Parallelism in the Cloud

Eric Brewer
UC Berkeley & Google

HPTS Keynote, September 25, 2013




Giant-scale Services

Front End
Highly available
Load Balancing

000000 00

Stateless workers (easy to restart)
- J

Sooo8B88 28

Durable storage, replicated, highly available




Latency matters (a lot)

Various claims:

e (Google: 0.5 second => -20% page views
e Amazon: extra 100ms => -1% revenue

e Aberdeen Group: extra second =>
o -11% page views
o -7% conversion rate
o -16% customer satisfaction



Reduce latency via

parallelism, caching

‘e | faY,
ALIL v

Ad System| <

|Super root

//\\

Adagdall

Jeff Dean, 2012




Tail Latency

> 99%

-

1oms | atency

Probability




Our tricks hurt tail latency

Caching

o Prediction in general

Parallelism
o Limited by slowest replies

Virtualization

o Extra scheduling, memory pressure

o Worse if actual cores < expected cores

o Virtualization is a lie revealed by tail latency
Logs

o Faster writes, but occasional compactions



Parallelism & Tail Latency

50%ile latency 95%ile latency 99%ile latency
One random leaf finishes 1ms Sms 10ms
95% of all leaf 12ms 32ms 70ms
requests finish
100% of all leaf 40ms 87ms 140ms

requests finish

Dean and Barroso, CACM February 2013



Allocate dedicated resources to live services

e No other jobs on those servers
o No scheduling
o Virtual machines don't hurt much

e No page faults

Also, just to be sure:

® NO power management
e no background tasks
e rare upgrades or failures



Windows Azure:

Peak vs. Average

1,000,000

800,000 '
700,000 - | =l—average

600,000 -
500,000
400,000
300,000 -

200,000 _.__,.————“_
‘ =

100,000 -

requests per second

June 2011 Sep 2011 Dec 2011 March 2012 lune 2012

Windows Azure Blog, July 18, 2012



Batch Computing

Huge cluster to handle peak loads
e But huge waste off peak...

Batch computing is "free" as it fills in the gaps

e Led to MapReduce, Hadoop,

o Also led to Big Data?
e Enables extensive precomputation

o (Google maps, book scanning, web indexing, ...
e Also much easier

o Easy to retry failures

o Low stress



Amazon Spot Instances

"spot market" for unused servers
e price increases with demand

Price, June 2013, Linux "medium instance”

Instance Cost per Hour Ratio
Spot 1.3 cents -
On Demand 12.0 cents 10x
Reserved (1 year) 6.8 cents SX




Needs of the Cloud

Live service jobs:

e Minimize latency, including tail latency
e Minimize layering, virtualization

e Predictable efficient performance

Batch jobs:

e Lower priority
e Should fill in the peak/average gap
e Delays tolerated



Akaros

A new research OS made for the cloud:
e Single-node OS

o Scheduling decisions made elsewhere!
o No user interface, limited devices

e Mix of low latency and batch workload
e T[ransparent not virtual resources

Open Source: http://akaros.cs.berkeley.edu
Barret Rhoden, Kevin Klues, David Zhu

Funded by NSF, award 1016714



Provisioning vs. Allocation

Provisioning

e Guaranteed future access to resources
e Used for low-latency services

o Estimated based on peak load

o Allocated a subset at any time

Allocation

e Real-time resources being used (active load)

e \With provisioning: uninterruptable, irrevocable

e Without provisioning: can be revoked at any time
o Used for batch jobs
o Revocation time is 2-3 microseconds



Many Cores

Moving to 100 cores per server:

e Provision them to services (space partitioning)

o Also partition memory
o ldeally divide bandwidth as well (not done yet)

e Three-level scheduling:
o Cluster OS decides on provisions, batch work
o Node OS allocates cores
o User level: service schedules threads on cores

e Akaros view:

o Partition the cores/memory (like exokernel)
o Revoke cores to return to provisioned service
o Minimize interference (from other iobs. interrupts. etc.)



Many-core Process (MCP)

Manages k cores as one process:

e Single address space

e User-level maps threads onto k cores
o Knows what Kk is!
o Cores for parallelism, threads for blocking I/O
m Thread blocking does not lose core
m Similar to scheduler activations
o Notified of change in number of cores

o (if timeslicing) cores are gang scheduled -- enables
efficient spinlocks



MCP Implementation

Process has a vcoremap:

e Maps virtual cores (vcores) onto physical

cores

o vcores are 1:1 and pinned

o But we can move them around as needed
o And can revoke any core as needed

e Better predictability
o Long quanta (competing jobs are batch only!)
o Limited interrupts => less interference
o Careful memory partitioning
o No page faults for low-latency services



User-level scheduling

Services see a "dedicated" SMP

All syscalls are asynchronous:

o User-level thread blocks
o Core reused by user-level scheduler
o Syscall completions returned on event queue

Similar to many-core version of Capriccio

o User-level threads atop event-based kernel
o Context switch ~3x faster than Linux

Can also support pthreads, TBB, Go threads



Virtual Machines

View 1: "needed less over time"

e \VMs reduce predictability, efficiency
e Akaros really aims for bare metal resources

o e.g. TritonSort leveraged knowledge of actual
hardware to set sorting records

e Containers address some of the VM gains
o Bundling and isolation
o New support for migration (CRIU)
o ... but still close to bare metal



Virtual Machines (2)

View 2: "... but VMs still useful”

e Great for legacy code
e Server consolidation
e Untrusted code

Solution: VM on top of an MCP

e MCP provides raw cores/memory

e Should make VMs more predictable
o Stable resources, less interference

e Can run side-by-side with non-VM MCP



Mixing them altogether...

Cluster manager schedules MCPs on nodes

e Services, batch workers, VMs collocated
e All three use user-level schedulers for threads

Low-Latency Batch Virtual Machine ‘
= Job =
Cluster Manager
\ l = '
Node U Node u Node u Node U Node Node




Akaros Status

32-bit/64-bit version working for C

e Can mix services and batch work well
e User-level scheduling, async syscalls work
e Network stack partially done

Still needs tons of work:

e (o port in progress
e KVM-style VM solution on MCP
e Integration with cluster scheduler (Mesos?)



Summary

Cloud has different OS needs:

1. Predictable low-latency services

2. Batch work to fill in gaps left by peak
allocation

3. Node OS is remotely controlled platform

Akaros is Berkeley's take on this space

e Bare metal many-core processes
o Threads != Cores

e Spatial partitioning



