
Confidential

Flexible OLTP Data models in the
future

Jags Ramnarayan Jags Ramnarayan

Disclaimer:

Any positions expressed here are my own and do not

necessarily reflect the positions of my employer VMWare.

High Performance Transaction Systems, 2011, Asilomar, CA

2 Confidential

Agenda

 Perspective on some trends

 Basic concepts in VMWare GemFire/SQLFire

 Beyond key based partitioning

 Beyond the SQL Data model

3 Confidential

Trends, Observations

 High demand for low/predicable latency, handle huge
load spikes, in-memory on commodity, big data

 Input is streaming in nature

• High, bursty rates ... structured and unstructured

• continuous correlations and derived events

 Increasingly data is bi-temporal in nature

• very high ingest rates that tend to be bursty

• optimizations for inserts and mass migration of historical
data to data warehouse.

• occasional joins across in-memory and data warehouse

4 Confidential

Trends, Observations

 DB schema rapidly evolving

• Services are added/changed every week... DB model cannot be
rigid

• programmer drives the change

•DBA only for operational support?

 DB Instance is ACID but nothing ACID across the
enterprise

• many silos and data duplicated across independent databases

•Cleansing, de-duplication is fact of life and will never go
away

 So, why is ACID so important for most use cases?

• Folks want deterministic outcome not ACID

5 Confidential

VMWare offering - vFabric GemFire (GA), SQLFire (in beta)

 GemFire: Distributed, memory oriented, Object (KV)
data management

 SQLFire: Similar but SQL is the interface

 Target market today

• OLTP upto few TB range (all in memory)

• real-time, low latency, very high concurrent load

• Not focused on “big data” batch analytics

6 Confidential

Some random characteristics

6

7 Confidential

What is different?

7

8 Confidential

Beyond Key based Hash Partitioning

• We all know Hash partitioning provides uniform load balance

• List, range, or using custom application expression

• Exploit OLTP characteristics for partitioning

• Often it is the number of entities that grows over time and not the size
of the entity.

• Customer count perpetually grows, not the size of the
customer info

• Most often access is very restricted to a few entities

• given a FlightID, fetch flightAvailability records

• given a customerID, add/remove orders, shipment records

• Root entity frequently fetched with its immediate children

9 Confidential

Grouping entities

• Related entities share a "entity group" key and are colocated

• Grouping based on foreign key relationships: look for FK in the

compound PK

• advantage here is that not all entities in group have to share the same key

Entity Groups

CreateTable FlightAvailability(..) partitioned by FlightID colocated with Flights

FlightID is the

entity group Key

10 Confidential

Why does this scale?

• requests pruned to a single node or subset of cluster

• Transactional "write set" is mostly confined to a single entity
group

• Unit of serializability now confined to a single "primary" member
managing the entity group

• Common query joins: across tables that belong to the same
group

• If all concurrent access were to be uniformly distributed across
the "entity group" set then you can linearly scale with cluster
size

11 Confidential

Invariably, access patterns are more complex

•Scalable joins when entity grouping is not possible
• Reference tables

• M-M relationships

• Distributed joins impedes scaling significantly

• pipelining intermediate data sets impacts other concurrent activity

•Answer today:
• Use replicated tables for reference data

• one side in the M-M

• Assumptions

• update rate on reference data is low

• one side of the M-M related tables is small and infrequently
changing

12 Confidential

It doesn’t end here

• realizing a "partition aware" design is difficult

• 80-20 rule: 80% of access at a point in time is on 20% of the data

• lumpy distribution causes hotspots
• hash partitioning solves this but doesn't help range

searches

• some help: Multi-attribute Grid declustering
• rebalancing may not help as the entity group (the lump) is

a unit of redistribution

•Static grouping vs dynamic grouping
• e.g online gaming: multiple players that all have to be

grouped together lasts only for a game
(http://www.cs.ucsb.edu/~sudipto/papers/socc10-das.pdf)

13 Confidential

“Good enough” scalable transactions

• Assumptions
• Small in duration and “write set”

• Conflicts are rare

• Single row operations always atomic and isolated

• No statement level read consistency for queries
• Writers almost never block readers

•Single phase commit protocol
• Eagerly “write lock(local)” on each cohort.

• “Fail fast” if lock cannot be acquired

• Transaction isolation at commit time is guaranteed on "write
set" in a single partition

14 Confidential

Rough thoughts on “Schema flexibility”

• New generation of developers don’t seem to like Schemas

• Drivers

• Many source of data: it is semi-structured and changing rapidly

• DB model changes are frequent

• Adding UDTs and altering tables seen as "rigid“

• E.g.

• E-commerce app introduces a few products with a stable schema

Source:

http://www.nosqldatabases.com/main/2011/4/11/augmen

ting-rdbms-with-mongodb-for-ecommerce.html

15 Confidential

“Schema free”, “Schema less”, etc

• Then, keeps adding support for new products

• Or, keeps removing products

• XML datatypes or UDTs or organizing tables in a hierarchy is
unnatural and complex

• JSON is considered fat free alternative to XML

16 Confidential

Distributed data store that supports Objects, SQL and JSON ?

The “Polyglot” Data store

• Current thinking

Single OLTP data store for:

1. complex, obese, perpetually changing object graphs
 session state, workflow state

2. Highly structured, transactional data
 sourced from enterprise DBs

3. semi-structured, self describing, rapidly evolving
data
 syndicated content, etc

17 Confidential

Object columns with dynamic attributes

•Extend SQL with dynamic, self describing attributes
contained in Object columns

•Object columns are containers for self describing K-V
pairs (think JSON)
• values can be objects themselves supporting nesting

(composition)

•Can contain collections

•Very easy in most object environments
• Reflection provides dynamic type under the covers

• And, hence the object fields become queriable. For
interoperability, the type system could be JSON

18 Confidential

Some Examples with Object columns

1. Session State- Object tables easily integrate with
session state modules in popular app servers

create table sessionState (key String, value

Object) hash partitioned redundancy level 1;

2. Semi-structured docs
create table myDocuments (key varchar,
documentID varchar, creationTime date, doc
Object, tags Object) hash partitioned redundancy

level 1;

- doc could be a JSON object with each row having different
attributes in the object

- tags is a collection of strings

19 Confidential

Q & A

More information at

http://communities.vmware.com/community/vmtn/appplatform/v

fabric_sqlfire

http://communities.vmware.com/community/vmtn/appplatform/vfabric_sqlfire
http://communities.vmware.com/community/vmtn/appplatform/vfabric_sqlfire

