

The Traditional RDBMS Wisdom is
All Wrong

by

Michael Stonebraker

 Traditional RDBMS Wisdom

 Data is in disk block formatting (heavily encoded)
 With a main memory buffer pool of blocks
 Query plans

 Optimize CPU, I/O

 Fundamental operation is read a row

 Indexing via B-trees
 Clustered or unclustered

 Traditional RDBMS Wisdom

 Dynamic row-level locking
 Aries-style write-ahead log
 Replication (asynchronous or synchronous)

 Update the primary first

 Then move the log to other sites

 And roll forward at the secondary (s)

 Traditional RDBMS Wisdom

 Describes MySQL, DB2, Postgres, SQLServer,
Oracle, …

 Focus of most college-level DBMS courses
 Including M.I.T.

 Focus of most DBMS textbooks

 Traditional RDBMS Wisdom

 Is obsolete
 i.e. completely wrong

 DBMS Market (about third-sies)

 Data Warehouses
 Column stores will take over and don’t look like the traditional

wisdom

 Everything else
 Hadoop, Graph-stores, No-SQL, array-stores,…

 OLTP

 Focus of this talk!

Reality Check on OLTP Data Bases

 TP data base size grows at the rate
transactions increase

  1 Tbyte is a really big TP data base
  1 Tbyte of main memory buyable for around

$30K (or less)
  (say) 64 Gbytes per server in 16 servers

  If your data doesn’t fit in main memory now,
then wait a couple of years and it will…..

 Facebook is an outlier

Reality Check – Main Memory
Performance

 TPC-C CPU cycles
 On the Shore DBMS prototype
  “Elephants” should be similar

9

Motivated H-Store/VoltDB

 Main memory Linux SQL DBMS
 multi-node and sharded
 Stored procedure interface
 Pure ACID
 Fast

  ~100X the elephants on TPC-C
  ~10X No-SQL without giving up ACID
  Scales to 3M TPC-C’s per second

 Biggest use case is game state!

OLTP Data Bases -- 4 Big Decisions

 Main memory vs. disk orientation
  Anti-caching is the answer

 Recovery strategy
  Aries is dead; long live transaction logging

 Replication strategy
  Active-active is the answer

 Concurrency control strategy
  Determinism wins; nobody uses row level locking

11

To Go Fast

 Must focus on overhead
  Better B-trees affects a small fraction of the path length

 Must get rid of all four pie slices
  Anything less gives you a marginal win

 You cannot run a disk-based DBMS with a
buffer pool!!!!

12

What if My Data Doesn’t Fit?

 Use a disk-based DBMS and go slow

 Use Anti-caching

Anti-Caching (VLDB ‘14)

 Main memory format for data
 When memory fills, gather cold tuples and write
to an archive (in main memory format)
 When a transaction has a “miss”, abort it but
continue with “fake processing” to find all the
absent data
 Get and “pin” the needed data
 Reschedule transaction when all needed data in
main memory
 Numbers from H-Store implementation

 Is obsolete
 i.e. completely wrong

Advantages

 Better main memory management
 1 hot tuple won’t force 99 cold tuples to stay in main memory

with it

 No conversion of data back and forth between
main memory and disk format

Disadvantage

 Largest query (and all indexes) must still fit in
main memory at one time

 This is not a data warehouse!!
 Easy to fix with time travel

18

Conclusion

 There may be corner cases where anti-
caching loses to a disk architecture
  But we can’t find one

 Main memory DBMSs are the answer!!!!
  Hekaton, Hana, SQLFire, MemSQL, VoltDB, …

Some Data From Nirmesh Malvaiya

 Implemented Aries in VoltDB
 Compared against the VoltDB scheme

 Asynchronous checkpoints

 Command logging

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

TP
C

C
 th

ro
ug

hp
ut

 (t
ho

us
an

ds
 o

f t
pm

C
)

Client rate (thousands of tps)

Command-logging
Physiological-logging

No-logging

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

R
ec

ov
er

y
ra

te
 (t

ho
us

an
ds

 o
f t

pm
C

)

Client rate during run before crash (thousands of tps)

Command-logging
Physiological-logging

Some Data From Nirmesh Malvaiya

 1.5 X run-time performance gain
 1.5 X penalty at recovery time

 Almost all OLTP applications demand HA
 Only run recovery for cluster-wide failures

 E.g. power outage

 Bye-bye Mohan

How to Implement HA

 Active-Passive
 As in the traditional wisdom

 Active-Active
 Send update transactions to all copies

 Each executes transaction logic

How to Implement HA

 Active-Passive
 Write Nirmesh’s data log over the network and roll forward at the

backup node

 Active-Active
 Send only the transaction, not the effect of the transaction

 Allows read-queries to be sent to any replica

My Intuition – Active-Active will
Cream Active-Passive

 Extend Nirmesh numbers to network traffic
 1.5 becomes 2 or 3 at run time

 Roll forward stays at 1.5

 I.e. active-active will win
 Would be nice to prove this!!!

26

Concurrency Control

 MVCC popular (NuoDB, Hekaton)
 Time stamp order popular (H-Store/VoltDB)
  Lightweight combinations of time stamp order

and dynamic locking (Calvin, Dora)
  I don’t know anybody who is doing normal

dynamic locking
  It’s too slow!!!!

The Nail in the Coffin

 Time stamp order compatible with active-active
 As are any deterministic CC schemes

 Row-level locking and MVCC are not
 Need a 2 phase commit between the replicas

 Slow, slow, slow

Net-Net on OLTP

 Main memory DBMS
 With anti-caching

 And command logging

 Deterministic concurrency control
 HA via active-active

 Has nothing to do with the traditional wisdom!!!

Summary

 What we teach out DBMS students is all wrong
 Legacy implementations from the elephants are
all wrong

