

The Traditional RDBMS Wisdom is
All Wrong

by

Michael Stonebraker

 Traditional RDBMS Wisdom

 Data is in disk block formatting (heavily encoded)
 With a main memory buffer pool of blocks
 Query plans

 Optimize CPU, I/O

 Fundamental operation is read a row

 Indexing via B-trees
 Clustered or unclustered

 Traditional RDBMS Wisdom

 Dynamic row-level locking
 Aries-style write-ahead log
 Replication (asynchronous or synchronous)

 Update the primary first

 Then move the log to other sites

 And roll forward at the secondary (s)

 Traditional RDBMS Wisdom

 Describes MySQL, DB2, Postgres, SQLServer,
Oracle, …

 Focus of most college-level DBMS courses
 Including M.I.T.

 Focus of most DBMS textbooks

 Traditional RDBMS Wisdom

 Is obsolete
 i.e. completely wrong

 DBMS Market (about third-sies)

 Data Warehouses
 Column stores will take over and don’t look like the traditional

wisdom

 Everything else
 Hadoop, Graph-stores, No-SQL, array-stores,…

 OLTP

 Focus of this talk!

Reality Check on OLTP Data Bases

 TP data base size grows at the rate
transactions increase

  1 Tbyte is a really big TP data base
  1 Tbyte of main memory buyable for around

$30K (or less)
  (say) 64 Gbytes per server in 16 servers

  If your data doesn’t fit in main memory now,
then wait a couple of years and it will…..

 Facebook is an outlier

Reality Check – Main Memory
Performance

 TPC-C CPU cycles
 On the Shore DBMS prototype
  “Elephants” should be similar

9

Motivated H-Store/VoltDB

 Main memory Linux SQL DBMS
 multi-node and sharded
 Stored procedure interface
 Pure ACID
 Fast

  ~100X the elephants on TPC-C
  ~10X No-SQL without giving up ACID
  Scales to 3M TPC-C’s per second

 Biggest use case is game state!

OLTP Data Bases -- 4 Big Decisions

 Main memory vs. disk orientation
  Anti-caching is the answer

 Recovery strategy
  Aries is dead; long live transaction logging

 Replication strategy
  Active-active is the answer

 Concurrency control strategy
  Determinism wins; nobody uses row level locking

11

To Go Fast

 Must focus on overhead
  Better B-trees affects a small fraction of the path length

 Must get rid of all four pie slices
  Anything less gives you a marginal win

 You cannot run a disk-based DBMS with a
buffer pool!!!!

12

What if My Data Doesn’t Fit?

 Use a disk-based DBMS and go slow

 Use Anti-caching

Anti-Caching (VLDB ‘14)

 Main memory format for data
 When memory fills, gather cold tuples and write
to an archive (in main memory format)
 When a transaction has a “miss”, abort it but
continue with “fake processing” to find all the
absent data
 Get and “pin” the needed data
 Reschedule transaction when all needed data in
main memory
 Numbers from H-Store implementation

 Is obsolete
 i.e. completely wrong

Advantages

 Better main memory management
 1 hot tuple won’t force 99 cold tuples to stay in main memory

with it

 No conversion of data back and forth between
main memory and disk format

Disadvantage

 Largest query (and all indexes) must still fit in
main memory at one time

 This is not a data warehouse!!
 Easy to fix with time travel

18

Conclusion

 There may be corner cases where anti-
caching loses to a disk architecture
  But we can’t find one

 Main memory DBMSs are the answer!!!!
  Hekaton, Hana, SQLFire, MemSQL, VoltDB, …

Some Data From Nirmesh Malvaiya

 Implemented Aries in VoltDB
 Compared against the VoltDB scheme

 Asynchronous checkpoints

 Command logging

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

TP
C

C
 th

ro
ug

hp
ut

 (t
ho

us
an

ds
 o

f t
pm

C
)

Client rate (thousands of tps)

Command-logging
Physiological-logging

No-logging

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

R
ec

ov
er

y
ra

te
 (t

ho
us

an
ds

 o
f t

pm
C

)

Client rate during run before crash (thousands of tps)

Command-logging
Physiological-logging

Some Data From Nirmesh Malvaiya

 1.5 X run-time performance gain
 1.5 X penalty at recovery time

 Almost all OLTP applications demand HA
 Only run recovery for cluster-wide failures

 E.g. power outage

 Bye-bye Mohan

How to Implement HA

 Active-Passive
 As in the traditional wisdom

 Active-Active
 Send update transactions to all copies

 Each executes transaction logic

How to Implement HA

 Active-Passive
 Write Nirmesh’s data log over the network and roll forward at the

backup node

 Active-Active
 Send only the transaction, not the effect of the transaction

 Allows read-queries to be sent to any replica

My Intuition – Active-Active will
Cream Active-Passive

 Extend Nirmesh numbers to network traffic
 1.5 becomes 2 or 3 at run time

 Roll forward stays at 1.5

 I.e. active-active will win
 Would be nice to prove this!!!

26

Concurrency Control

 MVCC popular (NuoDB, Hekaton)
 Time stamp order popular (H-Store/VoltDB)
  Lightweight combinations of time stamp order

and dynamic locking (Calvin, Dora)
  I don’t know anybody who is doing normal

dynamic locking
  It’s too slow!!!!

The Nail in the Coffin

 Time stamp order compatible with active-active
 As are any deterministic CC schemes

 Row-level locking and MVCC are not
 Need a 2 phase commit between the replicas

 Slow, slow, slow

Net-Net on OLTP

 Main memory DBMS
 With anti-caching

 And command logging

 Deterministic concurrency control
 HA via active-active

 Has nothing to do with the traditional wisdom!!!

Summary

 What we teach out DBMS students is all wrong
 Legacy implementations from the elephants are
all wrong

