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Distributed Apps are getting more and more complex
And there’s an App for everything!
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Most Performance problems manifest in Production
(simply because your app lives the longest time there).
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Impediments to enabling monitoring of
applications in production?

Fear of performance overhead

Most application development shops lack the
discipline or the expertise to manually
instrument their code, in an efficient and
minimally intrusive manner

Most monitoring systems require extensive
configuration and do not adapt dynamically to
production environments especially in the
cloud

Monitoring is quite often an afterthought

when the proverbial sh*t hits the fan
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So, what’s changed?

o Advent of new technologies such as Byte-Code
Instrumentation (BCI), especially in managed

runtimes, such as:
o Java Virtual Machine (JVM),

o Microsoft .NET Common Language Runtime (CLR),
o« PHP and
e Node.js

o Now, one can automate the instrumentation, and

thus monitoring, of such applications without:
e requiring any change from these applications,
e Incurring massive amounts of overhead
and yet providing deep and wide visibility in production
environments. L\ F]pngnamics



And what kind of scale are we talking about?
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Reverse Architecture — the Aha Moment! (Virginia,
throw out that obsolete Visio chart!)
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Compare last 15 minutes

Events

Code Problems

Business Transaction Health

1 critical, 1 warning, 6 normal

Server Health

0 critical, 0 warning, 4 normal

Transaction Scorecard

Nowmal [N 55.1%

Slow 1.3%
Very Slow 0.6%
Stalls 0.0%
Errors I 0.0%

Exceptions

Exceptions 0 total <1 /min
HTTP Error Codes 0 total <1 /min

Error Page Redirects 0 total <1 /min

0 total
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Every Multi-tier Distributed App can be
expressed as a Statistical Model of Traffic,
Queues, Services and Resources

Service Resource
(Thread/Process/Instance)

Pool
Request Queue
\ 1 serw
Arrival Rate & Service Rate
Ay &5 & & v

q depth
resources

For a given arrival rate A, we need to maximize the service rate u with an
optimum valueofn . Monitoring q , oth will help us tune the application
system to see if we need additional service compute resources to meet the
current arrival rate.

Having visibility into this data allows us not only to find bottlenecks in the
code but also possibly flaws in design and architecture
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Advantages of automated instrumentation of
such applications over manual alternatives

. Capability of doing dynamic automated topology discovery (especially
in elastic infrastructures such as public/private/hybrid clouds or
virtualized environments)

« Automatic dynamic performance baseline establishment and
automatic detection of outlier requests.

« Automatic cross-tier distributed correlation of requests, automated
discovery of back-ends accessed by these applications such as
SQL/NoSQL databases and Messaging middleware, release regression
analysis (especially in Agile environments)

« Enabling policy-based automatic scaling (in cloud and virtualized
environments) based on actual application metrics as opposed to just
infrastructure metrics

« Promoting collaboration between Dev & Ops teams in troubleshooting
performance problems in production systems.
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Thanks!
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