From Microservices to Teraservices

Adrian Cockcroft @adrianco Technology Fellow - Battery Ventures September 2015

What does @adrianco do now?

Why Microservices? Simulating Architectures Terabytes of Memory

Key Goals of the CIO? Align IT with the business Develop products faster Try not to get breached

Microservices

If every service has to be updated at the same time it's not loosely coupled

A Microservice Definition

Loosely coupled service oriented architecture with bounded contexts

If you have to know too much about surrounding services you don't have a bounded context. See the Domain Driven Design book by Eric Evans.

Cloud Native Monitoring and Microservices

Cloud Native Microservices

• High rate of change

Code pushes can cause floods of new instances and metrics Short baseline for alert threshold analysis – everything looks unusual

• Ephemeral Configurations

Short lifetimes make it hard to aggregate historical views Hand tweaked monitoring tools take too much work to keep running

• Microservices with complex calling patterns End-to-end request flow measurements are very important Request flow visualizations get overwhelmed

Challenges for Microservice **Platforms**

Managing Scale

It's much more challenging than just a large number of machines

A Possible Hierarchy *Continents* Regions Zones Services Versions *Containers* Instances

How Many? 3 to 5 2-4 per Continent 1-5 per Region 100's per Zone Many per Service 1000's per Version 10,000's

Flow

Some tools can show the request flow across a few services

But interesting architectures have a <u>lot</u> of microservices! Flow visualization is a big challenge.

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

Failures

Simple NetflixOSS style microservices architecture on three AWS Availability Zones

> Zone partition/failure What should you do? What should monitors show?

> By design, everything works with 2 of 3 zones running. This is not an outage, inform but don't touch anything! Halt deployments perhaps?

Challenge: understand and communicate common microservice failure patterns.

Testing

Testing monitoring tools at scale gets expensive quickly...

Simulation

Simulated Microservices Node names match AWS Each node is a model goroutine Each edge is a dynamically assigned qo channel

Model and visualize microservices *Simulate interesting architectures Generate large scale configurations Eventually stress test real tools*

See <u>github.com/adrianco/spigo</u> Simulate Protocol Interactions in Go Visualize with D₃

Definition of an architecture

Header can include chaos monkey victim

{

}

```
"arch": "cassandra",
"description":"Simple Cassandra model for the Cassandra Summit 2015 paper".
"version": "arch-0.0",
"victim": ""
"services":
      "name": "cassandra",
                                  "package": "priamCassandra", "count": 6, "regions": 1, "dependencies": ["cassandra", "eureka"]},
                                                                   "count": 6, "regions": 1, "dependencies": ["cassandra"]},
"count": 12, "regions": 1, "dependencies": ["restdata"]},
"count": 6, "regions": 1, "dependencies": ["app"]},
"count": 0, "regions": 1, "dependencies": ["proxy"]},
      "name": "restdata",
                                 "package": "staash",
                                 "package": "karyon",
       "name": "app",
       "name": "proxy",
                                 "package": "zuul",
       "name": "www-elb",
                                 "package": "elb",
                                 "packade": "denominator",
                                                                    "count": 0, "regions": 0, "dependencies": ["www-elb"]}
      "name": "www".
       New tier
                                         Tier
                                                                                                       List of tier
                                                                                     Region
                                                                 Node
                                                                                                       dependencies
                                        package
       name
                                                                                     count: 1
                                                                 count
```

Single Region Architectures

Service only view 3 zones in 1 region

Instance level view 3 zones in 1 region Instance level view 3 zones in 1 region double scale

Instance level view 3 zones in 1 region quadruple scale

2 and 3 Region Architectures

Instance level view 3 zones in 2 regions

> Instance level view 3 zones in 3 regions

4, 5 and 6 Region Cassandra

Instance level view 3 zones in 4 regions

Instance level view 3 zones in 5 regions Instance level view 3 zones in 6 regions

Adding endpoints & clusters

More realistic architecture for a simple Netflix-like web service

> Instance level view 3 zones in 1 region

Separate endpoints for API and WWW Three Cassandra clusters

Spigo Nanoservice Structure

func Start(listener chan gotocol.Message) {

}

```
. . .
for {
       select {
       case msg := <-listener:</pre>
               switch msg.Imposition {
               case gotocol.Hello:
                                       // get named by parent
               case gotocol.NameDrop: // someone new to talk to
               case gotocol.GetRequest: // upstream request handler
               case gotocol.GetResponse:// downstream response handler
               case gotocol.Goodbye: // tell parent I'm going away now
                       gotocol.Message{gotocol.Goodbye, nil, time.Now(), name}.GoSend(parent)
                       return
       case <-eurekaTicker.C:
                                       // poll the service registry
               . . .
        }
}
priamCassandra.go package total about 200 lines of Go
```


Why Build Spigo/Simianviz?

Generate test microservice configurations at scale Stress monitoring tools display capabilities

Eventually (i.e. not implemented yet) Dynamically vary configuration: autoscale, code push Chaos monkey for microservice, zone, region failures D3 websocket dynamic browser interface github.com/adrianco/spigo

Teraservices

Engulf dataset in memory for analytics

Balanced config for memory intensive workloads

Replace high end systems at commodity cost point

Explore non-volatile memory implications

Diablo - a Battery Ventures portfolio company

DDR4 DIMM containing flash 64/128/256GB

Migrates pages to/from companion DRAM DIMM

Shipping now as volatile memory, future non-volatile

Memory1: 1st All-Flash System

- > NO CHANGES to CPU or Server
- > NO CHANGES to Operating System
- > NO CHANGES to Applications
- ✓ UP TO 256GB DDR4 MEMORY PER MODULE
- ✓ UP TO 4TB MEMORY IN 2 SOCKET SYSTEM

In-Memory Database: Minimize Infrastructure Cost

Problem: IMDB memory requirements force purchase of additional unneeded CPUs

Solution: Increased memory-per-socket eliminates need for additional costly CPUs

DRAM capacity limitations necessitate additional DIMM slots

Dual-Processor Configuration (System Memory Expanded By Memory1)

With **more memory per socket**, IMDBs can be supported by **less expensive servers**

THE NEW STREES
Jez Humble, Joanne Molesky & Barry O'Reilly
LEAN
EN I EKPKIJE
How High Performance Organizations Innovate at Scale
O'REILLY'

Teraservices moving to mainstream

MEMORY 1

Q&A

Adrian Cockcroft @adrianco http://slideshare.com/adriancockcroft Technology Fellow - Battery Ventures July 2015

Battery Ventures

See <u>www.battery.com</u> for a list of portfolio investments

Enterprise IT

