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The New Facebook Messages 

Emails Chats SMS Messages 



Why we chose HBase 

▪ High write throughput 

▪ Good random read performance 

▪ Horizontal scalability 

▪ Automatic Failover 

▪ Strong consistency 

▪ Benefits of HDFS 

▪ Fault tolerant, scalable, checksums, MapReduce 

▪ internal dev & ops expertise 



What do we store in HBase 

▪ HBase 

▪ Small messages 

▪ Message metadata (thread/message indices) 

▪ Search index 

 

▪ Haystack (our photo store) 

▪ Attachments 

▪ Large messages 

 



HBase-HDFS System Overview 

Master  

Region 
Server 

Region 
Server 

Backup 
Master  

Region 
Server 

. . .  

HBASE 

Database Layer 

 Namenode 

Datanode Datanode 

Secondary Namenode  

Datanode 

HDFS 

. . .  

Storage Layer 

. . .   ZK 
Peer 

ZK 
Peer 

Zookeeper Quorum 

Coordination Service 



Facebook Messages Architecture 
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Typical Cluster Layout 

▪ Multiple clusters/cells for messaging 

▪ 20 servers/rack; 5 or more racks per cluster 

▪ Controllers (master/Zookeeper) spread across racks 
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Facebook Messages: Quick Stats 

▪ 6B+ messages/day 

 

▪ Traffic to HBase 

▪ 75+ Billion  R+W ops/day 

▪ At peak: 1.5M ops/sec  

▪ ~ 55% Read vs. 45% Write ops 

▪ Avg write op inserts ~16 records across multiple 
column families. 



Facebook Messages: Quick Stats (contd.) 

▪ 2PB+ of online data in HBase (6PB+ with replication; 
excludes backups) 

▪ message data, metadata, search index 

▪ All data LZO compressed 

▪ Growing at 250TB/month 



Facebook Messages: Quick Stats (contd.) 

Timeline: 

▪ Started in Dec 2009 

▪ Roll out started in Nov 2010 

▪ Fully rolled out by July 2011 (migrated 1B+ accounts from 
legacy messages!) 

 

While in production: 

▪ Schema changes: not once, but twice! 

▪ Implemented & rolled out HFile V2 and numerous other 
optimizations in an upward compatible manner! 



Shadow Testing: Before Rollout 

▪ Both product and infrastructure were changing. 

▪ Shadows the old messages product + chat while the new one was 
under development 
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Shadow Testing: After Rollout 

▪ Shadows new version of the Messages product. 

▪ All backend changes go through shadow cluster before prod push 
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Backup/Recovery (V1) 

• During early phase, concerned about potential bugs in HBase. 

• Off-line backups: written to HDFS via Scribe 

• Recovery tools; testing of recovery tools 
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Backups (V2) 

▪ Now, does periodic HFile level backups. 

▪ Working on: 

▪ Moving to HFile + Commit Log based backups to be able to recover to 
finer grained points in time 

▪ Avoid need to log data to Scribe. 

▪ Zero copy (hard link based) fast backups 



Messages Schema & Evolution 

▪ “Actions” (data) Column Family the source of truth 

▪ Log of all user actions (addMessage, markAsRead, etc.)  

▪ Metadata (thread index, message index, search index) etc. in other 
column families 

▪ Metadata portion of schema underwent 3 changes: 

▪ Coarse grained snapshots (early development; rollout up to 1M users) 

▪ Hybrid (up to full rollout – 1B+ accounts; 800M+ active) 

▪ Fine-grained metadata (after rollout) 

▪ MapReduce jobs against production clusters! 

▪ Ran in throttled way 

▪ Heavy use of HBase bulk import features 
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Reliability: Early work 

▪ HDFS sync support for durability of transactions 

▪ Multi-CF transaction atomicity 

▪ Several bug fixes in log recovery 

▪ New block placement policy in HDFS 

▪ To reduce probability of data loss 

 

 



Availability: Early Work 

▪ Common reasons for unavailability: 

▪ S/W upgrades 

▪ Solution: rolling upgrades 

▪ Schema Changes 

▪ Applications needs new Column Families 

▪ Need to change settings for a CF 

▪ Solution: online “alter table” 

▪ Load balancing or cluster restarts took forever 

▪ Upon investigation: stuck waiting for compactions to finish 

▪ Solution: Interruptible Compactions! 

 



Performance: Early Work 
▪ Read optimizations: 

▪ Seek optimizations for rows with large number of cells 

▪ Bloom Filters 

▪ minimize HFile lookups 

▪ Timerange hints on HFiles (great for temporal data) 

▪ Multigets 

▪ Improved handling of compressed HFiles 

 

 



Performance: Compactions 

▪ Critical for read performance 

▪ Old Algorithm: 

#1. Start from newest file (file 0); include next file if: 

▪ size[i] < size[i-1] * C  (good!) 

#2. Always compact at least 4 files, even if rule #1 isn’t met. 

Solution: 

#1. Compact at least 4 files, but only if eligible files found. 

#2. Also, new file selection based on summation of sizes.  

 size[i] < (size[0] + size[1] + …size[i-1]) * C 
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Performance: Compactions 

▪ More problems! 

▪ Read performance dips during 
peak 

▪ Major compaction storms 

▪ Large compactions bottleneck 

▪ Enhancements/fixes: 

▪ Staggered major compactions 

▪ Multi-thread compactions; 
separate queues for small & big 
compactions 

▪ Aggressive off-peak compactions 
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Metrics, metrics, metrics… 

▪ Initially, only had coarse level overall metrics (get/put latency/ops; 
block cache counters). 

▪ Slow query logging 

▪ Added per Column Family stats for: 

▪ ops counts, latency 

▪ block cache usage & hit ratio 

▪ memstore usage 

▪ on-disk file sizes 

▪ file counts 

▪ bytes returned, bytes flushed, compaction statistics 

▪ stats by block type (data block vs. index blocks vs. bloom blocks, etc.) 

▪ bloom filter stats 



Metrics (contd.) 

▪ HBase Master Statistics: 

▪ Number of region servers alive 

▪ Number of regions 

▪ Load balancing statistics 

▪ .. 

▪ All stats stored in Facebook’s Operational Data Store (ODS). 

▪ Lots of ODS dashboards for debugging issues 

▪ Side note: ODS planning to use HBase for storage pretty soon! 



Need to keep up as data grows on you! 

▪ Rapidly iterated on several new features while in production: 

▪ Block indexes upto 6GB per server! Cluster starts taking longer and 
longer. Block cache hit ratio on the decline. 

▪ Solution: HFile V2 

▪ Multi-level block index, Sharded Bloom Filters 

▪ Network pegged after restarts 

▪ Solution: Locality on full & rolling restart 

▪ High disk utilization during peak 

▪ Solution: Several “seek” optimizations to reduce disk IOPS 

▪ Lazy Seeks (use time hints to avoid seeking into older HFiles) 

▪ Special bloom filter for deletes to avoid additional seek 

▪ Utilize off-peak IOPS to do more aggressive compactions during 



Scares & Scars! 

▪ Not without our share of scares and incidents: 

▪ s/w bugs. (e.g., deadlocks, incompatible LZO used for bulk imported data, etc.)  

▪ found a edge case bug in log recovery as recently as last week! 

▪ performance spikes every 6 hours (even off-peak)! 

▪ cleanup of HDFS’s Recycle bin was sub-optimal! Needed code and config fix. 

▪ transient rack switch failures 

▪ Zookeeper leader election took than 10 minutes when one member of the 
quorum died. Fixed in more recent version of ZK. 

▪ HDFS Namenode – SPOF 

▪ flapping servers (repeated failures) 



Scares & Scars! (contd.) 

▪ Sometimes, tried things which hadn’t been tested in dark launch! 

▪ Added a rack of servers to help with performance issue 

▪ Pegged top of the rack network bandwidth! 

▪ Had to add the servers at much slower pace. Very manual . 

▪ Intelligent load balancing needed to make this more automated. 

▪ A high % of issues caught in shadow/stress testing 

▪ Lots of alerting mechanisms in place to detect failures cases 

▪ Automate recovery for a lots of common ones 

▪ Treat alerts on shadow cluster as hi-pri too! 

▪ Sharding service across multiple HBase cells also paid off 

 



Future Work 

▪ Reliability, Availability, Scalability! 

▪ Lot of new use cases on top of HBase in the works. 

 

▪ HDFS  Namenode HA 

▪ Recovering gracefully from transient issues 

▪ Fast hot-backups 

▪ Delta-encoding in block cache 

▪ Replication 

▪ Performance (HBase and HDFS) 

▪ HBase as a service Multi-tenancy 

▪ Features- coprocessors, secondary indices 
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Thanks! Questions? 
facebook.com/engineering 


