
LSMs,	
 DFSs,	
 and	
 Other	
 Acronyms:	

Revisi:ng	
 Storage	
 and	
 Layering	
 for	

Big	
 Data	
 Management	

Michael	
 Carey	

Informa)on	
 Systems	
 Group	

CS	
 Department	

UC	
 Irvine	

	

0	
 #AsterixDB	

Rough	
 Topical	
 Plan	

•  Background	
 and	
 mo?va?on	
 (quick!)	

•  Big	
 Data	
 storage	
 landscape	
 (satellite	
 view	
 J)	

– Two	
 points	
 of	
 view	
 (plus	
 cloudy	
 skies)	

•  AsterixDB:	
 our	
 next-­‐genera?on	
 BDMS	

– What	
 it	
 does	
 (in	
 a	
 nutshell)	

– What	
 we	
 do	
 about	
 storage	

•  Storage	
 research	
 plans	
 and	
 Q&A	

1	

A	
 Few	
 Presenter	
 Cau?ons	

2	

1.	
 Age	

2.	
 Distance	

from	
 reality	
 (I	
 was	
 here	
 in	
 1985...)	

3.	
 Size	
 of	
 brain	

HPTS	
 Has	
 Some	
 Great	
 Debates...	

•  Debate	
 #1:	
 	
 The	
 TP	
 Architecture	
 Wars	
 in	
 the	

early	
 days	
 of	
 HPTS	
 (late	
 1980’s?)	

– TP	
 Heavy:	
 	
 Transac?on	
 monitors	
 (middleware)	

– TP	
 Lite:	
 	
 Stored	
 procedures	
 (à	
 one	
 less	
 ?er)	

3	

TP	
 Heavy	
 is	
 the	

right	
 way	
 to	
 go!	

No	
 way	
 –	
 TP	
 Lite	

makes	
 way	
 more	

sense,	
 you	
 bozo!	

A	
 DB	
 History	
 Lesson:	
 	
 DIRECT	

4	

—

—

. -

—,-
,.-

—


~~~~~~ 
—-

~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
 ~ ‘r~

— 
‘~ T

” .F~ 
~~ 

—
 

•

W

_
_

_
_

_
_

(dJ(d) 
—

~~~~~~~~~~~

~~
_

J
U
i

C..)
.—

LU

C

.) (\j
...

LU

C
.) C

Ui
~~

-
I

~
0

0

~
0

cx
U

i 0

0
•

~~~ 
~~~~ . 

~~~
0
. 

0
. 

0
.

<
0

I 
.~~~~~ •

_
_

_
_

_
_

_
_

_
_

H 
~iFVn~

MRC Technical Sum mary Report # 1935

QUERY EXECUTION IN DIRECT

‘H David J. DeWitt

H

~

Mathematics Research Center
Universit y of Wisconsin—Madison
610 Walnut Street D D C
Madison , Wisconsin 53706 fl

JUN 21 1919 
~Narch 1979 U

Received February 13, 1979 
B

Approved f or public release
Distr ibution unlimited

Sponsored by

U. S. Army Research Office National Science Foundation

~~ _ _ _ _  

~~~~~ 

Z?~c
~ ~1:z;~:’1UL1

20550 4

INGRES	

DIRECT	

So	
 much	
 for	

brute	
 force....	

Yeah?	
 	
 Well,	
 DeWib	
 –	

your	
 mother	
 shared	

everything	
 with	
 me	

last	
 night...!	

Debate	
 #2:	
 The	
 Shared	
 What?	
 Wars	

5	

Shared-­‐everything	
 Shared-­‐disk	

Shared-­‐nothing	

My	
 system	
 scales	

queries	
 out	
 with	

cheaper	
 hardware	

and	
 	
 has	
 beber	

fault	
 isola?on...!	

My	
 system	
 can	

beat	
 up	
 both	
 	

your	
 systems	
 on	

OLTP	
 price	
 /

performance...!	

	

What	
 part	
 of	

“shared-­‐nothing	
 is	

the	
 answer”	
 do	

you	
 IBM	
 bozos	
 not	

understand...?!?	

My	
 system	
 can	
 load	

balance	
 OLTP	
 and	
 	

parallelize	
 queries...!	
 	

Big	
 Data	
 in	
 the	
 Database	
 World	

•  Enterprise	
 data	
 warehouses	

–  1980’s:	
 Shared-­‐nothing	
 parallel	
 DBMSs	

–  2000’s:	
 Enter	
 new	
 players	
 (Netezza,	

Aster	
 Data,	
 DATAllegro,	
 Greenplum,	

Ver?ca,	
 ParAccel,	
 ...)	

•  Scalable	
 OLTP	

–  1980’s:	
 Tandem’s	
 NonStop	
 SQL	

	

6	

Notes:	

•  One	
 storage	
 manager	

per	
 machine	

•  Upper	
 layers	

orchestrate	
 query	

execu?on	

•  One	
 way	
 in/out:	

through	
 the	
 SQL	
 door	

Later:	
 Big	
 Data	
 in	
 the	
 Systems	
 World	

•  Out	
 to	
 index	
 and	
 query	
 the	
 Web,	
 Google	

laid	
 a	
 new	
 founda?on	
 in	
 the	
 early	
 2000’s	

–  Google	
 File	
 System	
 (GFS):	
 Files	
 spanning	

many	
 machines	
 with	
 3-­‐way	
 replica?on	

–  MapReduce	
 (MR):	
 “Parallel	
 programming	

for	
 dummies”	
 (UDFs	
 +	
 parallel	
 framework)	

7	

•  Yahoo!,	
 FB,	
 et	
 al	
 read	
 the	
 papers	

–  HDFS	
 and	
 Hadoop	
 MapReduce	

–  Declara?ve	
 HLLs:	
 Pig,	
 Hive,	
 ...	

–  HLLs	
 now	
 heavily	
 preferred	
 to	
 MR	

•  Also	
 key-­‐value	
 stores	
 (“NoSQL”)	
 	

–  Social	
 sites,	
 online	
 games,	
 …	

–  BigTable/HBase,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Dynamo/Cassandra,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

MongoDB,	
 …	

Remember	
 History...?	
 	
 (DIRECT)	

8	

—

—

. -

—,-
,.-

—


~~~~~~ 
—-

~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
 ~ ‘r~

— 
‘~ T

” .F~ 
~~ 

—
 

•

W

_
_

_
_

_
_

(dJ(d) 
—

~~~~~~~~~~~

~~
_

J
U
i

C..)
.—

LU

C

.) (\j
...

LU

C
.) C

Ui
~~

-
I

~
0

0

~
0

cx
U

i 0

0
•

~~~ 
~~~~ . 

~~~
0
. 

0
. 

0
.

<
0

I 
.~~~~~ •

_
_

_
_

_
_

_
_

_
_

Scan-­‐based	
  
query	
  

processing	
  

Shared	
  secondary	
  storage	
  



COMPUTING 
PRACTICES 

Operating System Support 
for Database Management 

Michael Stonebraker 
University of California, Berkeley 

1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
"date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
This research was sponsored by U.S. Air 
Force Office of Scientific Research Grant 78- 
3596, U.S. Army Research Office Grant 
DAAG29-76-G-0245, Naval Electronics Sys- 
tems Command Contract N00039-78-G-0013, 
and National Science Foundation Grant 
MCS75-03839-A01. 
Key words and phrases: database manage- 
ment, operating systems, buffer management, 
file systems, scheduling, interprocess commu- 
nication 
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35 
Author's address: M. Stonebraker, Dept .  of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley, CA 
94720. 
© 1981 ACM 0001-0782/81/0700-0412 $00.75. 

412 

SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 

Communications 
of 
the ACM 

the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 

July 1981 
Volume 24 
Number 7 

COMPUTING 
PRACTICES 

Operating System Support 
for Database Management 

Michael Stonebraker 
University of California, Berkeley 

1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
"date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
This research was sponsored by U.S. Air 
Force Office of Scientific Research Grant 78- 
3596, U.S. Army Research Office Grant 
DAAG29-76-G-0245, Naval Electronics Sys- 
tems Command Contract N00039-78-G-0013, 
and National Science Foundation Grant 
MCS75-03839-A01. 
Key words and phrases: database manage- 
ment, operating systems, buffer management, 
file systems, scheduling, interprocess commu- 
nication 
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35 
Author's address: M. Stonebraker, Dept .  of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley, CA 
94720. 
© 1981 ACM 0001-0782/81/0700-0412 $00.75. 

412 

SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 

Communications 
of 
the ACM 

the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 

July 1981 
Volume 24 
Number 7 

One	
  More	
  Bit	
  of	
  History	
  

9	
  

COMPUTING 
PRACTICES 

Operating System Support 
for Database Management 

Michael Stonebraker 
University of California, Berkeley 

1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
"date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
This research was sponsored by U.S. Air 
Force Office of Scientific Research Grant 78- 
3596, U.S. Army Research Office Grant 
DAAG29-76-G-0245, Naval Electronics Sys- 
tems Command Contract N00039-78-G-0013, 
and National Science Foundation Grant 
MCS75-03839-A01. 
Key words and phrases: database manage- 
ment, operating systems, buffer management, 
file systems, scheduling, interprocess commu- 
nication 
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35 
Author's address: M. Stonebraker, Dept .  of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley, CA 
94720. 
© 1981 ACM 0001-0782/81/0700-0412 $00.75. 

412 

SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 

Communications 
of 
the ACM 

the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 

July 1981 
Volume 24 
Number 7 

DBMS run-time code 

run-time data 

file F1 

file F2 

Fig. 5. Binding 
Space. 

user process 
Files in to an Address 

Brown might be updated before 
Smith was examined, and as a result, 
Smith would also receive the pay cut. 
It is clearly undesirable to have the 
outcome of an update depend on the 
order of  execution. 

If  the operating system maintains 
the buffer pool and an intentions list 
for crash recovery, it can avoid this 
problem [19]. However, if there is a 
buffer pool manager in user space, it 
must maintain its own intentions list 
in order to properly process this up- 
date. Again, operating system facili- 
ties are being duplicated. 

5.3 Summary 
It is certainly possible to have 

buffering, concurrency control, and 
crash recovery all provided by the 
operating system. In order for the 
system to be successful, however, the 
performance problems mentioned in 
Section 2 must be overcome. It is 
also reasonable to consider having 
all 3 services provided by the DBMS 
in user space. However, if buffering 
remains in user space and consis- 
tency control does not, then much 
code duplication appears inevitable. 
Presumably, this will cause perform- 
ance problems in addition to in- 
creased human effort. 

6. Paged Virtual Memory 
It is often claimed that the appro- 

priate operating system tactic for 
database management support is to 
bind files into a user's paged virtual 

417 

address space. In Figure 5 we show 
the address space of  a process con- 
taining code to be executed, data that 
the code uses, and the files F1 and 
F2. Such files can be referenced by 
a program as if they are program 
variables. Consequently, a user never 
needs to do explicit reads or writes; 
he can depend on the paging facili- 
ties of  the OS to move his file blocks 
into and out of main memory. Here, 
we briefly discuss the problems in- 
herent in this approach. 

6.1 Large Files 
Any virtual memory scheme 

must handle files which are large 
objects. Popular paging hardware 
creates an overhead of 4 bytes per 
4,096-byte page. Consequently, a 
100M-byte file will have an overhead 
of 100K bytes for the page table. 
Although main memory is decreas- 
ing in cost, it may not be reasonable 
to assume that a page table of this 
size is entirely resident in primary 
memory. Therefore, there is th e pos- 
sibility that an I /O operation will 
induce two page faults: one for the 
page containing the page table for 
the data in question and one on the 
data itself. To avoid the second fault, 
one must wire down a large page 
table in main memory. 

Conventional file systems include 
the information contained in the 
page table in a file control block. 
Especially in extent-based file sys- 
tems, a very compact representation 
of this information is possible. A run 
of  1,000 consecutive blocks can be 
represented as a starting block and a 
length field. However, a page table 
for this information would store each 
of the 1,000 addresses even though 
each differs by just one from its pred- 
ecessor. Consequently, a file control 
block is usually made main memory 
resident at the time the file is opened. 
As a result, the second I /O  need 
never be paid. 

The alternative is to bind chunks 
of a file into one's address space. Not 
only does this provide a multiuser 
DBMS with a substantial bookkeep- 
ing problem concerning whether 
needed data is currently addressable, 
but it also may require a number of 

Communications 
of  
the ACM 

bind-unbind pairs in a transaction. 
Since the overhead of  a bind is likely 
to be comparable to that of a file 
open, this may substantially slow 
down performance. 

It is an open question whether or 
not novel paging organizations can 
assist in solving the problems men- 
tioned in this section. 

6.2 Buffering 
All of the problems discussed in 

Section 2 concerning buffering (e.g., 
prefetch, non-LRU management, 
and selected force out) exist in a 
paged virtual memory context. How 
they can be cleanly handled in this 
context is another unanswered ques- 
tion. 

7. Conclusions 
The bottom line is that operating 

system services in many existing sys- 
tems are either too slow or inappro- 
pilate. Current DBMSs usually pro- 
vide their own and make little or no 
use of  those offered by the operating 
system. It is important that future 
operating system designers become 
more sensitive to DBMS needs. 

A DBMS would prefer a small 
efficient operating system with only 
desired services. Of those currently 
available, the so-called real-time op- 
erating systems which efficiently 
provide minimal facilities come clos- 
est to this ideal. On the other hand, 
most general-purpose operating sys- 
tems offer all things to all people at 
much higher overhead. It is our hope 
that future operating systems will be 
able to provide both sets of services 
in one environment. 
References 

I. Bayer, R. Organization and maintenance 
of  large ordered indices. Proc. ACM- 
SIGFIDET Workshop on Data Description 
and Access, Houston, Texas, Nov. 1970. This 
paper defines a particular form of  a balanced 
n-ary tree, called a B-tree. Algorithms to 
maintain this structure on inserts and deletes 
are presented. The original paper on this 
popular file organization tactic. 
2. Birss, E. Hewlett-Packard Corp., General 
Syst. Div. (private communication). 
3. Blasgen, M., et al. The convoy 
phenomenon. Operating Systs. Rev. 13, 2 
(April 1979), 20-25. This article points out 
the problem with descheduling a process 
which has a short-term lock on an object 
which other processes require regularly. The 
impact on performance is noted and possible 
solutions proposed. 

July 1981 
Volume 24 
Number  7 



10	
  

Plus:	
  	
  Today’s	
  Big	
  Data	
  Tangle	
  

SQL	
  



AsterixDB:	
  “One	
  Size	
  Fits	
  a	
  Bunch”	
  

11	
  

Semistructured	
  
Data	
  Management	
  

Parallel	
  
Database	
  Systems	
  

World	
  of	
  
Hadoop	
  &	
  Friends	
  

BDMS	
  Desiderata:	
  
•  Flexible	
  data	
  model	
  
•  Efficient	
  run?me	
  
•  Full	
  query	
  capability	
  
•  Cost	
  propor?onal	
  to	
  task	
  

at	
  hand	
  (!)	
  
•  Designed	
  for	
  con?nuous	
  

data	
  inges?on	
  
•  Support	
  today’s	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

“Big	
  Data	
  data	
  types”	
  
•  	
  	
  
•  	
  	
  
•  	
  	
  

	
  
	
  
	
  
	
  

(Note:	
  	
  This	
  work	
  began	
  in	
  2009.)	
  



create	
  dataverse	
  TinySocial;	
  
use	
  dataverse	
  TinySocial;	
  
	
  
create	
  type	
  MugshotUserType	
  as	
  {	
  
	
  	
  	
  	
  id:	
  int32,	
  
	
  	
  	
  	
  alias:	
  string,	
  
	
  	
  	
  	
  name:	
  string,	
  
	
  	
  	
  	
  user-­‐since:	
  date?me,	
  
	
  	
  	
  	
  address:	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  street:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  city:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  state:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  zip:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  country:	
  string	
  
	
  	
  	
  	
  },	
  
	
  	
  	
  	
  friend-­‐ids:	
  {{	
  int32	
  }},	
  
	
  	
  	
  	
  employment:	
  [EmploymentType]	
  
}	
  

ASTERIX	
  Data	
  Model	
  (ADM)	
  

12	
  

create	
  dataset	
  MugshotUsers(MugshotUserType)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  primary	
  key	
  id;	
  

create	
  type	
  EmploymentType	
  as	
  open	
  {	
  
	
  	
  	
  	
  organiza?on-­‐name:	
  string,	
  
	
  	
  	
  	
  start-­‐date:	
  date,	
  
	
  	
  	
  	
  end-­‐date:	
  date?	
  
}	
  

Highlights	
  include:	
  
•  JSON++	
  based	
  data	
  model	
  
•  Rich	
  type	
  support	
  (spa?al,	
  temporal,	
  …)	
  
•  Records,	
  lists,	
  bags	
  
•  Open	
  vs.	
  closed	
  types	
  

Note:	
  	
  We	
  store	
  and	
  manage	
  datasets...	
  



create	
  dataverse	
  TinySocial;	
  
use	
  dataverse	
  TinySocial;	
  
	
  
create	
  type	
  MugshotUserType	
  as	
  {	
  
	
  	
  	
  	
  id:	
  int32,	
  
	
  	
  	
  	
  alias:	
  string,	
  
	
  	
  	
  	
  name:	
  string,	
  
	
  	
  	
  	
  user-­‐since:	
  date?me,	
  
	
  	
  	
  	
  address:	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  street:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  city:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  state:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  zip:	
  string,	
  
	
  	
  	
  	
  	
  	
  	
  	
  country:	
  string	
  
	
  	
  	
  	
  },	
  
	
  	
  	
  	
  friend-­‐ids:	
  {{	
  int32	
  }},	
  
	
  	
  	
  	
  employment:	
  [EmploymentType]	
  
}	
  

create	
  dataverse	
  TinySocial;	
  
use	
  dataverse	
  TinySocial;	
  
	
  
create	
  type	
  MugshotUserType	
  as	
  {	
  
	
  	
  	
  	
  id:	
  int32	
  
}	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

ASTERIX	
  Data	
  Model	
  (ADM)	
  

13	
  

create	
  dataset	
  MugshotUsers(MugshotUserType)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  primary	
  key	
  id;	
  

Highlights	
  include:	
  
•  JSON++	
  based	
  data	
  model	
  
•  Rich	
  type	
  support	
  (spa?al,	
  temporal,	
  …)	
  
•  Records,	
  lists,	
  bags	
  
•  Open	
  vs.	
  closed	
  types	
  

create	
  type	
  EmploymentType	
  as	
  open	
  {	
  
	
  	
  	
  	
  organiza?on-­‐name:	
  string,	
  
	
  	
  	
  	
  start-­‐date:	
  date,	
  
	
  	
  	
  	
  end-­‐date:	
  date?	
  
}	
  

Note:	
  	
  We	
  store	
  and	
  manage	
  datasets	
  ...	
  

...	
  and	
  schemas	
  are	
  
supported,	
  but	
  op?onal.	
  



create	
  index	
  msUserSinceIdx	
  on	
  MugshotUsers(user-­‐since);	
  
create	
  index	
  msTimestampIdx	
  on	
  MugshotMessages(?mestamp);	
  
create	
  index	
  msAuthorIdx	
  	
  on	
  MugshotMessages(author-­‐id)	
  type	
  btree;	
  
create	
  index	
  msSenderLocIndex	
  on	
  MugshotMessages(sender-­‐loca?on)	
  type	
  rtree;	
  
create	
  index	
  msMessageIdx	
  on	
  MugshotMessages(message)	
  type	
  keyword;	
  
	
  
create	
  type	
  AccessLogType	
  as	
  closed	
  
	
  	
  	
  	
  {	
  ip:	
  string,	
  ?me:	
  string,	
  user:	
  string,	
  verb:	
  string,	
  path:	
  string,	
  	
  stat:	
  int32,	
  size:	
  int32	
  };	
  
create	
  external	
  dataset	
  AccessLog(AccessLogType)	
  using	
  localfs	
  
	
  	
  	
  	
  	
  (("path"="{hostname}://{path}"),	
  ("format"="delimited-­‐text"),	
  ("delimiter"="|"));	
  
	
  
create	
  feed	
  socket_feed	
  using	
  socket_adaptor	
  	
  
	
  	
  	
  	
  	
  (("sockets"="{address}:{port}"),	
  ("addressType"="IP"),	
  
	
  	
  	
  	
  	
  	
  ("type-­‐name"="MugshotMessageType"),	
  ("format"="adm"));	
  
connect	
  feed	
  socket_feed	
  to	
  dataset	
  MugshotMessages;	
  

Other	
  Data	
  Management	
  Features	
  

14	
  



ASTERIX	
  Query	
  Language	
  (AQL)	
  

15	
  

•  Ex:	
  	
  Iden?fy	
  ac?ve	
  users	
  and	
  group/count	
  them	
  by	
  country:	
  
with	
  $end	
  :=	
  current-­‐date?me()	
  
with	
  $start	
  :=	
  $end	
  -­‐	
  dura?on("P30D")	
  
from	
  $user	
  in	
  dataset	
  MugshotUsers	
  
where	
  some	
  $logrecord	
  in	
  dataset	
  AccessLog	
  
	
  	
  saBsfies	
  $user.alias	
  =	
  $logrecord.user	
  
	
  	
  and	
  date?me($logrecord.?me)	
  >=	
  $start	
  	
  
	
  	
  and	
  date?me($logrecord.?me)	
  <=	
  $end	
  
group	
  by	
  $country	
  :=	
  $user.address.country	
  keeping	
  $user	
  
select	
  {	
  
	
  	
  "country"	
  :	
  $country,	
  
	
  	
  "ac?ve	
  users"	
  :	
  count($user)	
  
}	
  

AQL	
  highlights:	
  
•  Lots	
  of	
  other	
  features	
  (see	
  website!)	
  
•  Spa?al	
  predicates	
  and	
  aggrega?on	
  
•  Set-­‐similarity	
  matching	
  	
  
•  And	
  plans	
  for	
  more…	
  
	
  



AsterixDB	
  System	
  Overview	
  

16	
  16	
  



Local	
  LSM-­‐Based	
  Storage	
  &	
  Indexes	
  

17	
  

In-Memory 
Component 

On-Disk Components 

Instance of Index I Deleted-Key B+-Tree Bloom Filter 

C0 

C1 C2 

New data 

LSM-­‐ified	
  Indexes:	
  
•  B+	
  trees	
  
•  R	
  trees	
  (secondary)	
  
•  Inverted	
  (secondary)	
  

Some	
  Reasons	
  Why	
  LSM	
  Indexes	
  Rock:	
  
•  Fast	
  (memory	
  first)	
  data	
  inges?on	
  
•  Simplified	
  crash	
  recovery	
  code	
  
•  Batch-­‐y	
  chances	
  to	
  build	
  high-­‐quality	
  indexes	
  
•  Range	
  filters	
  can	
  speed	
  ?me-­‐correlated	
  queries	
  
•  Opportuni?es	
  to	
  see	
  data	
  and	
  get	
  “free”	
  sta?s?cs	
  
•  Well-­‐suited	
  for	
  SSDs	
  as	
  well	
  as	
  old-­‐school	
  disks	
  
•  ...	
  



Distributed	
  Storage	
  in	
  AsterixDB	
  

•  Hash-­‐par??oned,	
  shared-­‐nothing,	
  local	
  drives	
  
– Par??oning	
  based	
  on	
  primary	
  key	
  (hashing)	
  
– Secondary	
  indexes	
  local	
  to,	
  and	
  consistent	
  with,	
  
corresponding	
  primary	
  par??ons	
  (all	
  LSM-­‐based)	
  

•  Also	
  offer	
  external	
  dataset	
  feature	
  (for	
  HDFS)	
  
– Mul?ple	
  (Hive)	
  formats,	
  secondary	
  index	
  support	
  
–  Index	
  par??ons	
  co-­‐located	
  with	
  data	
  (if	
  possible)	
  
– Developed	
  for	
  space	
  and	
  “IT	
  comfort”	
  reasons	
  

18	
  



Data	
  Replica?on	
  in	
  AsterixDB	
  (WIP)	
  

19	
  

Chained 
Declustering 

Log-Based 
Replication 

 

(synchronous, 
recovery-only 
copies kept) 



Hedging	
  Our	
  Bets	
  

•  We’re	
  currently	
  por?ng	
  our	
  LSM-­‐based	
  storage	
  
system	
  to	
  also	
  work	
  on	
  top	
  of	
  HDFS	
  (and	
  YARN)	
  
– Might	
  somehow	
  feel	
  more	
  “comfor?ng”	
  (and/or	
  
“environmentally	
  friendly”)	
  to	
  Big	
  Data	
  IT	
  shops	
  

– Another	
  path	
  to	
  replica?on	
  and	
  high	
  availability	
  
•  Interes?ng	
  experiments	
  lie	
  ahead!	
  

– Revisit	
  Stonebraker-­‐like	
  OS	
  issues	
  (modern	
  version)	
  
– Bake-­‐off:	
  Distributed	
  record	
  management	
  vs.	
  DFS	
  
–  Just	
  how	
  well	
  does	
  HDFS	
  do	
  w.r.t.	
  locality	
  of	
  writes?	
  

20	
  



What	
  About	
  the	
  Cloud?	
  

•  Compu?ng	
  may	
  be	
  elas?c,	
  but	
  data	
  is	
  not...!	
  
– Na?ve	
  storage	
  à	
  hard	
  to	
  expand	
  &	
  contract	
  
– Seems	
  to	
  demand	
  a	
  shared-­‐disk-­‐like	
  approach	
  
based	
  on	
  cloud	
  storage	
  facili?es?	
  

•  Experimenta?on	
  is	
  needed	
  
– E.g.,	
  AWS	
  storage	
  or	
  Google	
  persistent	
  disks	
  
– Performance	
  implica?ons	
  seem	
  preby	
  interes?ng	
  
to	
  explore...	
  

21	
  



For	
  More	
  AsterixDB	
  Info...	
  
NSF	
  project	
  page	
  (UC	
  Irvine	
  and	
  UC	
  Riverside):	
  
•  hbp://asterixdb.ics.uci.edu	
  
	
  
	
  

Apache	
  AsterixDB	
  (Incuba?ng)	
  project	
  page:	
  
•  hbps://asterixdb.incubator.apache.org/	
  
	
  
	
  

22	
  



I	
  Asked	
  the	
  Ques?ons,	
  So....	
  

•  Got	
  any	
  answers?	
  

#AsterixDB	
   23	
  


