

The NoSQL Ecosystem

Adam Marcus
MIT CSAIL

marcua@csail.mit.edu / @marcua

About Me

● Social Computing + Database Systems
● Easily Distracted: Wrote The NoSQL Ecosystem in

The Architecture of Open Source Applications 1

1 http://www.aosabook.org/en/nosql.html

History, Compressed

Late 1990s Today

History, Compressed

Late 1990s Today

Buy RAM

History, Compressed

Late 1990s

Wrap RDBMSs

Today

Buy RAM

History, Compressed

NoSQL

Late 1990s

Wrap RDBMSs

Today

Buy RAM

History, Compressed

NoSQL

Late 1990s

Wrap RDBMSs

Today

Buy RAM

Not Only SQL

History, Compressed

NoSQL

Late 1990s

Wrap RDBMSs

Today

Buy RAM Commercialize

History, Compressed

NoSQL

Late 1990s

Wrap RDBMSs

Today

Buy RAM Commercialize

The List, So You Don't Yell at Me

Cassandra

HBase

Voldemort

Riak

Redis
MongoDB

HyperTable

Neo4j

HyperGraphDB
DEX

InfoGrid

VertexDB

 Sones

CouchDB

AllegroGraph

BerkeleyDB

Oracle NoSQL
MemcacheDBTokyo Cabinet

FlockDB

The List, So You Don't Yell at Me

Cassandra

HBase

Voldemort

Riak

Redis
MongoDB

HyperTable

Neo4j

HyperGraphDB
DEX

InfoGrid

VertexDB

 Sones

CouchDB

AllegroGraph

BerkeleyDB

Oracle NoSQL
MemcacheDBTokyo Cabinet

FlockDB

Marcus' Law of Databases:

The number of persistence
options doubles every 1.5 years

The List, So You Don't Yell at Me

Cassandra

HBase

Voldemort

Riak

Redis
MongoDB

HyperTable

Neo4j

HyperGraphDB
DEX

InfoGrid

VertexDB

 Sones

CouchDB

AllegroGraph

BerkeleyDB

Oracle NoSQL
MemcacheDBTokyo Cabinet

FlockDB

Marcus' Law of Databases:

The number of persistence
options doubles every 1.5 years

Corollary:
I'm sorry I missed your

persistence option

interesting properties

real-world usage

takeaways

questions

interesting properties

real-world usage

takeaways

questions

Conventional Wisdom on NoSQL

● Key-based data model
● Sloppy schema
● Single-key transactions
● In-app joins
● Eventually consistent

Exceptions are More Interesting

● Data Model
● Query Model
● Transactions
● Consistency

Data Model

● Usually key-based...
● Column-families
● Documents
● Data structures

Data Model

● Usually key-based...
● Column-families
● Documents
● Data structures

● ...but not always
● Graph stores

Query Model

● Redis: data structure-specific operations
● CouchDB, Riak: MapReduce
● Cassandra, MongoDB: SQL-like languages, no

joins or transactions

Query Model

● Redis: data structure-specific operations
● CouchDB, Riak: MapReduce
● Cassandra, MongoDB: SQL-like languages, no

joins or transactions
● Third-party

● High-level: PigLatin, HiveQL
● Library: Cascading, Crunch
● Streaming: Flume, Kafka, S4, Scribe

Transactions

● Full ACID for single key
● Redis: multi-key single-node transactions

Consistency

● Strong: Appears that all replicas see all writes
● Eventual: Replicas may have different, divergent versions

Consistency

● Strong: Appears that all replicas see all writes
● Eventual: Replicas may have different, divergent versions

● Dynamo: strong or eventual (quorum size)

Consistency

● Strong: Appears that all replicas see all writes
● Eventual: Replicas may have different, divergent versions

● Dynamo: strong or eventual (quorum size)

● PNUTs: Timeline consistency
● ...many consistency models!

See: http://www.allthingsdistributed.com/2007/12/eventually_consistent.html

interesting properties

real-world usage

takeaways

questions

NoSQL Use-cases

● Cassandra
● HBase
● MongoDB

Cassandra

● BigTable data model: key column family
● Dynamo sharding model: consistent hashing
● Eventual or strong consistency

Cassandra at Netflix

● Transitioned from Oracle
● Store customer profiles, customer:movie watch

log, and detailed usage logging

Note: no multi-record locking (e.g., bank transfer)

In-datacenter: 3 replicas, per-app consistency

read/write quorum = 1, ~1ms latency

read/write quorum = 2, ~3ms latency

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra

Cassandra at Netflix

● Transitioned from Oracle
● Store customer profiles, customer:movie watch

log, and detailed usage logging
● Note: no multi-record locking (e.g., bank transfer)

In-datacenter: 3 replicas, per-app consistency

read/write quorum = 1, ~1ms latency

read/write quorum = 2, ~3ms latency

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra

Cassandra at Netflix

● Transitioned from Oracle
● Store customer profiles, customer:movie watch

log, and detailed usage logging
● Note: no multi-record locking (e.g., bank transfer)

● In-datacenter: 3 replicas, per-app consistency

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra

Cassandra at Netflix (cont'd)

● Benefit: async inter-datacenter replication
● Benefit: no downtime for schema changes
● Benefit: hooks for live backups

HBase

● Data model: key column family
● Sharding model: range partitioning
● Strong consistency

Applications

Logging events/crawls, storing analytics

Twitter: replicate data from MySQL, Hadoop analytics

Facebook Messages

HBase

● Data model: key column family
● Sharding model: range partitioning
● Strong consistency

● Applications
● Logging events/crawls, storing analytics
● Twitter: replicate data from MySQL, Hadoop analytics
● Facebook Messages

HBase for Facebook Messages

● Cassandra/Dynamo eventual consistency was
difficult to program against

Benefit: simple consistency model

Benefit: flexible data model

Benefit: simple sharding, load balancing,
replication

HBase for Facebook Messages

● Cassandra/Dynamo eventual consistency was
difficult to program against

● Benefit: simple consistency model
● Benefit: flexible data model
● Benefit: simple sharding, load balancing,

replication

MongoDB

● Document-based data model
● Range-based partitioning
● Consistency depends on how you use it

MongoDB: Two use-cases

● Archiving at Craigslist
● 2.2B historical posts, semi-structured
● Relatively large blobs: avg 2KB, max > 4 MB

MongoDB: Two use-cases

● Archiving at Craigslist
● 2.2B historical posts, semi-structured
● Relatively large blobs: avg 2KB, max > 4 MB

● Checkins at Foursquare
● Geospatial indexing
● Small location-based updates, sharded on user

interesting properties

real-world usage

takeaways

questions

Takeaways

● Developer accessibility
● Ecosystem of reuse
● Soft spot

Developer Accessibility

Developer Accessibility
devops

@DEVOPS_BORAT

Developer Accessibility
devops

@DEVOPS_BORAT

self-taught dev

A Different Five-Minute Rule

What does a first-time user of your system
experience in their first five minutes?
(idea credit: Justin Sheehy, Basho)

Redis

http://simonwillison.net/2009/Oct/22/redis/

PostgreSQL

http://www.postgresql.org/docs/9.1/interactive/sql-createtable.html

Cassandra

http://www.datastax.com/docs/0.7/getting_started/using_cli

Accessibility is Forever

Beyond five minutes:
● changing schemas
● scaling up
● modifying topology

Accessibility is Forever

Beyond five minutes:
● changing schemas
● scaling up
● modifying topology

An accessible data store will ease
first-time users in, and support

experienced users as they expand

Ecosystem of Reuse

Spectrum of Reusability

Monolithic System System Kernel

Spectrum of Reusability

MongoDB
Redis

Use as
provided

Monolithic System System Kernel

Spectrum of Reusability

MongoDB
Redis

Cassandra
Voldemort

Use as
provided

Pick between
components

Monolithic System System Kernel

Spectrum of Reusability

MongoDB
Redis

Cassandra
Voldemort

Use as
provided

Pick between
components

ZooKeeper
LevelDB

Reusable
components

Monolithic System System Kernel

Spectrum of Reusability

MongoDB
Redis

Cassandra
Voldemort

Use as
provided

Pick between
components

riak_core
ZooKeeper
LevelDB

Reusable
components

Build your
own system

Monolithic System System Kernel

And finally, a soft spot

polyglot persistence
=

right tool for right task

Polyglot persistence: Where's the data?

“HBase at Mendeley,” Dan Harvey
http://www.slideshare.net/danharvey/hbase-at-mendeley

Polyglot persistence: Where's the data?

“HBase at Mendeley,” Dan Harvey
http://www.slideshare.net/danharvey/hbase-at-mendeley

Polyglot persistence: Where's the data?

“HBase at Mendeley,” Dan Harvey
http://www.slideshare.net/danharvey/hbase-at-mendeley

Aid developers in reasoning about data consistency
across multiple storage engines

interesting properties

real-world usage

takeaways

questions

● Systems: Polyglot persistence + data consistency?

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in

datacenters?

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in

datacenters?
● Accessibility: RDBMS five-minute usability?

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in

datacenters?
● Accessibility: RDBMS five-minute usability?
● Accessibility: Scale-up wizard for storage systems?

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in

datacenters?
● Accessibility: RDBMS five-minute usability?
● Accessibility: Scale-up wizard for storage systems?
● Comparisons: Design or implementation?

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in

datacenters?
● Accessibility: RDBMS five-minute usability?
● Accessibility: Scale-up wizard for storage systems?
● Comparisons: Design or implementation?
● Future: Next-generation NoSQL stores?

Thank You!

Adam Marcus
marcua@csail.mit.edu / @marcua

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in

datacenters?
● Accessibility: RDBMS five-minute usability?
● Accessibility: Scale-up wizard for storage systems?
● Comparisons: Design or implementation?
● Future: Next-generation NoSQL stores?

Photo Credits

http://www.flickr.com/photos/dhannah/457765
7955/

http://www.flickr.com/photos/27316226@N02/3
000888100/sizes/m/in/photostream/

http://www.texample.net/tikz/examples/valenti
ne-heart/

http://voltdb.com/sites/default/files/VCE_button
.png

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

