Orleans

Actors for High-Scale Services

Sergey Bykov

eXtreme Computing Group, Microsoft Research

3-Tier Architecture . Stateless frontends

e Stateless middle tier

Frontends
Middle Tier Storage is the bottleneck
= Storage
- * Latency
—
N * Throughput
- e Scalability
-
-

Horizontal calls are problematic

(

e Data shipping

Cache Tier for Performance & Scalability

Frontends

Much better performance
Lost semantics of storage
Lost concurrency control
Horizontal calls are still
problematic

Still data shipping

Actor Model as Stateful Middle Tier

Frontends

S

&

-
B

3

3

#
g
|)

/| /)
/| /)
z /
. '/
¥ /
/| '/

Actor Middle Tier
p

!
@ ®
5®
®p @
®g®
® ©.6
©ee®
@

= v

A W W\

= v

>

Storage

Performance of cache

Rich semantics
Concurrency control
Horizontal calls are natural
OOP paradigm regained
Function shipping

But there are still

problems...

Problems with Actor Model Frameworks
* Too low level

* App manages lifecycle of actors, exposed to distributed races
* App has to deal with actor failures, supervision trees

* App manages placement of actors — resource management

* Developer has to be a distributed systems expert

Orleans — Programming Model & Runtime

Two goals:
* Qualitatively simplify distributed programming
* Scalable by default

Key decisions:
e Built for .NET, written in C#
* Virtual actors
* Single-threaded event-based execution, using .NET async/await
e Automatic propagation of errors
* Automatic resource management
* Built-in support for persistence

Virtual Actors — Four Defining Features

. Virtual actors always exist, virtually
e Cannot be created, looked up or deleted
* One can always make a call to an actor, using its type and identity

. Virtual actors are automatically instantiated

* If there is no in-memory instance, a message sent to it triggers
instantiation

* Transparent recovery from server failures
. Location transparency

. Runtime can create multiple instances of an actor
* Implemented for stateless actors, prototyped for primary-copy replication

Distributed Runtime

Scheduler

Persistence
Manager

Activation
Catalog

Dispatcher

Actor Activations

I.
thleevr:,;y Messaging/Serialization

Actor

Directory

Cluster
Membership

mmmmmmm

...........

Distributed Runtime
* Messaging is multiplexed over a small number of TCP connections

e Actor directory is a custom DHT

* Single-threaded execution on a small number of threads,
one per core

* Performance benefits from cooperative multitasking

* Actor activation management
e Automatic instantiation and placement (default is random)
* Garbage collection of idle activations

* Custom cluster membership protocol, no Paxos

Multiplayer Gaming — Unexpected Customer

* Multiplayer gaming is a challenging problem

* Large scale fast-evolving social graph

* ‘Inverse’ scale demand

* Very demanding users — availability, performance

* Fast-pace development with fixed deadline

10

Halo Presence Service

Heartbeat
calls

)

Router Actor

Session Actor

Notifications

Observer

Player Actor B

mmmd Player Actor

Player Actor d

Near-real-time processing

State is mostly in memory
Constantly evolving social graph

A fraction of total user base online
Very high throughput, low latency

Inherent races

11

Scalability — Halo 4 Presence

500,000

400,000

> N

W
o
o
o
o
o

200,000

100,000

Throughput (requests/second)

25 50 75 100
Number of Servers

125

12

Latency as Function of Load — Halo 4 Presence

700

600+

-Bl- 95th percentile
=¥ Std
©-Mean

| -l Median

Latenc
N
o
)

10% 19%

34%

55%

Average CPU Utilization

72%

13

Throughput as Function of Number of Actors

160,00
140,00
120,00
100,00
80,00
60,00
40,00
20,00

Throughput (requests/second

0
0
0

0_

0

O_
0_

0

3

10K

40K 100K
Number of Actors

0.5M1M 2M

14

Cooperative Multitasking

10000+
8000+
6000+
4000+

2000+

Throughput (requests/second) per server

8 100 1000
Number of Execution Threads

15

Throughput as Function of Latency

210000

O

7))

& 800@—— 8

I S E——
S

@ 6000

I 4 1 Server

2’: ¥ 2 Servers
S5 4000

O

®

3 2000

W e

®)]

-

e |

= % 100 1000

Request Work Latency (ms)

16

Summary

* Interactive services necessitate stateful middle-tier
* Actor model is a good fit for a wide variety of scenarios
* VVirtual actor is a powerful concept

* Orleans:

* Makes cloud-scale programming attainable to desktop developers
 Uncompromised performance

* Scalability by default

* Proven in production by 1%-party services, notably all of Halo 4

Questions?

18

