
Orleans
Actors for High-Scale Services

Sergey Bykov

eXtreme Computing Group, Microsoft Research



3-Tier Architecture

Frontends

Storage

Middle Tier

• Stateless frontends 

• Stateless middle tier

• Storage is the bottleneck

• Latency

• Throughput

• Scalability

• Horizontal calls are problematic

• Data shipping

2



Cache Tier for Performance & Scalability

Frontends

Storage
Middle Tier

• Much better performance

• Lost semantics of storage 

• Lost concurrency control

• Horizontal calls are still 

problematic

• Still data shipping

Cache

3



Actor Model as Stateful Middle Tier

Frontends

Storage

Actor Middle Tier • Performance of cache

• Rich semantics

• Concurrency control

• Horizontal calls are natural

• OOP paradigm regained

• Function shipping

• But there are still 

problems…

4



Problems with Actor Model Frameworks

• Too low level

• App manages lifecycle of actors, exposed to distributed races

• App has to deal with actor failures, supervision trees

• App manages placement of actors – resource management

•Developer has to be a distributed systems expert

5



Orleans – Programming Model & Runtime
Two goals:

• Qualitatively simplify distributed programming

• Scalable by default

Key decisions:
• Built for .NET, written in C#

• Virtual actors 

• Single-threaded event-based execution, using .NET async/await

• Automatic propagation of errors

• Automatic resource management

• Built-in support for persistence

6



Virtual Actors – Four Defining Features

1. Virtual actors always exist, virtually
• Cannot be created, looked up or deleted

• One can always make a call to an actor, using its type and identity

2. Virtual actors are automatically instantiated
• If there is no in-memory instance, a message sent to it triggers 

instantiation

• Transparent recovery from server failures

3. Location transparency

4. Runtime can create multiple instances of an actor
• Implemented for stateless actors, prototyped for primary-copy replication

7



Distributed Runtime

Client 
Gateway

Messaging/Serialization

Cluster 
Membership

Grain Directory

Activation Catalog

Dispatcher

Scheduler

Grain ActivationsPersistence 
Manager

Client 
Gateway

Cluster 
Membership

Actor 
DirectoryActivation 

Catalog

Dispatcher

Scheduler

Actor ActivationsPersistence 
Manager

Messaging/Serialization

Client 
Gateway

Messaging/Serialization

Cluster 
Membership

Grain Directory

Activation Catalog

Dispatcher

Scheduler

Grain ActivationsPersistence 
Manager

Client 
Gateway

Messaging/Serialization

Cluster 
Membership

Grain Directory

Activation Catalog

Dispatcher

Scheduler

Grain ActivationsPersistence 
Manager

8



Distributed Runtime
• Messaging is multiplexed over a small number of TCP connections

• Actor directory is a custom DHT

• Single-threaded execution on a small number of threads, 
one per core

• Performance benefits from cooperative multitasking

• Actor activation management
• Automatic instantiation and placement (default is random)

• Garbage collection of idle activations

• Custom cluster membership protocol, no Paxos

9



Multiplayer Gaming – Unexpected Customer

10

• Multiplayer gaming is a challenging problem 

• Large scale fast-evolving social graph

• ‘Inverse’ scale demand

• Very demanding users – availability, performance

• Fast-pace development with fixed deadline



Halo Presence Service

• Near-real-time processing

• State is mostly in memory

• Constantly evolving social graph

• A fraction of total user base online

• Very high throughput, low latency

• Inherent races

Game
Session Actor

A

Player Actor
X

Heartbeat 
calls

Observer

Game
Session Actor

B

Game
Session Actor

C

Router Actor
Player Actor

Y

Player Actor
Z

Notifications

11



Scalability – Halo 4 Presence

12



Latency as Function of Load – Halo 4 Presence

13



Throughput as Function of Number of Actors

14



Cooperative Multitasking

15



Throughput as Function of Latency

16



Summary
• Interactive services necessitate stateful middle-tier

• Actor model is a good fit for a wide variety of scenarios

• Virtual actor is a powerful concept

• Orleans:

• Makes cloud-scale programming attainable to desktop developers

• Uncompromised performance

• Scalability by default

• Proven in production by 1st-party services, notably all of Halo 4

17



Questions?

18


