability,
scalability and global deployment

o Amazon NETELIX
“¥ webservices"

We want to use clouds,
we don’t have time to build them

Public cloud for agility and scale

AWS because they are big enough to allocate thousands
of instances per hour when we need to

NETELLN

Netflix Deployed on AWS

_ _NNs
i amazon
% webservices"
Content Logs Play API
| Video a a | Qion o
Masters S3 DRM Sign-Up Metadata
EMR CDN i | Device
EC2 Hadoop routing Search Config
: | | Movie | TV Movie
S3 Hive Bookmarks Choosing Choosing
Business Mobile
— CDN — — Loggin — Ratings — .
Intelligence £8ing g iPhone

Clorner AT Level (3)

Datacenter Anti-Patterns

What did we do in the datacenter
that prevented us from meeting our
goals?

Old Datacenter vs. New Cloud Arch

Central SQL Database Distributed Key/Value NoSQL

Sl‘icky In-Memory Session Shared Memcached Session

Chatty Protocols Latency Tolerant Protocols
Tangled Service Interfaces Layered Service Interfaces
Instrumented Code Instrumented Service Patterns

Fat Complex Objects Lightweight Serializable Objects

Components as Jar Files Components as Services

NETELIK

The Central SQL Database

 Datacenter has central Oracle databases
— Everything in one place is convenient until it fails
— Customers, movies, history, configuration

* Schema changes require downtime

Anti-pattern impacts scalability, availability

The Distributed Key-Value Store

* Cloud has many key-value data stores
— More complex to keep track of, do backups etc.
— Each store is much simpler to administer
— Joins take place in java code

* No schema to change, no scheduled downtime

* Latency for typical queries
— Memcached is dominated by network latency <1ms
— Cassandra replication takes a few milliseconds
— Oracle for simple queries is a few milliseconds
— SimpleDB replication and REST auth overheads >10ms

Data Migration to Cassandra

Transitional Steps

* Bidirectional Replication
— Oracle to SimpleDB
— Queued reverse path using SQS
— Backups remain in Datacenter via Oracle

* New Cloud-Only Data Sources
— Cassandra based
— No replication to Datacenter

— Backups performed in the cloud

Front End Load Balancer

API Proxy E— TS
Load Balancer :

AWS EC2

Component
Services

Oracle

EC2
Internal
DINS

Netflix
Data Center

NETELIX

SimpleDB

Cutting the Umbilical

* Transition Oracle Data Sources to Cassandra
— Offload Datacenter Oracle hardware
— Free up capacity for growth of remaining services
* Transition SimpleDB+Memcached to Cassandra
— Primary data sources that need backup
— Keep simplest small use cases for now
* New challenges

— Backup, restore, archive, business continuity
— Business Intelligence integration

AWS EC2
Front End Load Balancer

API Proxy

Discover

Load Balancer

Component
Services

Cassandra

EC2
=4 |nternal

SimpleDB

High Availability

Cassandra stores 3 local copies, 1 per zone
— Synchronous access, durable, highly available
— Read/Write One fastest, least consistent - “1ms

— Read/Write Quorum 2 of 3, consistent - ~¥3ms

AWS Availability Zones
— Separate buildings

— Separate power etc.
— Close together

NETFLIX

Cassandra Write Data Flows
Single Region, Multiple Availability Zone

Client Writes to any
Cassandra Node
Coordinator Node
replicates to nodes
and Zones

Nodes return ack to
coordinator
Coordinator returns
ack to client

Data written to
internal commit log
disk

Cassandra

*Disks
eZone C

Cassandra

LIN'S
eZone C

Cassandra

eDisks
eZ0ne B

Cassandra

DINS
eZone B

If a node goes offline,
hinted handoff
completes the write
when the node comes
back up.

Requests can choose to
wait for one node, a
guorum, or all nodes to
ack the write

SSTable disk writes and
compactions occur
asynchronously

Data Flows for Multi-Region Writes

Consistency Level = Local Quorum

Client Writes to any If a node or region goes offline, hinted handoff
Cassandra Node completes the write when the node comes back up.
Coordinator node replicates Nightly global compare and repair jobs ensure

to other nodes Zones and everything stays consistent.

regions

Local write acks returned to

coordinator 100+ms latency .

Client gets ack when 2 of 3
local nodes are committed
Data written to internal
commit log disks
When data arrives, remote

. Cassandra Caszandra Cassandra Y ossandra
node replicates data

* Zone C * ZoneB * Zone C

Ack direct to source region o
coordinator aones o
Remote copies written to

commit log disks

Cassandra

Remote Copies

e Cassandra duplicates across AWS regions
— Asynchronous write, replicates at destination
— Doesn’t directly affect local read/write latency

* Global Coverage
— Business agility
— Follow AWS...

* Local Access

— Better latency
— Fault Isolation

Cassandra Backup

* Full Backup |

— Time based snapshot
— SSTable compress -> S3 \)\ /\)
* Incremental
— SSTable write triggers [|
compressed copy to S3 U// / \\\u
* Continuous Option o =

— Scrape commit log |)
— Write to EBS every 30s

Cassandra Restore

* Full Restore ‘
— Replace previous data

* New Ring from Backup
— New name old data
e Scripted _

— Create new instances
— Parallel load - fast

Cassandra Online Analytics

* Brisk = Hadoop + Cass " cosni |
— Use split Brisk ring

— Size each separately \A |

* Direct Access }/)k)
I 2N

— Hive/Pig/Map-Reduce
— Hdfs as a keyspace uu uu

— Distributed namenode

Cassandra Archive

Appropriate level of paranoia needed...

Archive could be un-readable
— Restore S3 backups weekly from prod to test

Archive could be stolen
— PGP Encrypt archive

AWS East Region could have a problem
— Copy data to AWS West

Production AWS Account could have an issue
— Separate Archive account with no-delete S3 ACL

AWS S3 could have a global problem
— Create an extra copy on a different cloud vendor

Tools and Automation

Developer and Build Tools
— lira, Perforce, Eclipse, Jenkins, lvy, Artifactory
— Builds, creates .war file, .rpm, bakes AMI and launches

Custom Netflix Application Console
— AWS Features at Enterprise Scale (hide the AWS security keys!)
— Auto Scaler Group is unit of deployment to production

Open Source + Support
— Apache, Tomcat, Cassandra, Hadoop, OpenlDK, CentOS
— Datastax support for Cassandra, AWS support for Hadoop via EMR

Monitoring Tools
— Datastax Opscenter for monitoring Cassandra
— AppDynamics — Developer focus for cloud http://appdynamics.com

Developer Migration

 Detailed SQL to NoSQL Transition Advice

— Sid Anand - QConSF Nov 5t" — Netflix’ Transition
to High Availability Storage Systems

— Blog - http://practicalcloudcomputing.com/
— Download Paper PDF - http://bit.ly/bhOTLu

e Mark Atwood, "Guide to NoSQL, redux”
— YouTube http://youtu.be/zAbFRiyT3LU

Cloud Operations

Cassandra Use Cases
Model Driven Architecture
Performance and Scalability

Cassandra Use Cases

e Key by Customer — Cross-region clusters
— Many app specific Cassandra clusters, read-intensive
— Keys+Rows in memory using m2.4xl| Instances

* Key by Customer:Movie — e.g. Viewing History
— Growing fast, write intensive — m1.xl instances
— Keys cached in memory, one cluster per region

e Large scale data logging — lots of writes
— Column data expires after time period
— Distributed counters, one cluster per region

Model Driven Architecture

* Datacenter Practices
— Lots of unique hand-tweaked systems
— Hard to enforce patterns

 Model Driven Cloud Architecture
— Perforce/lvy/lenkins based builds for everything
— Every production instance is a pre-baked AMI
— Every application is managed by an Autoscaler

Every change is a new AMI

Netflix Platform Cassandra AMI

* Tomcat server

— Always running, registers wit

— Manages Cassandra state, to

* Removec

Root Disk Depenc

N platform
kens, backups

ency on EBS

— Use S3 backed AMI for stateful services

— Normal

y use EBS backed AMI for fast provisioning

Chaos Monkey

amazon
webservices*

Make sure systems are resilient
— Allow any instance to fail without customer impact

Chaos Monkey hours

— Monday-Thursday 9am-3pm random instance kill
Application configuration option

— Apps now have to opt-out from Chaos Monkey

Computers (Datacenter or AWS) randomly die

— Fact of life, but too infrequent to test resiliency

AppDynamics Monitoring of Cassandra — Automatic Discovery

f Request: a4c39b7f-c310-48ba-bca3-56bc7cf86ech _ M x gout(usert)

USER EXPERIENCE EXECUTION TIME TIMESTAMP BUSINESS TRANSACTION REQUEST GUID Archive \"%
.ngVERY_SLOW 4801 ms 04/29/11 03:57:37 PM words a4c39b7f-c310-48ba-bca3-56bc7cfdbect

Request Flow Map 4666 ms (97.2 %) 104 = 8.2 %) B

m p——Custom—31-ms-(0-6-%}

Call Drill Down (Request: a4c39b7f-c310-48ba-bca3-56bc7cf86ect)

= f 58 snapshots
CASSANDRA

Execution Time: 4801 ms. Node JETTY. Timestamp:04/29/11 03:57:28 PM.

SUMMARY
Set as Root Callgraph navigation help Show Filters v &
UL AR Name Time (ms) Extemal Calls Details
HOT SPOTS v =Scr'.-lct - WordsServlet15Serviet - WordsServlet:. doGet 3 ms (self) [0.1% etails
v com.appdynamics.bible.xrefs.cassandra.CassandraHelper:getAllVersesWithWord: 160 0 ms (self) | 0 %
SQL CALLS
' org.apache.cassandra thrift. Cassandra$Client:get_slice:512 198 ms (seff) | 41% Custom View Details
HTTP PARAMS v B HTTPServiet17HTTPServietservice:820 CUSTOM Calls
v B HTTPServiet17HTTPServiet:service:820 Salllme bt EzeemwEh e e
COOKIES)) Qa,
v =JSPBasccrvIcM7JSPBasccr-.'lct:scr-.'lccﬂ 09
USER DATA V=Scr'.'lct - words.jsp111Servlet - words.jsp:_jspService:81 135 ms Bible
java.lang.Object:wait Row key he
ERROR DETAILS)))
java.lang.Objectwait Column family Words
HARDWARE / JVM B iava.lang.Object wait Consistency level QUORUM

2 java.lang.Object:wait
ADDITIONAL DATA

Eliava lang.object:wait Drill Down into Call
Call Drill Down (Request: a4c39b7f-c310-48ba-bca3-56bc7cf86ect)

Execution Time: 104 ms. Node CASSANDRA. Timestamp: 04/29/11 03:57:28 PM.

SUMMARY
Callgraph navigation help Show Filters w | &\
(UL AR Name Time (ms) Extemnal Calls Details
HOT SPOTS Vorg.apachc.cassandra.thrift.CassandraScr'.f\:r:gct_incc 101 ms (seff) [T View Details
v BB org.apache.cassandra.thrift. CassandraServer:multigetSlicelnternal: 273 0 ms (self) | 0%
SQL CALLS)) ~
vorg,apachc.cassandra.thrltt.CassandraScr-.'cr:gotShcoﬂ97 0 ms (self) | 0%
HTTP PARAMS vcxrg.apachc.cassandra.thrift.CassandraScr'.'cr:rcadColumnrarnilmDIZI 0 ms (self) | 0%
v org.apache.cassandra.service.StorageProxy:read: 293 0 ms (self) | 0%
COOKIES . ~
v gl org.apache.cassandra.service.Storage Proxy:fetchRows: 390 0 ms (self) | 0%
USER DATA v g org.apache.cassandra.service.ReadCallback:get: 108 0 ms (self) | 0%
v org.apache.cassandra.utils.SimpleCondition:await: 54 0 ms (self) | 0%

NETELLN

Netflix Contributions to Cassandra

e Cassandra as a mutable toolkit
— Cassandra is in Java, pluggable, well structured
— Netflix has a building full of Java engineers....

* Actual Contributions delivered in 0.8
— First prototype of off-heap row cache
— Incremental backup SSTable write callback

 Work In Progress
— AWS integration and backup using Tomcat helper
— Astyanax re-write of Hector Java client library

Performance Testing

* Cloud Based Testing — frictionless, elastic
— Create/destroy any sized cluster in minutes
— Many test scenarios run in parallel

* Test Scenarios
— Internal app specific tests
— Simple “stress” tool provided with Cassandra

* Scale test, keep making the cluster bigger
— Check that tooling and automation works...
— How many ten column row writes/sec can we do?

€ > C () nactest.netflix.com/application/show/cass_perf_sr

N H I: |_| x Application Console (test) w

B — —_ — -
Home | = Apps 2 Images @ Auto Scaling ,LIL Load Balancers \!‘ Instances [i] EBS == RDS Tasks
v hd v

s

Application Details

é Edit Application @ Delete Application]Jvz-ég Edit Application Security Access

Name: cass_perf_sr
Warning: Punctuation in name prevents use as frontend service.
Type: Web Service
Description: Single region performance test
Owner: Adrian
Email: acockcroft@netflix.com
Create Time: 2011-06-13 14:04:45 PDT
Update Time: 2011-06-13 14:04:45 PDT

Pattern Matches

Auto Scaling:
g@ cass_perf_sr--useastic
C] | cass_perf_sr--useastid
(@] | cass_perf_sr--useastla
Load Balancers:
Security Groups: -
@& cass_perf_sr

Launch Configurations:

Running Instances: Running Instance List

Region:

@ Home

N ETFLI x Application Console (test)

@ Apps u Images (‘!@ Auto Scaling ,LI.L Load Balancers ‘g‘ Instances @ EBS @;1 RDS G Tasks
v v

v

Auto Scaling Group Details

oy @@
@’) Edit Auto Scaling Group ﬁ Delete Auto Scaling Group \i‘m Create new Launch Config . Prepare Rolling Push

@:J:\ Manage Cluster of Sequential ASGs

Name:
Launch Configuration:

Application:

Detail:

Min Instances:
Desired Instances:
Max Instances:
Cool Down:

ASG Health Check Type:

ASG Health Check Grace Period:

Availablility Zones:

AZ Rebalancing:

New Instance Launching:
Created Time:

Load Balancers:

Activities:

cass_perf_sr--useastid
cass_perf_sr--useastid-201106131415
= cass_perf_sr

useastld

4

4

4

10 seconds

EC2 (Replace terminated instances)
600 seconds

[us-east-1d]

Enabled

Enabled

2011-06-13 14:15:29 PDT

At 2011-06-13T21:15:29Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 4. At 2011-06-13T2
response to a difference between desired and actual capacity, increasing the capacity from 0 to 4. : Launching a new EC2 instance:
Successful)

At 2011-06-13T21:15:29Z a user request created an AutoScalingGroup changing the desired capacity from 0 to 4. At 2011-06-13T2
response to a difference between desired and actual capacity, increasing the capacity from 0 to 4. : Launching a new EC2 instance:
Successful)

<DrEvil>ONE MILLION</DrEvil>

Scale-Up Linearity

Client Writes/s by node count — Replication Factor = 3

1200000
1099837

1000000

800000

600000

400000

200000

0 I I I I I I]
0 50 100 150 200 250 300 350

4.5e+86

4e+06

3.5e+86

3e+06

2,5e+86

2e+06

1.5e+86

Read and Hrite Throughput

T
Average Reads 8/s
Average Hrites 3299512/s
Cassandra Reads/s
Cassandra Hrites/s

1e+06 A
560000 -
0 1 1 1 L 1 1 1
168 2680 3600 480 568 660 768
Read and Hrite Response Tines
8,016 T T T T T T T
Average Read Response 0.0080 ——
Average Hrite Response 6.8139 ——
Cassandra Read Response ———
Cassandra Hrite Response ——
0.814 & 1
8.012 b
e.e1 -
8.888 b
8.886 b
0.004 1
0,002 1
0 1 1 1 1 1 1 1
e 168 260 368 460 568 668 7608

N ETELIN

SPUOJASTTTH

NETELLN

Per Node Activity

48 Nodes | 96Nodes | 144Nodes | 288 Nodes

Per Server Writes/s
Mean Server Latency
Mean CPU %Busy
Disk Read

Disk Write

Network Read
Network Write

Node specification — Xen Virtual Images, AWS US East, three zones

10,900 w/s
0.0117 ms
74.4 %
5,600 KB/s
12,800 KB/s
22,460 KB/s
18,600 KB/s

11,460 w/s
0.0134 ms
75.4 %
4,590 KB/s
11,590 KB/s
23,610 KB/s
19,600 KB/s

* (Cassandra 0.8.6, CentOS, SunJDK6
* AWS EC2 m1 Extra Large — Standard price $ 0.68/Hour
15 GB RAM, 4 Cores, 1Gbit network
* 4internal disks (total 1.6TB, striped together, md, XFS)

11,900 w/s
0.0148 ms
72.5 %
4,060 KB/s
10,380 KB/s
21,390 KB/s
17,810 KB/s

11,456 w/s
0.0139 ms
81.5 %
4,280 KB/s
10,080 KB/s
23,640 KB/s
19,770 KB/s

Time is Money

48 nodes 96 nodes 144 nodes 288 nodes
Writes Capacity 174373 w/s 366828 w/s 537172 w/s 1,099,837 w/s
Storage Capacity 12.8 TB 25.6 TB 38.47TB 76.8TB
Nodes Cost/hr $32.64 $65.28 $97.92 $195.84
Test Driver Instances 10 20 30 60
Test Driver Cost/hr $20.00 S40.00 $60.00 $120.00
Cross AZ Traffic 5 TB/hr 10 TB/hr 15 TB/hr 301 TB/hr
Traffic Cost/10min $8.33 $16.66 $25.00 $50.00
Setup Duration 15 minutes 22 minutes 31 minutes 662 minutes
AWS Billed Duration 1hr 1hr 1 hr 2 hr
Total Test Cost $60.97 $121.94 $182.92 $561.68

1 Estimate two thirds of total network traffic
2 Workaround for a tooling bug slowed setup

Takeaway

Netflix is using Cassandra on AWS as a key
infrastructure component of its globally
distributed streaming product.

Also, benchmarking in the cloud is fast, cheap and
scalable

http://www.linkedin.com/in/adriancockcroft
@adrianco #netflixcloud
acockcroft@netflix.com

Amazon Cloud Terminology Reference

See http://aws.amazon.com/ This is not a full list of Amazon Web Service features

AWS — Amazon Web Services (common name for Amazon cloud)
AMI — Amazon Machine Image (archived boot disk, Linux, Windows etc. plus application code)
EC2 — Elastic Compute Cloud
— Range of virtual machine types m1, m2, c1, cc, cg. Varying memory, CPU and disk configurations.
— Instance — a running computer system. Ephemeral, when it is de-allocated nothing is kept.
— Reserved Instances — pre-paid to reduce cost for long term usage
— Availability Zone — datacenter with own power and cooling hosting cloud instances
— Region — group of Availability Zones — US-East, US-West, EU-Eire, Asia-Singapore, Asia-Japan
ASG — Auto Scaling Group (instances booting from the same AMI)
S3 — Simple Storage Service (http access)
EBS — Elastic Block Storage (network disk filesystem can be mounted on an instance)
RDS — Relational Database Service (managed MySQL master and slaves)
SDB — Simple Data Base (hosted http based NoSQL data store)
SQS - Simple Queue Service (http based message queue)
SNS — Simple Notification Service (http and email based topics and messages)
EMR — Elastic Map Reduce (automatically managed Hadoop cluster)
ELB — Elastic Load Balancer
EIP — Elastic IP (stable IP address mapping assigned to instance or ELB)
VPC — Virtual Private Cloud (extension of enterprise datacenter network into cloud)
IAM — Identity and Access Management (fine grain role based security keys)

amazon NETELIX
webservices”

