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About Me

● Social Computing + Database Systems
● Easily Distracted: Wrote The NoSQL Ecosystem  in

The Architecture of Open Source Applications 1

1 http://www.aosabook.org/en/nosql.html
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The List, So You Don't Yell at Me

Cassandra

HBase

Voldemort

Riak

Redis
MongoDB

HyperTable

Neo4j

HyperGraphDB
DEX

InfoGrid

VertexDB

 Sones

CouchDB

AllegroGraph

BerkeleyDB

Oracle NoSQL
MemcacheDBTokyo Cabinet

FlockDB
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Marcus' Law of Databases: 

The number of persistence 
options doubles every 1.5 years

Corollary:
I'm sorry I missed your 

persistence option
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Conventional Wisdom on NoSQL

● Key-based data model
● Sloppy schema
● Single-key transactions
● In-app joins
● Eventually consistent



  

Exceptions are More Interesting

● Data Model
● Query Model
● Transactions
● Consistency
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Data Model

● Usually key-based...
● Column-families
● Documents
● Data structures

● ...but not always
● Graph stores



  

Query Model

● Redis: data structure-specific operations
● CouchDB, Riak: MapReduce
● Cassandra, MongoDB: SQL-like languages, no 

joins or transactions



  

Query Model

● Redis: data structure-specific operations
● CouchDB, Riak: MapReduce
● Cassandra, MongoDB: SQL-like languages, no 

joins or transactions
● Third-party

● High-level: PigLatin, HiveQL
● Library: Cascading, Crunch
● Streaming: Flume, Kafka, S4, Scribe



  

Transactions

● Full ACID for single key
● Redis: multi-key single-node transactions
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● Strong: Appears that all replicas see all writes
● Eventual: Replicas may have different, divergent versions
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Consistency

● Strong: Appears that all replicas see all writes
● Eventual: Replicas may have different, divergent versions

● Dynamo: strong or eventual (quorum size)

● PNUTs: Timeline consistency
● ...many consistency models!

See: http://www.allthingsdistributed.com/2007/12/eventually_consistent.html
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NoSQL Use-cases

● Cassandra
● HBase
● MongoDB



  

Cassandra

● BigTable data model: key    column family
● Dynamo sharding model: consistent hashing
● Eventual or strong consistency



  

Cassandra at Netflix

● Transitioned from Oracle
● Store customer profiles, customer:movie watch 

log, and detailed usage logging 

Note: no multi-record locking (e.g., bank transfer)

In-datacenter: 3 replicas, per-app consistency

read/write quorum = 1, ~1ms latency

read/write quorum = 2, ~3ms latency

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft 
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra
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Cassandra at Netflix (cont'd)

● Benefit: async inter-datacenter replication
● Benefit: no downtime for schema changes
● Benefit: hooks for live backups



  

HBase

● Data model: key     column family
● Sharding model: range partitioning
● Strong consistency

Applications

Logging events/crawls, storing analytics

Twitter: replicate data from MySQL, Hadoop analytics

Facebook Messages
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● Data model: key     column family
● Sharding model: range partitioning
● Strong consistency

● Applications
● Logging events/crawls, storing analytics
● Twitter: replicate data from MySQL, Hadoop analytics
● Facebook Messages



  

HBase for Facebook Messages

● Cassandra/Dynamo eventual consistency was 
difficult to program against

Benefit: simple consistency model

Benefit: flexible data model

Benefit: simple sharding, load balancing, 
replication



  

HBase for Facebook Messages

● Cassandra/Dynamo eventual consistency was 
difficult to program against

● Benefit: simple consistency model
● Benefit: flexible data model
● Benefit: simple sharding, load balancing, 

replication



  

MongoDB

● Document-based data model
● Range-based partitioning
● Consistency depends on how you use it



  

MongoDB: Two use-cases

● Archiving at Craigslist
● 2.2B historical posts, semi-structured
● Relatively large blobs: avg 2KB, max > 4 MB



  

MongoDB: Two use-cases

● Archiving at Craigslist
● 2.2B historical posts, semi-structured
● Relatively large blobs: avg 2KB, max > 4 MB

● Checkins at Foursquare
● Geospatial indexing
● Small location-based updates, sharded on user
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Takeaways

● Developer accessibility
● Ecosystem of reuse
● Soft spot
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Developer Accessibility
devops

@DEVOPS_BORAT

self-taught dev



  

A Different Five-Minute Rule

What does a first-time user of your system 
experience in their first five minutes? 
(idea credit: Justin Sheehy, Basho)



  
Redis

http://simonwillison.net/2009/Oct/22/redis/



  
PostgreSQL

http://www.postgresql.org/docs/9.1/interactive/sql-createtable.html



  
Cassandra

http://www.datastax.com/docs/0.7/getting_started/using_cli



  

Accessibility is Forever

Beyond five minutes: 
● changing schemas
● scaling up
● modifying topology



  

Accessibility is Forever

Beyond five minutes: 
● changing schemas
● scaling up
● modifying topology

An accessible data store will ease 
first-time users in, and support 

experienced users as they expand



  

Ecosystem of Reuse
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Monolithic System System Kernel



  

Spectrum of Reusability

MongoDB
Redis

Use as 
provided

Monolithic System System Kernel



  

Spectrum of Reusability

MongoDB
Redis

Cassandra
Voldemort

Use as 
provided

Pick between 
components

Monolithic System System Kernel



  

Spectrum of Reusability

MongoDB
Redis

Cassandra
Voldemort

Use as 
provided

Pick between 
components

ZooKeeper
LevelDB

Reusable
components

Monolithic System System Kernel



  

Spectrum of Reusability

MongoDB
Redis

Cassandra
Voldemort

Use as 
provided

Pick between 
components

riak_core
ZooKeeper
LevelDB

Reusable
components

Build your
own system

Monolithic System System Kernel



  

And finally, a soft spot



  

polyglot persistence
=

right tool for right task



  

Polyglot persistence: Where's the data?

“HBase at Mendeley,” Dan Harvey 
http://www.slideshare.net/danharvey/hbase-at-mendeley
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Polyglot persistence: Where's the data?

“HBase at Mendeley,” Dan Harvey 
http://www.slideshare.net/danharvey/hbase-at-mendeley

Aid developers in reasoning about data consistency 
across multiple storage engines
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Thank You!

Adam Marcus
marcua@csail.mit.edu / @marcua

● Systems: Polyglot persistence + data consistency?
● Operations: Availability/consistency/latency tradeoffs in 

datacenters?
● Accessibility: RDBMS five-minute usability?
● Accessibility: Scale-up wizard for storage systems?
● Comparisons: Design or implementation?
● Future: Next-generation NoSQL stores?



  

Photo Credits

http://www.flickr.com/photos/dhannah/457765
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