The NoSQL Ecosystem

Adam Marcus
MIT CSAIL
marcua@csail.mit.edu / @marcua

DBg

Database Group

MIT Computer Science and Artificial Intelligence Lab

About Me

* Social Computing + Database Systems
 Easily Distracted: Wrote The NoSQL Ecosystem in

The Architecture of Open Source Applications '

! http://www.aosabook.org/en/nosql.html

History, Compressed

—
Late 1990s Today

History, Compressed

PostgreSQL

M},;R

% 3 —
N N N T
W% TN S
N, R N @
AN NN Ry
RN L -
N N LGN R
N N B
TN O NS
N Sl NN

Buy RAM

Late 1990s Today

History, Compressed

PostgreSQL

MyS&

s ¥ o
|

Buy RAM Wrap RDBMSs

Late 1990s Today

History, Compressed

PostgreSQL

T Y °
®
H'BASE

() /W@E
Cassandra

. mongoDB

sriak

Buy RAM Wrap RDBMSs NoSQL

Late 1990s Today

History, Compressed

~ ™~

Not Only SQL
!

PostgreSQL

MySQRL

Buy RAM Wrap RDBMSs NoSQL

Late 1990s Today

History, Compressed

sy g =hDataStax
1 Cassandra o000
PostgreSQL m 7 . w: 1 0 ge n
. mongoDB bgo

sriak

Buy RAM Wrap RDBMSs NoSQL Commercialize

Late 1990s Today

History, Compressed

& sy g =hDataStax
| f Cassandra o000
PostgreSQL m (o fi‘@: 1 Oge n
. mongoDB bgo
A ri a k ORACLE

Buy RAM Wrap RDBMSs NoSQL Commercialize

Late 1990s Today

The List, So You Don't Yell at Me

HBase CouchDB
. Neo4j |
Cassandra Riak InfoGrid
BerkeleyDB Voldemort HyperTable

Redis MongoDB Sones

HyperGraphDB
AllegroGraph HYP P 5ex FlockDB

VertexDB
_ Oracle NoSQL
Tokyo Cabinet MemcacheDB

The List, So You Don't Yell at Me

Marcus' Law of Databases:

The number of persistence
Bel gptions doubles every 1.5 years

)B
id

Alleg v ' Flock

DEX
VertexDB

B

Oracle NoSQL

Tokyo Cabinet MemcacheDB

The List, So You Don't Yell at Me

Marcus' Law of Databases: B
. id
The number of persistence |
Bel options doubles every 1.5 years
Al Corollary:
‘ I'm sorry I missed your B
persistence option soL

Tokyo Cabinet MemcacheDB

interesting properties
real-world usage
takeaways
guestions

interesting properties

real-world usage
takeaways
guestions

Conventional Wisdom on NoSQL

* Key-based data model
* Sloppy schema

* Single-key transactions
* In-app joins

* Eventually consistent

Exceptions are More Interesting

* Data Model
* Query Model
* Transactions
* Consistency

Data Model

* Usually key-based...

e Column-families
e Documents
 Data structures

Data Model

* Usually key-based...

e Column-families
e Documents
 Data structures

* ...but not always
* Graph stores

Query Model

* Redis: data structure-specific operations
* CouchDB, Riak: MapReduce

* Cassandra, MongoDB: SQL-like languages, no
joins or transactions

Query Model

* Redis: data structure-specific operations
* CouchDB, Riak: MapReduce

* Cassandra, MongoDB: SQL-like languages, no
joins or transactions

* Third-party
* High-level: PigLatin, HiveQL
* Library: Cascading, Crunch
* Streaming: Flume, Kafka, 5S4, Scribe

Transactions

 Full ACID for single key
* Redis: multi-key single-node transactions

Consistency

« Strong: Appears that all replicas see all writes
« Eventual: Replicas may have different, divergent versions

Consistency

« Strong: Appears that all replicas see all writes
« Eventual: Replicas may have different, divergent versions

« Dynamo: strong or eventual (quorum size)

Consistency

Strong: Appears that all replicas see all writes

Eventual: Replicas may have different, divergent versions

Dynamo: strong or eventual (quorum size)

PNUTs: Timeline consistency

...many consistency models!

See: http://www.allthingsdistributed.com/2007/12/eventually_consistent.html

interesting properties

real-world usage

takeaways
guestions

NoSQL Use-cases

* Cassandra
* HBase
* MongoDB

Cassandra

* BigTable data model: key-—~column family

* Dynamo sharding model: consistent hashing
* Eventual or strong consistency

Cassandra at Netflix

* Transitioned from Oracle

 Store customer profiles, customer:movie watch
log, and detailed usage logging

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra

Cassandra at Netflix

* Transitioned from Oracle

 Store customer profiles, customer:movie watch
log, and detailed usage logging

* Note: no multi-record locking (e.g., bank transfer)

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra

Cassandra at Netflix

* Transitioned from Oracle

 Store customer profiles, customer:movie watch
log, and detailed usage logging

* Note: no multi-record locking (e.g., bank transfer)
* In-datacenter: 3 replicas, per-app consistency

“Replicating Datacenter Oracle with Global Apache Cassandra on AWS” by Adrian Cockcroft
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra

Cassandra at Netflix (cont'd)

* Benefit: async inter-datacenter replication
* Benefit: no downtime for schema changes
* Benefit: hooks for live backups

HBase

« Data model: key > column family
» Sharding model: range partitioning
» Strong consistency

HBase

« Data model: key > column family
» Sharding model: range partitioning
» Strong consistency

* Applications
* Logging events/crawls, storing analytics
 Twitter: replicate data from MySQL, Hadoop analytics
» Facebook Messages

HBase for Facebook Messages

* Cassandra/Dynamo eventual consistency was
difficult to program against

HBase for Facebook Messages

* Cassandra/Dynamo eventual consistency was
difficult to program against

* Benefit: simple consistency model
* Benefit: flexible data model

* Benefit: simple sharding, load balancing,
replication

MongoDB

* Document-based data model
* Range-based partitioning
* Consistency depends on how you use it

MongoDB: Two use-cases

* Archiving at Craigslist
 2.2B historical posts, semi-structured
* Relatively large blobs: avg 2KB, max > 4 MB

MongoDB: Two use-cases

* Archiving at Craigslist

 2.2B historical posts, semi-structured

* Relatively large blobs: avg 2KB, max > 4 MB
* Checkins at Foursquare

* Geospatial indexing
* Small location-based updates, sharded on user

interesting properties
real-world usage

guestions

Takeaways

* Developer accessibility
* Ecosystem of reuse
* Soft spot

Developer Accessibility

Developer Accessibility
devops

Sy
Vo

@DEVOPS_BORAT

Developer Accessibility
devops self-taught dev

¥: & =
,[TR -
o =

apevors_sorar @)jJango

A Different Five-Minute Rule

What does a first-time user of your system
experience in their first five minutes?

(idea credit: Justin Sheehy, Basho)

Here's a 30 second guide to getting started with Redis:

5 wget http://redis.googlecode.com/files/redis-1.01.tar
% tar -xzf redis-1.0l.tar.g=z

$ cd redis-1.01

£ make

5 ./redis-server

And that's it—you now have a Redis server running on port
6379. Noneed evenfora . /configure Ofmake install.You
can run . /redis-benchmark in that directory to exercise it a bit.

Let's try it out from Python. In a separate terminal:

5 cd redis-1.01/client-libraries/pythcn/
£ python

=>> import redis

»»» r = redis.Redis ()

»»> r.infol)

[u'total connections received': 1,

»>>» r.keys("*") # Show all keys in the database

»»> r.set("key-1"', 'Value 1")
'El:v{'

»>» r.keys("*®")

[u'"key-1"]

x> r.get("key-1")

u'value 1°

Redis

http://simonwillison.net/2009/0ct/22/redis/

CREATE TABLE -- define a new table

Synopsis
CEEATE [[GLOBAL | LOCAL] { TEMPOEARY | TEMP } | TRELE table name { [
{ column _name data type [DEFAULT defauwlt expr | [column constraint [...]]

| table constraint
| LIKE parent tabl
b oo:]

e [{ INCLUDING | EXCLUDIMGE } DEFAULTS] 1}

1}

[INHERITS { parernt table [, ...] 1 1]

[WITH ©IDS | WITHOUT OIDS]

[ON CCMMIT { FPRESEEVE ROWS | CELETE ROWS | CRCOF }]
[TAELESPACE tablespace]

where column constraint is:

[CONSTRARINT constraint name |

[NOT MULL |
NULL |
UNIQUE [USIME INDEX TRELESEACE tablespace | |
FRIMARY EEY [USING INDEX TAELESPRACE tablespace | |
CHECKE {expression) |
REFERENCES reftable [{ refocolumr)] [MATCH FULL | MATCH BPARTIAL | MATCH SIMPLE]
[oM DELETE action] [OM UPDATE sction] }
[DCEFEERABLE | WOT DEFERRRELE] [INITIALLY CEFEREED | INITIALLY IMMEDIATE]
and table congtraint is:
[CONSTRRINT constraint name]
[UNIQUE { column _name [, ...]) [USING INDEX TRBLESPACE tablespace]
FRIMARY EEY { column pame [, ...]) [USING INDEX TRBLESPACE tablespace | |
CHECKE { expression) |
POREIGN KEEY { column _name [, ...]) BEFERENCES reftable [{ refcolumn [, ...] }]
[MATCH FULL | MATCH PFARTIAL | MATCH SIMFLE] [©W DELETE sction] [OW UFDATE actionr] }
[CEFEERABLE | WOT DEFERRARELE] [INITIALLY CDEFERERED | INITIALLY IMMEDIATE]

PostgreSQL

http://www.postgresql.org/docs/9.1/interactive/sql-createtable.html

Creating a Keyspace

You can use the cgl =k commands described in this section to create a keyspace. In creating an example
keyspace for Twissandra, we wil assume a desired replication factor of 3 and implementation of the
Metwork Topology Strategy replica placement strategy. For more infermation on these keyspace options, see
About Replication in Cassandra.

Mote the single quotes around the string value of strategy

Creating a Column Family

For this example, we use cqglsh to create a users column family in the newly created keyspace. Note the
USE command to connect to the twissandra keyspace.

Inserting and Retrieving Columns

Though in preducticn scenarios it is more practical to insert columns and column values programatically, it is
possible to use cgl=h for these operations. The example in this section illustrates using the TNSERT and
ELECT commands to insert and retrieve some columns in the users column family.

The following commands create and then get a user record for “jsmith.” The record includes a value for the
password column we created when we created the column family. Mote that the user name “jgmith” is the
row key, or in CQOL terms, the primary key.

Indexing a Column

11=h can be used to create secondary indexes, or indexes cn column values. In this example, we will

Cassandra

http://www.datastax.com/docs/0.7/getting_started/using_cli

Accessibility is Forever

Beyond five minutes:
* changing schemas

* scaling up

* modifying topology

Accessibility is Forever

Beyond five minutes:

* changing schemas
* scaling up
* modifying topology

An accessible data store will ease
first-time users in, and support
experienced users as they expand

Ecosystem of Reuse

Spectrum of Reusability

Monolithic System System Kernel

—

Spectrum of Reusability

Monolithic System System Kernel
—
MongoDB
Redis
Use as

provided

Spectrum of Reusability

Monolithic System System Kernel

—

MongoDB Cassandra
Redis Voldemort

T T

Use as Pick between
provided components

Spectrum of Reusability

Monolithic System System Kernel

—

MongoDB Cassandra ZooKeeper
Redis Voldemort LevelDB

T T T

Use as Pick between Reusable
provided components components

Spectrum of Reusability

Monolithic System System Kernel

—

MongoDB Cassandra ZooKeeper -
Redis Voldemort LevelDB rlak_core

T T T T

Use as Pick between Reusable Build your
provided components components own system

And finally, a soft spot

polyglot persistence

right tool for right task

Polyglot persistence

Usage Data Web Crawling @

JEVE]
Map Reduce

Voldemort
read-only stores MongeDB

“HBase at Mendeley,” Dan Harvey
http://www.slideshare.net/danharvey/hbase-at-mendeley

Polyglot persistence: Where's the data?

Usage Data Web Crawling @

JEVE]
Map Reduce

Voldemort
read-only stores MongoDB

“HBase at Mendeley,” Dan Harvey
http://www.slideshare.net/danharvey/hbase-at-mendeley

Polyglot persistence: Where's the data?

N

JEVE]
Map Reduce

Voldemort
read-only stores MongeDB

Aid developers in reasoning about data consistency
across multiple storage engines

“HBase at Mendeley,” Dan Harvey
http://www.slideshare.net/danharvey/hbase-at-mendeley

interesting properties
real-world usage
takeaways

guestions

» Systems: Polyglot persistence + data consistency?

» Systems: Polyglot persistence + data consistency?

» Operations: Availability/consistency/latency tradeoffs in
datacenters?

» Systems: Polyglot persistence + data consistency?

» Operations: Availability/consistency/latency tradeoffs in
datacenters?

 Accessibility: RDBMS five-minute usability?

» Systems: Polyglot persistence + data consistency?

» Operations: Availability/consistency/latency tradeoffs in
datacenters?

 Accessibility: RDBMS five-minute usability?
» Accessibility: Scale-up wizard for storage systems?

» Systems: Polyglot persistence + data consistency?

» Operations: Availability/consistency/latency tradeoffs in
datacenters?

 Accessibility: RDBMS five-minute usability?
» Accessibility: Scale-up wizard for storage systems?
» Comparisons: Design or implementation?

» Systems: Polyglot persistence + data consistency?

» Operations: Availability/consistency/latency tradeoffs in
datacenters?

Accessibility: RDBMS five-minute usability?
Accessibility: Scale-up wizard for storage systems?

Comparisons: Design or implementation?
» Future: Next-generation NoSQL stores?

Thank You!

» Systems: Polyglot persistence + data consistency?

* Operations: Availability/consistency/latency tradeoffs in
datacenters?

 Accessibility: RDBMS five-minute usability?

» Accessibility: Scale-up wizard for storage systems?
« Comparisons: Design or implementation?

* Future: Next-generation NoSQL stores?

Adam Marcus
marcua@csail.mit.edu / @marcua

Photo Credits

http://www.flickr.com/photos/dhannah/457765
7955/

http://www.flickr.com/photos/27316226@N02/3
000888100/sizes/m/in/photostream/

http://www.texample.net/tikz/examples/valenti
ne-heart/
http://voltdb.com/sites/default/files/VCE_button
.pPNg

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

