
A1 and FARM

scalable graph database on top of a
transactional memory layer

Miguel Castro, Aleksandar Dragojević, Dushyanth Narayanan,

Ed Nightingale, Alex Shamis Richie Khanna,
Matt Renzelmann
Chiranjeeb Buragohain,

la
te

nc
y

hours

ms

scale

Hadoop/MapReduce

SQL
RDBMS

1 machine > 1K machines

s

Distributed computing today

no general platform for low
latency at scale

la
te

nc
y

hours

ms

scale

Hadoop/MapReduce

SQL
RDBMS

1 machine

s

A1
FARM

> 1K machines

A platform for low latency computing

la
te

nc
y

hours

µs

scale

Hadoop/MapReduce

SQL
RDBMS

1 machine > 1K machines

s

ms A1
FARM

A new frontier for low latency computing

A graph workload

me
meeting Bob

Ann

Jane

Scale out

me
meeting Bob

Ann

Jane

me
meeting Bob

Ann

Jane

Latency

1

2
3

4

Freshness and consistency

me
meeting Bob

Ann

Jane

me
meeting Bob

Ann

Jane

Fault tolerance

It is hard to build low latency apps at
scale

FARM simplifies building low latency
apps transactions and replication simplify programming
hide failures, distribution, and concurrency
abstraction that transactions run sequentially on a reliable server

no compromises: consistency, availability, performance
strict serializability
millions of transactions per second with sub millisecond latencies
recovery from failure to peak performance in tens of milliseconds

inexpensive DRAM
currently $8/GB
machines with 128 GB, container will hold more than 100 TBs

non-volatile RAM

NVDIMMs available today: DRAM+battery+SSD

fast commodity networks with RDMA

CX3: 40 Gb/s and < 3 µs latency on Ethernet (CX4: 100 Gb/s)
CX3: 35M messages per second (CX4: 150M)

this hardware is commodity and being brought into datacenters

FARM is enabled by three hardware
trends

new algorithms and data structures optimized for RDMA
single-object read only transactions with a single RDMA read
Transaction commit protocol optimized for RDMA operations.
read validation during commit using a single RDMA read
btree and hash table lookups with a single RDMA read

changes to OS and network card driver to speed up RDMA
efficient memory translation
connection multiplexing

FARM software

FARM API
Storage	 APIs	

Transaction	 CreateTransaction()	
ObjBuf	 *Transaction::Alloc(size,	 locality_hint)	
ObjBuf	 *Transaction::Read(addr,	 size)	
ObjBuf	 *Transaction::OpenForWrite(ObjBuf)	
void	 Transaction::Free(ObjBuf)	 	
void	 Transaction::Commit()	

	

Communication	 APIs	 for	 application	 level	
coordination	
	 	
	
29/09/15 14

0	

50	

100	

150	

200	

250	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

tr
an
sa
c2
on

s	 p
er
	 se

co
nd

	 (m
ill
io
ns
)	

number	 of	 servers	

In-‐memory	 SQL	 (no	 fault	 tolerance)	

FARM	 (no	 fault	 tolerance)	

FARM	 (with	 fault	 tolerance)	

Scale-out OLTP throughput: TATP

30x

100x database size

Why a Graph Database? On FARM?
•  Many datasets naturally lend themselves to a graph

structure
•  Facebook, Twitter, enterprise relationships

•  Graph traversal queries are hard on relational stores

•  A1 Goals
•  Scalable
•  Transactional
•  Complex traversal and subgraph queries

•  Not targeted for graph compute

A1	 graph	 database	 core	
A1	 Core	 API	

	

FARM	 Communica2on	 primi2ves

FARM	 Shared	 memory	

FARM	 ACID	 Transac2ons

A1	 Trusted	 and	 untrusted	 coprocessors

A1 Architecture overview

17

The A1 Data Model

29/09/15 18

Me Planning
Meeting Alice

Bob

Doc1

Doc2

A1 Data Layout
•  Locality of reference matters

•  Graph : a set of vertexes with adjacency lists

•  Building blocks
•  FARM objects identified by 64 bit pointers
•  RPC primitives
•  BTree for indexes
•  Linked lists for adjacency

A1 Data Layout

BFS Query

21

Me Planning
Meeting Alice

Bob

Doc1

Doc2

Traversal Algorithm
•  Designate starting host as coordinator (maintain visited list)
•  Coordinate level by level traversal

•  Data Shipping

•  Query shipping
•  RPC for synchronization
•  All predicates applied locally
•  All neighbors discovered locally

•  Hybrid

BFS Traversal via Query Shipping

29/09/15 23

1.  Start
2.  Find neighbors
3.  Coord: Partition and ship

query
4.  Worker: Find neighbors
5.  Worker: Ship list back to

coordinator
6.  Back to step 3

	
	
	
…	
	
	
	

A1	 Graph	 database	 /	 API	
	
`

Extensibility by Coprocessors

FARM	 Communica2on	 primi2ves

FARM	 Shared	 memory	

FARM	 ACID	
Transac2ons

Coprocessor models

Trusted – core extensions

No separation, running inside the FARM process
space
No latency

Untrusted core hosted

Separate address and process space on same
machine.
1-2us (10-25% overhead)

Untrusted cluster hosted

Separate machines on the same failure/network
domains
50-200 us (4x – 16x overhead)

Preliminary Performance
Linkbench with 1B vertexes and 4.5B edges

3X replication
Single container / network domain / failure domain

Single transactions

Vertex Creation: 375 us
Edge Create: 495 us
Edge Get: 240 us
Vertex Read: 100 us

BFS

1 hop : 700 us
2 hop : 850 us

Throughput

~ 350K transactions/second/
node
Linear scale-up to 100 nodes

Backup slides

la
te

nc
y

hour
s

µs

scale
1 machine > 1K machines

s

ms

Important applications can benefit

hekato
n

delv
e commerce

graph

faceboo
k

petabyte transactional memory

Petabyte transactional memory makes it
easy

•  general transactional memory model
!  objects, arrays, and pointers
!  graphs, relational databases, key-value stores on the same system

•  abstraction of running on a single machine
!  scale out
!  low latency
!  freshness and consistency
!  fault tolerance

•  high throughput to keep costs low

it will speed up innovation as MapReduce did for batch analytics

Data Model Comparison

Data Model Horizontal
Scaling

Join
Support

Language
Support Maturity

Key-Value
 Easy None None Medium

Relational
 Non-trivial Good SQL High

Graph
 Hard Join-less Specialized Low

Scale-out OLTP throughput-latency: TATP

Scale-out OLTP recovery: TATP
45ms

Scale-out OLTP: TPC-C benchmark

0	

50	

100	

150	

200	

250	

0	 20	 40	 60	 80	 100	

tp
m
C	

M
ill
io
ns
	

number	 of	 servers	

