The Case for
Always-On Self-Learning
Monitoring/Profiling of
High Performance Transaction Processing

Apps
in Production

Pranta Das

Architect, AppDynamics, Inc.
pdas@appdynamics.com

A& AppDynamics

15th International Workshop on High Performance Transaction Systems (HPTS)
September 22" — 25™ 2013
http://www.hpts.ws

Distributed Apps are getting more and more complex
And there’s an App for everything!

End User Interfaces Middle Tiers

Orace
AGILE Felease .
NETSevviee b
(=1 e~ T .
WEB 2.0 =_ 7 o .~ .
.-/_-. C T sava A M
(on) 082
\ e — //
Purchase Network / / --““‘;,“'
Searcn fligm — [— P e - PastgreSaL
‘li'ﬂsmUS ' —___/ : o /'1\1 o
lvo‘n P‘ '_' .'.. Can " g \.\x
=~ - B N ﬁ Hbase
MOBILE TomcatService /— —_— \ r
} 7 Jeoss Service
. e N i N\ - :
ey Amsrontc2
\E/ g // —— \
PUBLIC/PRIVATE/HYBRID CLOUDS S, ‘*ﬁ MangaDE
....... ‘x\
........ ﬂ Cassandra
BIG DATA

,. AppDynamics

Most Performance problems manifest in Production
(simply because your app lives the longest time there).

Exhausted Connection Pool

Network ' ' e
& Ops Network configuration Capacity limits
Hung JVM
18 CDN file placement

E Conflict with other apps DNS routing

8 Load Balancer configuration OutOfMemoryException
F Unbalanced web servers
—~ Release Synchronization Latency

QO & Deploy

o0

av;

-
P

Garbage collection
Memory leaks
D v Databe
ev Slow pages

Code deadlocks Inefficient databa

Method-level tuning

Test Lab Staging Production

Scale and Time
source: AppDynamics/SOASTA joint study, Nov. 2011

2 AppDynamics

Impediments to enabling monitoring of
applications in production?

Fear of performance overhead

Most application development shops lack the
discipline or the expertise to manually
instrument their code, in an efficient and
minimally intrusive manner

Most monitoring systems require extensive
configuration and do not adapt dynamically to
production environments especially in the
cloud

Monitoring is quite often an afterthought

when the proverbial sh*t hits the fan
& AppDynamics

So, what’s changed?

o Advent of new technologies such as Byte-Code
Instrumentation (BCI), especially in managed

runtimes, such as:
o Java Virtual Machine (JVM),

o Microsoft .NET Common Language Runtime (CLR),
o« PHP and
e Node.js

o Now, one can automate the instrumentation, and

thus monitoring, of such applications without:
e requiring any change from these applications,
e Incurring massive amounts of overhead
and yet providing deep and wide visibility in production
environments. L\ F]pngnamics

And what kind of scale are we talking about?

NETELIX ExactTarget. FAMILSEARCH CRBITZ

NHERE GENE

10,000 JVM 5,000 CLR 5,000 JVM 3,500 JVM
6.1B tx/day 500M tx/day 10M tx/day 7M tx/day
) @ ” Alli
.. L®INDEX edmunds@ anz ()
Expedia
2,500 JVM 2,500 JVM 2,500 JVM 1,500 CLR
5M tx/day 10M tx/day 650k tx/day 24M tx/day

2 AppDynamics

Reverse Architecture — the Aha Moment! (Virginia,
throw out that obsolete Visio chart!)

Acme Online Book Store EUM2
Business Transactions
Servers

App Servers
BEIEERE
Remote Services
Events
End User Experience
Troubleshoot
Alert & Respond
Analyze

Configure

Custom Dashboards

Cloud Auto-Scaling

Acme Online Book Store EUM2

‘ \ Dashboard Top Business Transactions Transaction Snapshots Transaction Analysis

Application Flow Map =
19 calls / min, 2313 ms 18 calls/min, 724 ms ’

a

Inventory-2

Oracle - 10.0.0

150 calls/min, 128 ms

19 calls/min,

INVENTORY-MySQL DB-LOCALHOST

122 calls / min, 78

5 calls/min, 9664 ms

XE-Oracle DB-DEMO-DB.APPDYNAMICS.COM
521 calls/min, 1 ms
E-Commerge-2

32 callg/min, 3 ms

APPDY-MySQL DB-LOCALHOST

32 calls / min, 6 ms

32 calls/min, - ms 16 calls/min, 10 ms

Oracle - 10.0.0

Active MQ-OrderQueue
Order Processing-2

Explain this View

Load 1,823 cais 122 /min Response Time (ms) 780 ms average

1800

dsay

JSUo

Sw) aw|yL

2:01PM 2:03PM 2:05PM 2:07PM 2:09PM 2:11PM 2:13 PM 2:15 P} 2:01 PM 2:03PM 2:05PM 2:07 PM 2:09 PM 2:11 PM 2:13 PM 2:15 P}

2 AppDynamics

Help Setup Logout user1

Compare last 15 minutes

Events

Code Problems

Business Transaction Health

1 critical, 1 warning, 6 normal

Server Health

0 critical, 0 warning, 4 normal

Transaction Scorecard

Nowmal [N 55.1%

Slow 1.3%
Very Slow 0.6%
Stalls 0.0%
Errors I 0.0%

Exceptions

Exceptions 0 total <1 /min
HTTP Error Codes 0 total <1 /min

Error Page Redirects 0 total <1 /min

0 total

4:00 PM

Every Multi-tier Distributed App can be
expressed as a Statistical Model of Traffic,
Queues, Services and Resources

Service Resource
(Thread/Process/Instance)

Pool
Request Queue
\ 1 serw
Arrival Rate & Service Rate
Ay &5 & & v

q depth
resources

For a given arrival rate A, we need to maximize the service rate u with an
optimum valueofn . Monitoring q , oth will help us tune the application
system to see if we need additional service compute resources to meet the
current arrival rate.

Having visibility into this data allows us not only to find bottlenecks in the
code but also possibly flaws in design and architecture

& AppDynamics

Advantages of automated instrumentation of
such applications over manual alternatives

. Capability of doing dynamic automated topology discovery (especially
in elastic infrastructures such as public/private/hybrid clouds or
virtualized environments)

« Automatic dynamic performance baseline establishment and
automatic detection of outlier requests.

« Automatic cross-tier distributed correlation of requests, automated
discovery of back-ends accessed by these applications such as
SQL/NoSQL databases and Messaging middleware, release regression
analysis (especially in Agile environments)

« Enabling policy-based automatic scaling (in cloud and virtualized
environments) based on actual application metrics as opposed to just
infrastructure metrics

« Promoting collaboration between Dev & Ops teams in troubleshooting
performance problems in production systems.

& AppDynamics

Thanks!

2 AppDynamics

