High Performance Transaction Systems, 2011, Asilomar, CA

Flexible OLTP Data models in the
future

Jags Ramnarayan

Disclaimer:
Any positions expre my own and do not
necessarily reflect the p employer VMWare.

Confidential




Agenda

= Perspective on some trends
= Basic concepts in VMWare GemFire/SQLFire
= Beyond key based partitioning

= Beyond the SQL Data model

2 Confidential vmware




Trends, Observations

= High demand for low/predicable latency, handle huge
load spikes, in-memory on commodity, big data

= [nput is streaming in nature
* High, bursty rates ... structured and unstructured
e continuous correlations and derived events

* Increasingly data is bi-temporal in nature
e very high ingest rates that tend to be bursty

e optimizations for inserts and mass migration of historical
data to data warehouse.

e occaslional joins across in-memory and data warehouse

3 Confidential vmware




Trends, Observations

= DB schema rapidly evolving
» Services are added/changed every week... DB model cannot be
rigid
e programmer drives the change
* DBA only for operational support?

= DB Instance is ACID but nothing ACID across the
enterprise

* many silos and data duplicated across independent databases

 Cleansing, de-duplication is fact of life and will never go
away

= S0, why is ACID so important for most use cases?
* Folks want deterministic outcome not ACID

4 Confidential vmware




VMWare offering - vFabric GemFire (GA), SQLFire (in beta)

= GemkFire: Distributed, memory oriented, Object (KV)
data management

= SQLFire: Similar but SQL is the interface

= Target market today
 OLTP upto few TB range (all in memory)
 real-time, low latency, very high concurrent load
* Not focused on “big data” batch analytics

5 Confidential vmware




Some random characteristics

e Replicated or partitioned tables

e Dynamic membership based, allows dynamic, non-blocking changes to cluster size
e HA through synchronous ACK based replication protocol

e Multiple levels of failure detection for stronger consistency

e Replicas are active-active for reads but writes serialized through a "row" owner

e Highly optimized for "colocated transactions” but supports distributed transaction

BT =] g - 1 -
‘_rll' ) E ==lg|==] @._ﬂ__—ﬂl_’
B O

I.:J — — |

Other

3 Confidential vmware




What is different?

e Keys and indexes are always in memory
¢ Persistence is just rolling logs with automatic compression
Each copy locally persists to disk. Membership changes reliably stored and used to ensure consistency
e Allow clients to register CQs - push events reliably as updates occur
e Framework for read-through, write through and write behind
e Async WAN replication

PUSH EVENTS

iy L3y O iy
= 8 i R

(:OD?

1 Other
Databases

i

7 Confidential vmware




Beyond Key based Hash Partitioning

* We all know Hash partitioning provides uniform load balance
 List, range, or using custom application expression

e Exploit OLTP characteristics for partitioning

* Often it is the number of entities that grows over time and not the size
of the entity.

* Customer count perpetually grows, not the size of the
customer info

* Most often access is very restricted to a few entities
* given a FlightID, fetch flightAvailability records

* given a customerlD, add/remove orders, shipment records

* Root entity frequently fetched with its immediate children

8 Confidential vmware




Grouping entities

* Related entities share a "entity group" key and are colocated

* Grouping based on foreign key relationships: look for FK in the

compound PK

* advantage here is that not all entities in group have to share the same key

- Entity Groups

ELIGHT AVAILABILITY [flight

" FlightiD is the

FLIGHT ‘AA400°

1D "UA326)

ELIGHT AVAILABILITY (flight

1D "sSwW200’)

FLIGHT 'SW200' T
. k-‘k""u_,k

P
o
\>
FLIGHT HISTORY g

(flight ID "UA326") ) T

/| entity group Key
/V'J[_i—‘i—_f%l'_ e s ”}{;ﬁ‘gg I dfiant >,4”

v

___________________________________

-----------------------------------

LA oLl Ll

CreateTable FlightAvailability(..) partitioned by FlightID colocated with Flights

9

Confidential

vmware




Why does this scale?

* requests pruned to a single node or subset of cluster

* Transactional "write set" is mostly confined to a single entity
group

 Unit of serializability now confined to a single "primary" member
managing the entity group

« Common query joins: across tables that belong to the same
group

* |f all concurrent access were to be uniformly distributed across
the "entity group” set then you can linearly scale with cluster
sSize

10 Confidential vmware




Invariably, access patterns are more complex

e Scalable joins when entity grouping is not possible
* Reference tables
* M-M relationships

 Distributed joins impedes scaling significantly
* pipelining intermediate data sets impacts other concurrent activity

* Answer today:
* Use replicated tables for reference data
* one side in the M-M

* Assumptions
* update rate on reference data is low

* one side of the M-M related tables is small and infrequently
changing

11 Confidential vmware




It doesn’t end here

e realizing a "partition aware" design is difficult
* 80-20 rule: 80% of access at a point in time is on 20% of the data

 lumpy distribution causes hotspots

* hash partitioning solves this but doesn't help range
searches

* some help: Multi-attribute Grid declustering

* rebalancing may not help as the entity group (the lump) is
a unit of redistribution

e Static grouping vs dynamic grouping

* e.g online gaming. multiple players that all have to be
grouped together lasts only for a game
(http://lwww.cs.ucsb.edu/~sudipto/papers/soccl0-das.pdf)

12 Confidential vmware




“Good enough” scalable transactions

e Assumptions
e Small in duration and “write set”
 Conflicts are rare

 Single row operations always atomic and isolated

* No statement level read consistency for queries
* Writers almost never block readers

e Single phase commit protocol
* Eagerly “write lock(local)” on each cohort.

* “Fail fast” if lock cannot be acquired

* Transaction isolation at commit time is guaranteed on "write
set" in a single partition

13 Confidential vmware




Rough thoughts on “Schema flexibility”

* New generation of developers don’t seem to like Schemas ©
e Drivers

* Many source of data: it is semi-structured and changing rapidly
* DB model changes are frequent
* Adding UDTs and altering tables seen as "rigid"

* E.Q.

* E-commerce app introduces a few products with a stable schema

General Product

attributes
Orson Scott Card
Enders Game
Hardcover
n date: July 15, 1994 Book Specific
Tor Science Fiction attributes

352
0812550706
English

Source:
http://www.nosgldatabases.com/main/2011/4/11/augmen
ting-rdbms-with-mongodb-for-ecommerce.html

Confidential vmware



“Schema free”, “Schema less”, etc

* Then, keeps adding support for new products
* Or, keeps removing products

General Product
attributes stay the
same

LAY Jeans specific

Mens 7

Vintage attributes are totally
Straight Cut different ...and not
5 consistent across
Hipster brands & make

Cotten Blend

* XML datatypes or UDTs or organizing tables in a hierarchy is
unnatural and complex

* JSON is considered fat free alternative to XML
15 Confidential V""\'Varea




The “Polyglot” Data store
e Current thinking

Single OLTP data store for:

1. complex, obese, perpetually changing object graphs
session state, workflow state

2. Highly structured, transactional data
sourced from enterprise DBs

3. 3emi-structured, self describing, rapidly evolving
ata

syndicated content, etc

Distributed data store that supports Objects, SQL and JSON ?

16 Confidential vmware




Object columns with dynamic attributes

* Extend SQL with dynamic, self describing attributes
contained in Object columns

* Object columns are containers for self describing K-V
pairs (think JSON)

* values can be objects themselves supporting nesting
(composition)

e Can contain collections

*Very easy in most object environments
* Reflection provides dynamic type under the covers

* And, hence the object fields become queriable. For
Interoperability, the type system could be JSON

17 Confidential vmware




Some Examples with Object columns

1. Session State- Object tables easily integrate with
session state modules in popular app servers

create table sessionState (key String, value
Object) hash partitioned redundancy level 1,

2. Semi-structured docs

create table myDocuments (key varchar,
documentID varchar, creationTime date, doc
Object, tags Object) hash partitioned redundancy

level 1;

- doc could be a JSON object with each row having different
attributes in the object

- tags is a collection of strings

18 Confidential vmware




More information at
http://communities.vmware.com/community/vmtn/appplatform/v
fabric sqlfire

Q&A

19 Confidential vmware



http://communities.vmware.com/community/vmtn/appplatform/vfabric_sqlfire
http://communities.vmware.com/community/vmtn/appplatform/vfabric_sqlfire

