≪EROSPIKE

Optimizing High Performance Databases for Flash Storage

HPTS, Sept 28, 2015 Brian Bulkowski | CTO & Founder, Aerospike

How is Aerospike used ?

SHARED-NOTHING SYSTEM: 100% DATA AVAILABILITY

- Every node in a cluster is identical, handles both transactions and long running tasks
- Clients give rich semantics in multiple languages and connect over the network
- Data is replicated synchronously with within the local cluster
- Data is replicated asynchronously across data centers
- Primary key hash RIPE MD160 (20 byte) for extreme collision resistance (DHT), Red black tree for records within hash bucket
- Scatter-gather B+ secondary index

A Flash optimized database

- 2008 Hadoop, Aster, Greenplum, Vertica, Netezza ...
 - Analytics meets clustering with HDD
- Internet-scale databases were in terrible shape
 - Sharded MySQL + memcache \rightarrow ewwww
 - Oracle seen as unacceptable
 - Big guys write their own
- Flash gives insane IOPs great for small objects (< 4K) Power isn't getting cheaper
- Target scale: Billions of objects, Terabytes of storage, Millions of requests per second, "small" clusters (1 to 100)

2010 – the year of mainstream Flash

- Intel X-25M released
 - Device itself was --- flawed --- but available
- First Aerospike deployment Samsung SS805
- OS issues observed in Linux
 - Disk scheduler good
 - File systems bad
 - Memmap terrible
 - Page cache terrible
 - SATA NCQ twitchy
 - TCP fairly fast

Immutable NAND attributes

- Parallelism required
- "Garbage collector" in device
- Controller weaknesses / differences
- Write amplification causes drive failures
- 70 ms read similar to a TCP/IP network round trip

Log-based storage layout

- Log-based layout is EXCEPTIONALLY good
- Copy-on-write for reliability
- Large objects create less garbage collection
 And thus less write amplification
- DRAM buffers later become hardware supported writes
- but create continual defragmentation (compaction)

Indexes in DRAM

- Don't need to persist
 - Apply k-safety rules
 - Gain reliability with clustering
- Need parallelism of DRAM
 - DRAM memory bandwidth still very important
- "Persistent" DRAM through shared memory
- Support background tasks (eviction, migration)

Improving controllers

- "Sunlight is the best disinfectant"
- <u>http://github.com/aerospike/act</u>
- DEVIATION of LATENCY measured
- Internet behavioral workload
 - 1.5 KB reads
 - 128 KB writes
 - 50 / 50 read write
 - Include defragmentation workload (large reads + writes)
 - Random, no de-dup, no cache locality
- Easy to run 24 to 48 hours
- Increase workload until 95% latency > 2 ms (roughly)

Results

2011

- Intel 320 good
- Samsung SS805 very good
- OCZ was "spotty"
- Fusion OK but price problems
- 2013 "wide sata"
 - Intel S3700 series
 - Samsung 840 series
- 2013 Few great PCIe
 - Micron P320h SLC 150x
 - Micron P420h MLC 24x
- 2015 NVMe, finally
 - Intel P3700 series
 - Samsung PM1720 series
 - Amazon i2 6x per drive

	Device	Speed	Reads (1.5KB)	Writes (128KB)	Reads (128KB)	Price
	Intel 320	"3x"	6 K (9 MB/s)	18 MB/s	18 MB/s	\$3 / G
	S3700	"6x"	12 K (18 MB/s)	32 MB/s	32 MB/s	\$2 / G
	loDrive2	"3x"	6 K (9 MB/s)	18 MB/s	18 MB/s	\$8 / G
	P320h	"150x"	300 K (450 MB/s)	900 MB/s	900 MB/s	\$8 / G
	Crucial M500	"0.5x"	1 K (1.5 MB/s)	3 MB/s	3 MB/s	\$0.5 / G
	P3700 PM1720	"75x" (**)	150 K (225 MB/s)	450 MB/s	450 MB/s	\$2 / G

A word about NAND reliability

- 100+ customers
- 1000+ drives for largest customers
- 100's of drives for most customers
- Drives fail occasionally a few per month Need online "hot standby" (replica)
 Remote hands can hot-swap a new device (front-panel NVMe almost here)
- Need ability to "forklift upgrade" without downtime
- Correctness at power-cycle is far better now

Beyond the block interface

- Defragmentation at 2 layers is wasteful
- OpenNVM "kv" interface
 - Aerospike + FusionIO collaberation
 - Too complex
- FTL bypass
 - Do wear leveling in the DB
 - More complex than you would think
 - In discussions with vendors

Future of NAND

- NAND has at least 4x density coming soon
 Sandisk pushing hard this year
- NAND speed increases possible (2x / 4x)
- Fast transaction logging
- In-place writes becoming practical
- Control of garbage collection
- In-device compute

Intel XPoint

- New Intel / Micron memory technology
- "between NAND and DRAM" in latency (NAND – 70 ms, DRAM 10 ns)
- Fine grained writes (no write block problem)
- Power only while reading or writing
- Great for indexes
 Option for transactional writes

≺EROSPIKE-

Questions?

brian@aerospike.com @bbulkow

