
LSMs,	 DFSs,	 and	 Other	 Acronyms:	
Revisi:ng	 Storage	 and	 Layering	 for	

Big	 Data	 Management	

Michael	 Carey	

Informa)on	 Systems	 Group	
CS	 Department	

UC	 Irvine	
	

0	 #AsterixDB	

Rough	 Topical	 Plan	

•  Background	 and	 mo?va?on	 (quick!)	
•  Big	 Data	 storage	 landscape	 (satellite	 view	 J)	

– Two	 points	 of	 view	 (plus	 cloudy	 skies)	
•  AsterixDB:	 our	 next-‐genera?on	 BDMS	

– What	 it	 does	 (in	 a	 nutshell)	
– What	 we	 do	 about	 storage	

•  Storage	 research	 plans	 and	 Q&A	

1	

A	 Few	 Presenter	 Cau?ons	

2	

1.	 Age	

2.	 Distance	
from	 reality	 (I	 was	 here	 in	 1985...)	

3.	 Size	 of	 brain	

HPTS	 Has	 Some	 Great	 Debates...	
•  Debate	 #1:	 	 The	 TP	 Architecture	 Wars	 in	 the	
early	 days	 of	 HPTS	 (late	 1980’s?)	
– TP	 Heavy:	 	 Transac?on	 monitors	 (middleware)	
– TP	 Lite:	 	 Stored	 procedures	 (à	 one	 less	 ?er)	

3	

TP	 Heavy	 is	 the	
right	 way	 to	 go!	

No	 way	 –	 TP	 Lite	
makes	 way	 more	
sense,	 you	 bozo!	

A	 DB	 History	 Lesson:	 	 DIRECT	

4	

—

—

. -

—,-
,.-

—


~~~~~~ 
—-

~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
 ~ ‘r~

— 
‘~ T

” .F~ 
~~ 

—
 

•

W

_
_

_
_

_
_

(dJ(d) 
—

~~~~~~~~~~~

~~
_

J
U
i

C..)
.—

LU

C

.) (\j
...

LU

C
.) C

Ui
~~

-
I

~
0

0

~
0

cx
U

i 0

0
•

~~~ 
~~~~ . 

~~~
0
. 

0
. 

0
.

<
0

I 
.~~~~~ •

_
_

_
_

_
_

_
_

_
_

H 
~iFVn~

MRC Technical Sum mary Report # 1935

QUERY EXECUTION IN DIRECT

‘H David J. DeWitt

H

~

Mathematics Research Center
Universit y of Wisconsin—Madison
610 Walnut Street D D C
Madison , Wisconsin 53706 fl

JUN 21 1919 
~Narch 1979 U

Received February 13, 1979 
B

Approved f or public release
Distr ibution unlimited

Sponsored by

U. S. Army Research Office National Science Foundation

~~ _ _ _ _  

~~~~~ 

Z?~c
~ ~1:z;~:’1UL1

20550 4

INGRES	

DIRECT	

So	 much	 for	
brute	 force....	

Yeah?	 	 Well,	 DeWib	 –	
your	 mother	 shared	
everything	 with	 me	

last	 night...!	

Debate	 #2:	 The	 Shared	 What?	 Wars	

5	

Shared-‐everything	 Shared-‐disk	

Shared-‐nothing	

My	 system	 scales	
queries	 out	 with	
cheaper	 hardware	
and	 	 has	 beber	
fault	 isola?on...!	

My	 system	 can	
beat	 up	 both	 	

your	 systems	 on	
OLTP	 price	 /

performance...!	
	

What	 part	 of	
“shared-‐nothing	 is	
the	 answer”	 do	

you	 IBM	 bozos	 not	
understand...?!?	

My	 system	 can	 load	
balance	 OLTP	 and	 	

parallelize	 queries...!	 	

Big	 Data	 in	 the	 Database	 World	
•  Enterprise	 data	 warehouses	

–  1980’s:	 Shared-‐nothing	 parallel	 DBMSs	
–  2000’s:	 Enter	 new	 players	 (Netezza,	

Aster	 Data,	 DATAllegro,	 Greenplum,	
Ver?ca,	 ParAccel,	 ...)	

•  Scalable	 OLTP	
–  1980’s:	 Tandem’s	 NonStop	 SQL	
	

6	

Notes:	
•  One	 storage	 manager	

per	 machine	
•  Upper	 layers	

orchestrate	 query	
execu?on	

•  One	 way	 in/out:	
through	 the	 SQL	 door	

Later:	 Big	 Data	 in	 the	 Systems	 World	
•  Out	 to	 index	 and	 query	 the	 Web,	 Google	

laid	 a	 new	 founda?on	 in	 the	 early	 2000’s	
–  Google	 File	 System	 (GFS):	 Files	 spanning	
many	 machines	 with	 3-‐way	 replica?on	

–  MapReduce	 (MR):	 “Parallel	 programming	
for	 dummies”	 (UDFs	 +	 parallel	 framework)	

7	

•  Yahoo!,	 FB,	 et	 al	 read	 the	 papers	
–  HDFS	 and	 Hadoop	 MapReduce	
–  Declara?ve	 HLLs:	 Pig,	 Hive,	 ...	
–  HLLs	 now	 heavily	 preferred	 to	 MR	

•  Also	 key-‐value	 stores	 (“NoSQL”)	 	
–  Social	 sites,	 online	 games,	 …	
–  BigTable/HBase,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Dynamo/Cassandra,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
MongoDB,	 …	

Remember	 History...?	 	 (DIRECT)	

8	

—

—

. -

—,-
,.-

—


~~~~~~ 
—-

~~~~

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
 ~ ‘r~

— 
‘~ T

” .F~ 
~~ 

—
 

•

W

_
_

_
_

_
_

(dJ(d) 
—

~~~~~~~~~~~

~~
_

J
U
i

C..)
.—

LU

C

.) (\j
...

LU

C
.) C

Ui
~~

-
I

~
0

0

~
0

cx
U

i 0

0
•

~~~ 
~~~~ . 

~~~
0
. 

0
. 

0
.

<
0

I 
.~~~~~ •

_
_

_
_

_
_

_
_

_
_

Scan-‐based	  
query	  

processing	  

Shared	  secondary	  storage	  



COMPUTING 
PRACTICES 

Operating System Support 
for Database Management 

Michael Stonebraker 
University of California, Berkeley 

1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
"date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
This research was sponsored by U.S. Air 
Force Office of Scientific Research Grant 78- 
3596, U.S. Army Research Office Grant 
DAAG29-76-G-0245, Naval Electronics Sys- 
tems Command Contract N00039-78-G-0013, 
and National Science Foundation Grant 
MCS75-03839-A01. 
Key words and phrases: database manage- 
ment, operating systems, buffer management, 
file systems, scheduling, interprocess commu- 
nication 
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35 
Author's address: M. Stonebraker, Dept .  of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley, CA 
94720. 
© 1981 ACM 0001-0782/81/0700-0412 $00.75. 

412 

SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 

Communications 
of 
the ACM 

the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 

July 1981 
Volume 24 
Number 7 

COMPUTING 
PRACTICES 

Operating System Support 
for Database Management 

Michael Stonebraker 
University of California, Berkeley 

1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
"date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
This research was sponsored by U.S. Air 
Force Office of Scientific Research Grant 78- 
3596, U.S. Army Research Office Grant 
DAAG29-76-G-0245, Naval Electronics Sys- 
tems Command Contract N00039-78-G-0013, 
and National Science Foundation Grant 
MCS75-03839-A01. 
Key words and phrases: database manage- 
ment, operating systems, buffer management, 
file systems, scheduling, interprocess commu- 
nication 
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35 
Author's address: M. Stonebraker, Dept .  of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley, CA 
94720. 
© 1981 ACM 0001-0782/81/0700-0412 $00.75. 

412 

SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 

Communications 
of 
the ACM 

the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 

July 1981 
Volume 24 
Number 7 

One	  More	  Bit	  of	  History	  

9	  

COMPUTING 
PRACTICES 

Operating System Support 
for Database Management 

Michael Stonebraker 
University of California, Berkeley 

1. Introduction 
Database management systems 

(DBMS) provide higher level user 
support than conventional operating 
systems. The DBMS designer must 
work in the context of the OS he/she 
is faced with. Different operating 
systems are designed for different 
use. In this paper we examine several 
popular operating system services 
and indicate whether they are appro- 
priate for support of database man- 
agement functions. Often we will see 
that the wrong service is provided or 
that severe performance problems 
exist. When possible, we offer some 
Permission to copy without fee all or part of 
this material is granted provided that the cop- 
ies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
"date appear, and notice is given that copying 
is by permission of the Association for Com- 
puting Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific per- 
mission. 
This research was sponsored by U.S. Air 
Force Office of Scientific Research Grant 78- 
3596, U.S. Army Research Office Grant 
DAAG29-76-G-0245, Naval Electronics Sys- 
tems Command Contract N00039-78-G-0013, 
and National Science Foundation Grant 
MCS75-03839-A01. 
Key words and phrases: database manage- 
ment, operating systems, buffer management, 
file systems, scheduling, interprocess commu- 
nication 
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34, 4.35 
Author's address: M. Stonebraker, Dept .  of 
Electrical Engineering and Computer Sci- 
ences, University of California, Berkeley, CA 
94720. 
© 1981 ACM 0001-0782/81/0700-0412 $00.75. 

412 

SUMMARY: Several operating system services are examined 
with a view toward their applicability to support of database 
management functions. These services include buffer pool 
management; the file system; scheduling, process manage- 
ment, and interprocess communication; and consistency 
control. 

suggestions concerning improve- 
ments. In the next several sections 
we look at the services provided by 
buffer pool management; the file sys- 
tem; scheduling, process manage- 
ment, and interprocess communica- 
tion; and consistency control. We 
then conclude with a discussion of 
the merits of including all files in a 
paged virtual memory. 

The examples in this paper are 
drawn primarily from the UNIX op- 
erating system [17] and the INGRES 
relational database system [19, 20] 
which was designed for use with 
UNIX. Most of the points made for 
this environment have general appli- 
cability to other operating systems 
and data managers. 

2. Buffer Pool Management 
Many modern operating systems 

provide a main memory cache for 
the file system. Figure 1 illustrates 
this service. In brief, UNIX provides 
a buffer pool whose size is set when 

Communications 
of 
the ACM 

the operating system is compiled. 
Then, all file I /O is handled through 
this cache. A file read (e.g., read X 
in Figure 1) returns data directly 
from a block in the cache, if possible; 
otherwise, it causes a block to be 
"pushed" to disk and replaced by the 
desired block. In Figure 1 we show 
block Y being pushed to make room 
for block X. A file write simply 
moves data into the cache; at some 
later time the buffer manager writes 
the block to the disk. The UNIX 
buffer manager used the popular 
LRU [15] replacement strategy. Fi- 
nally, when UNIX detects sequential 
access to a file, it prefetches blocks 
before they are requested. 

Conceptually, this service is de- 
sirable because blocks for which 
there is so-called locality of reference 
[15, 18] will remain in the cache over 
repeated reads and writes. However, 
the problems enumerated in the fol- 
lowing subsections arise in using this 
service for database management. 

July 1981 
Volume 24 
Number 7 

DBMS run-time code 

run-time data 

file F1 

file F2 

Fig. 5. Binding 
Space. 

user process 
Files in to an Address 

Brown might be updated before 
Smith was examined, and as a result, 
Smith would also receive the pay cut. 
It is clearly undesirable to have the 
outcome of an update depend on the 
order of  execution. 

If  the operating system maintains 
the buffer pool and an intentions list 
for crash recovery, it can avoid this 
problem [19]. However, if there is a 
buffer pool manager in user space, it 
must maintain its own intentions list 
in order to properly process this up- 
date. Again, operating system facili- 
ties are being duplicated. 

5.3 Summary 
It is certainly possible to have 

buffering, concurrency control, and 
crash recovery all provided by the 
operating system. In order for the 
system to be successful, however, the 
performance problems mentioned in 
Section 2 must be overcome. It is 
also reasonable to consider having 
all 3 services provided by the DBMS 
in user space. However, if buffering 
remains in user space and consis- 
tency control does not, then much 
code duplication appears inevitable. 
Presumably, this will cause perform- 
ance problems in addition to in- 
creased human effort. 

6. Paged Virtual Memory 
It is often claimed that the appro- 

priate operating system tactic for 
database management support is to 
bind files into a user's paged virtual 

417 

address space. In Figure 5 we show 
the address space of  a process con- 
taining code to be executed, data that 
the code uses, and the files F1 and 
F2. Such files can be referenced by 
a program as if they are program 
variables. Consequently, a user never 
needs to do explicit reads or writes; 
he can depend on the paging facili- 
ties of  the OS to move his file blocks 
into and out of main memory. Here, 
we briefly discuss the problems in- 
herent in this approach. 

6.1 Large Files 
Any virtual memory scheme 

must handle files which are large 
objects. Popular paging hardware 
creates an overhead of 4 bytes per 
4,096-byte page. Consequently, a 
100M-byte file will have an overhead 
of 100K bytes for the page table. 
Although main memory is decreas- 
ing in cost, it may not be reasonable 
to assume that a page table of this 
size is entirely resident in primary 
memory. Therefore, there is th e pos- 
sibility that an I /O operation will 
induce two page faults: one for the 
page containing the page table for 
the data in question and one on the 
data itself. To avoid the second fault, 
one must wire down a large page 
table in main memory. 

Conventional file systems include 
the information contained in the 
page table in a file control block. 
Especially in extent-based file sys- 
tems, a very compact representation 
of this information is possible. A run 
of  1,000 consecutive blocks can be 
represented as a starting block and a 
length field. However, a page table 
for this information would store each 
of the 1,000 addresses even though 
each differs by just one from its pred- 
ecessor. Consequently, a file control 
block is usually made main memory 
resident at the time the file is opened. 
As a result, the second I /O  need 
never be paid. 

The alternative is to bind chunks 
of a file into one's address space. Not 
only does this provide a multiuser 
DBMS with a substantial bookkeep- 
ing problem concerning whether 
needed data is currently addressable, 
but it also may require a number of 

Communications 
of  
the ACM 

bind-unbind pairs in a transaction. 
Since the overhead of  a bind is likely 
to be comparable to that of a file 
open, this may substantially slow 
down performance. 

It is an open question whether or 
not novel paging organizations can 
assist in solving the problems men- 
tioned in this section. 

6.2 Buffering 
All of the problems discussed in 

Section 2 concerning buffering (e.g., 
prefetch, non-LRU management, 
and selected force out) exist in a 
paged virtual memory context. How 
they can be cleanly handled in this 
context is another unanswered ques- 
tion. 

7. Conclusions 
The bottom line is that operating 

system services in many existing sys- 
tems are either too slow or inappro- 
pilate. Current DBMSs usually pro- 
vide their own and make little or no 
use of  those offered by the operating 
system. It is important that future 
operating system designers become 
more sensitive to DBMS needs. 

A DBMS would prefer a small 
efficient operating system with only 
desired services. Of those currently 
available, the so-called real-time op- 
erating systems which efficiently 
provide minimal facilities come clos- 
est to this ideal. On the other hand, 
most general-purpose operating sys- 
tems offer all things to all people at 
much higher overhead. It is our hope 
that future operating systems will be 
able to provide both sets of services 
in one environment. 
References 

I. Bayer, R. Organization and maintenance 
of  large ordered indices. Proc. ACM- 
SIGFIDET Workshop on Data Description 
and Access, Houston, Texas, Nov. 1970. This 
paper defines a particular form of  a balanced 
n-ary tree, called a B-tree. Algorithms to 
maintain this structure on inserts and deletes 
are presented. The original paper on this 
popular file organization tactic. 
2. Birss, E. Hewlett-Packard Corp., General 
Syst. Div. (private communication). 
3. Blasgen, M., et al. The convoy 
phenomenon. Operating Systs. Rev. 13, 2 
(April 1979), 20-25. This article points out 
the problem with descheduling a process 
which has a short-term lock on an object 
which other processes require regularly. The 
impact on performance is noted and possible 
solutions proposed. 

July 1981 
Volume 24 
Number  7 



10	  

Plus:	  	  Today’s	  Big	  Data	  Tangle	  

SQL	  



AsterixDB:	  “One	  Size	  Fits	  a	  Bunch”	  

11	  

Semistructured	  
Data	  Management	  

Parallel	  
Database	  Systems	  

World	  of	  
Hadoop	  &	  Friends	  

BDMS	  Desiderata:	  
•  Flexible	  data	  model	  
•  Efficient	  run?me	  
•  Full	  query	  capability	  
•  Cost	  propor?onal	  to	  task	  

at	  hand	  (!)	  
•  Designed	  for	  con?nuous	  

data	  inges?on	  
•  Support	  today’s	  	  	  	  	  	  	  	  	  	  	  

“Big	  Data	  data	  types”	  
•  	  	  
•  	  	  
•  	  	  

	  
	  
	  
	  

(Note:	  	  This	  work	  began	  in	  2009.)	  



create	  dataverse	  TinySocial;	  
use	  dataverse	  TinySocial;	  
	  
create	  type	  MugshotUserType	  as	  {	  
	  	  	  	  id:	  int32,	  
	  	  	  	  alias:	  string,	  
	  	  	  	  name:	  string,	  
	  	  	  	  user-‐since:	  date?me,	  
	  	  	  	  address:	  {	  
	  	  	  	  	  	  	  	  street:	  string,	  
	  	  	  	  	  	  	  	  city:	  string,	  
	  	  	  	  	  	  	  	  state:	  string,	  
	  	  	  	  	  	  	  	  zip:	  string,	  
	  	  	  	  	  	  	  	  country:	  string	  
	  	  	  	  },	  
	  	  	  	  friend-‐ids:	  {{	  int32	  }},	  
	  	  	  	  employment:	  [EmploymentType]	  
}	  

ASTERIX	  Data	  Model	  (ADM)	  

12	  

create	  dataset	  MugshotUsers(MugshotUserType)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  primary	  key	  id;	  

create	  type	  EmploymentType	  as	  open	  {	  
	  	  	  	  organiza?on-‐name:	  string,	  
	  	  	  	  start-‐date:	  date,	  
	  	  	  	  end-‐date:	  date?	  
}	  

Highlights	  include:	  
•  JSON++	  based	  data	  model	  
•  Rich	  type	  support	  (spa?al,	  temporal,	  …)	  
•  Records,	  lists,	  bags	  
•  Open	  vs.	  closed	  types	  

Note:	  	  We	  store	  and	  manage	  datasets...	  



create	  dataverse	  TinySocial;	  
use	  dataverse	  TinySocial;	  
	  
create	  type	  MugshotUserType	  as	  {	  
	  	  	  	  id:	  int32,	  
	  	  	  	  alias:	  string,	  
	  	  	  	  name:	  string,	  
	  	  	  	  user-‐since:	  date?me,	  
	  	  	  	  address:	  {	  
	  	  	  	  	  	  	  	  street:	  string,	  
	  	  	  	  	  	  	  	  city:	  string,	  
	  	  	  	  	  	  	  	  state:	  string,	  
	  	  	  	  	  	  	  	  zip:	  string,	  
	  	  	  	  	  	  	  	  country:	  string	  
	  	  	  	  },	  
	  	  	  	  friend-‐ids:	  {{	  int32	  }},	  
	  	  	  	  employment:	  [EmploymentType]	  
}	  

create	  dataverse	  TinySocial;	  
use	  dataverse	  TinySocial;	  
	  
create	  type	  MugshotUserType	  as	  {	  
	  	  	  	  id:	  int32	  
}	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

ASTERIX	  Data	  Model	  (ADM)	  

13	  

create	  dataset	  MugshotUsers(MugshotUserType)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  primary	  key	  id;	  

Highlights	  include:	  
•  JSON++	  based	  data	  model	  
•  Rich	  type	  support	  (spa?al,	  temporal,	  …)	  
•  Records,	  lists,	  bags	  
•  Open	  vs.	  closed	  types	  

create	  type	  EmploymentType	  as	  open	  {	  
	  	  	  	  organiza?on-‐name:	  string,	  
	  	  	  	  start-‐date:	  date,	  
	  	  	  	  end-‐date:	  date?	  
}	  

Note:	  	  We	  store	  and	  manage	  datasets	  ...	  

...	  and	  schemas	  are	  
supported,	  but	  op?onal.	  



create	  index	  msUserSinceIdx	  on	  MugshotUsers(user-‐since);	  
create	  index	  msTimestampIdx	  on	  MugshotMessages(?mestamp);	  
create	  index	  msAuthorIdx	  	  on	  MugshotMessages(author-‐id)	  type	  btree;	  
create	  index	  msSenderLocIndex	  on	  MugshotMessages(sender-‐loca?on)	  type	  rtree;	  
create	  index	  msMessageIdx	  on	  MugshotMessages(message)	  type	  keyword;	  
	  
create	  type	  AccessLogType	  as	  closed	  
	  	  	  	  {	  ip:	  string,	  ?me:	  string,	  user:	  string,	  verb:	  string,	  path:	  string,	  	  stat:	  int32,	  size:	  int32	  };	  
create	  external	  dataset	  AccessLog(AccessLogType)	  using	  localfs	  
	  	  	  	  	  (("path"="{hostname}://{path}"),	  ("format"="delimited-‐text"),	  ("delimiter"="|"));	  
	  
create	  feed	  socket_feed	  using	  socket_adaptor	  	  
	  	  	  	  	  (("sockets"="{address}:{port}"),	  ("addressType"="IP"),	  
	  	  	  	  	  	  ("type-‐name"="MugshotMessageType"),	  ("format"="adm"));	  
connect	  feed	  socket_feed	  to	  dataset	  MugshotMessages;	  

Other	  Data	  Management	  Features	  

14	  



ASTERIX	  Query	  Language	  (AQL)	  

15	  

•  Ex:	  	  Iden?fy	  ac?ve	  users	  and	  group/count	  them	  by	  country:	  
with	  $end	  :=	  current-‐date?me()	  
with	  $start	  :=	  $end	  -‐	  dura?on("P30D")	  
from	  $user	  in	  dataset	  MugshotUsers	  
where	  some	  $logrecord	  in	  dataset	  AccessLog	  
	  	  saBsfies	  $user.alias	  =	  $logrecord.user	  
	  	  and	  date?me($logrecord.?me)	  >=	  $start	  	  
	  	  and	  date?me($logrecord.?me)	  <=	  $end	  
group	  by	  $country	  :=	  $user.address.country	  keeping	  $user	  
select	  {	  
	  	  "country"	  :	  $country,	  
	  	  "ac?ve	  users"	  :	  count($user)	  
}	  

AQL	  highlights:	  
•  Lots	  of	  other	  features	  (see	  website!)	  
•  Spa?al	  predicates	  and	  aggrega?on	  
•  Set-‐similarity	  matching	  	  
•  And	  plans	  for	  more…	  
	  



AsterixDB	  System	  Overview	  

16	  16	  



Local	  LSM-‐Based	  Storage	  &	  Indexes	  

17	  

In-Memory 
Component 

On-Disk Components 

Instance of Index I Deleted-Key B+-Tree Bloom Filter 

C0 

C1 C2 

New data 

LSM-‐ified	  Indexes:	  
•  B+	  trees	  
•  R	  trees	  (secondary)	  
•  Inverted	  (secondary)	  

Some	  Reasons	  Why	  LSM	  Indexes	  Rock:	  
•  Fast	  (memory	  first)	  data	  inges?on	  
•  Simplified	  crash	  recovery	  code	  
•  Batch-‐y	  chances	  to	  build	  high-‐quality	  indexes	  
•  Range	  filters	  can	  speed	  ?me-‐correlated	  queries	  
•  Opportuni?es	  to	  see	  data	  and	  get	  “free”	  sta?s?cs	  
•  Well-‐suited	  for	  SSDs	  as	  well	  as	  old-‐school	  disks	  
•  ...	  



Distributed	  Storage	  in	  AsterixDB	  

•  Hash-‐par??oned,	  shared-‐nothing,	  local	  drives	  
– Par??oning	  based	  on	  primary	  key	  (hashing)	  
– Secondary	  indexes	  local	  to,	  and	  consistent	  with,	  
corresponding	  primary	  par??ons	  (all	  LSM-‐based)	  

•  Also	  offer	  external	  dataset	  feature	  (for	  HDFS)	  
– Mul?ple	  (Hive)	  formats,	  secondary	  index	  support	  
–  Index	  par??ons	  co-‐located	  with	  data	  (if	  possible)	  
– Developed	  for	  space	  and	  “IT	  comfort”	  reasons	  

18	  



Data	  Replica?on	  in	  AsterixDB	  (WIP)	  

19	  

Chained 
Declustering 

Log-Based 
Replication 

 

(synchronous, 
recovery-only 
copies kept) 



Hedging	  Our	  Bets	  

•  We’re	  currently	  por?ng	  our	  LSM-‐based	  storage	  
system	  to	  also	  work	  on	  top	  of	  HDFS	  (and	  YARN)	  
– Might	  somehow	  feel	  more	  “comfor?ng”	  (and/or	  
“environmentally	  friendly”)	  to	  Big	  Data	  IT	  shops	  

– Another	  path	  to	  replica?on	  and	  high	  availability	  
•  Interes?ng	  experiments	  lie	  ahead!	  

– Revisit	  Stonebraker-‐like	  OS	  issues	  (modern	  version)	  
– Bake-‐off:	  Distributed	  record	  management	  vs.	  DFS	  
–  Just	  how	  well	  does	  HDFS	  do	  w.r.t.	  locality	  of	  writes?	  

20	  



What	  About	  the	  Cloud?	  

•  Compu?ng	  may	  be	  elas?c,	  but	  data	  is	  not...!	  
– Na?ve	  storage	  à	  hard	  to	  expand	  &	  contract	  
– Seems	  to	  demand	  a	  shared-‐disk-‐like	  approach	  
based	  on	  cloud	  storage	  facili?es?	  

•  Experimenta?on	  is	  needed	  
– E.g.,	  AWS	  storage	  or	  Google	  persistent	  disks	  
– Performance	  implica?ons	  seem	  preby	  interes?ng	  
to	  explore...	  

21	  



For	  More	  AsterixDB	  Info...	  
NSF	  project	  page	  (UC	  Irvine	  and	  UC	  Riverside):	  
•  hbp://asterixdb.ics.uci.edu	  
	  
	  

Apache	  AsterixDB	  (Incuba?ng)	  project	  page:	  
•  hbps://asterixdb.incubator.apache.org/	  
	  
	  

22	  



I	  Asked	  the	  Ques?ons,	  So....	  

•  Got	  any	  answers?	  

#AsterixDB	   23	  


