
From Microservices to Teraservices
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
 September 2015

What does @adrianco do now?

@adrianco

Technology Due
Diligence on Deals

Presentations at
Conferences

Presentations at
Companies

Technical
Advice for Portfolio

Companies

Program
Committee for
Conferences

Networking with
Interesting PeopleTinkering with

Technologies

Maintain
Relationship with
Cloud Vendors

Topics for Today

Why Microservices?
Simulating Architectures

Terabytes of Memory

Key Goals of the CIO?
Align IT with the business
Develop products faster
Try not to get breached

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Deploy
Feature to
Production

Immutable microservice deployment
scales, is faster with large teams and
diverse platform components

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Microservices

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Cloud Native
Monitoring and
Microservices

Cloud Native Microservices
! High rate of change

Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis – everything looks unusual

! Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

! Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

Challenges for
Microservice

Platforms

Managing Scale

A Possible Hierarchy
Continents

Regions
Zones

Services
Versions

Containers
Instances

How Many?
3 to 5

2-4 per Continent
1-5 per Region
100’s per Zone

Many per Service
1000’s per Version

10,000’s

It’s much more challenging
than just a large number of

machines

Flow

Some tools can show
the request flow

across a few services

But interesting
architectures have a
lot of microservices!
Flow visualization is

a big challenge.

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

Failures

ELB Load Balancer

Zuul API Proxy

Karyon
Business
Logic

Staash Data
Access Layer

Priam Cassandra
Datastore

Simple NetflixOSS
style microservices
architecture on three
AWS Availability Zones

Zone partition/failure
What should you do?
What should monitors show?

By design, everything works
with 2 of 3 zones running.
This is not an outage, inform
but don’t touch anything!
Halt deployments perhaps?

Challenge: understand and
communicate common
microservice failure patterns.

Testing

Testing monitoring tools at scale
gets expensive quickly…

Simulation

Simulated Microservices

Model and visualize microservices
Simulate interesting architectures
Generate large scale configurations
Eventually stress test real tools

See github.com/adrianco/spigo
Simulate Protocol Interactions in Go
Visualize with D3

Each node is a
goroutine

Each edge is
a dynamically
assigned
go channel

Node names
match AWS
model

http://github.com/adrianco/spigo

Definition of an architecture

{
 "arch": "cassandra",
 "description":"Simple Cassandra model for the Cassandra Summit 2015 paper",
 "version": "arch-0.0",
 "victim": "",
 "services": [
 { "name": "cassandra", "package": "priamCassandra", "count": 6, "regions": 1, "dependencies": ["cassandra", "eureka"]},
 { "name": "restdata", "package": "staash", "count": 6, "regions": 1, "dependencies": ["cassandra"]},
 { "name": "app", "package": "karyon", "count": 12, "regions": 1, "dependencies": ["restdata"]},
 { "name": "proxy", "package": "zuul", "count": 6, "regions": 1, "dependencies": ["app"]},
 { "name": "www-elb", "package": "elb", "count": 0, "regions": 1, "dependencies": ["proxy"]},
 { "name": "www", "package": "denominator", "count": 0, "regions": 0, "dependencies": ["www-elb"]}
]
}

Header can include
chaos monkey victim

New tier
name

Tier
package

Region
count: 1

Node
count

List of tier
dependencies

Single Region Architectures

Service only view
3 zones in 1 region

Instance level view
3 zones in 1 region

Instance level view
3 zones in 1 region

double scale

Instance level view
3 zones in 1 region

quadruple scale

2 and 3 Region Architectures

Instance level view
3 zones in 2 regions

Instance level view
3 zones in 3 regions

4, 5 and 6 Region Cassandra

Instance level view
3 zones in 4 regions

Instance level view
3 zones in 5 regions

Instance level view
3 zones in 6 regions

 Adding endpoints & clusters

More realistic architecture for a simple
Netflix-like web service

Instance level view
3 zones in 1 region

Separate endpoints for API and WWW
Three Cassandra clusters

Spigo Nanoservice Structure
func Start(listener chan gotocol.Message) {
 ...
 for {
 select {
 case msg := <-listener:
 switch msg.Imposition {
 case gotocol.Hello: // get named by parent
 ...
 case gotocol.NameDrop: // someone new to talk to
 ...
 case gotocol.GetRequest: // upstream request handler
 ...
 case gotocol.GetResponse:// downstream response handler
 ...
 case gotocol.Goodbye: // tell parent I’m going away now
 gotocol.Message{gotocol.Goodbye, nil, time.Now(), name}.GoSend(parent)
 return
 }
 case <-eurekaTicker.C: // poll the service registry
 ...
 }
 }
}

priamCassandra.go package total about 200 lines of Go

Flow Trace Recording

cass2
us-east-1

zoneC

cass9
us-west-2

zoneA

Put s896

Replicate

cass3
us-east-1

zoneA

cass0
us-east-1

zoneA

cass8
us-west-2

zoneC

cass4
us-east-1

zoneB

cass10
us-west-2

zoneB

cass1
us-east-1

zoneB

cass7
us-west-2

zoneB

us-east-1.zoneC.cass2 t98p895s896 Put
us-east-1.zoneA.cass3 t98p896s908 Replicate
us-east-1.zoneB.cass4 t98p896s909 Replicate
us-west-2.zoneA.cass9 t98p896s910 Replicate
us-east-1.zoneA.cass0 t98p908s911 Replicate
us-west-2.zoneB.cass10 t98p910s912 Replicate
us-west-2.zoneC.cass8 t98p910s913 Replicate
us-east-1.zoneB.cass1 t98p909s914 Replicate
us-west-2.zoneB.cass7 t98p912s915 Replicate

staash
us-east-1

zoneC

s910 s908

s911

s913
s909s912

s914s915
Traces similar to
Google Dapper
Twitter Zipkin

Plan to generate Zipkin
format output

Why Build Spigo/Simianviz?

Generate test microservice configurations at scale
Stress monitoring tools display capabilities

Eventually (i.e. not implemented yet)
Dynamically vary configuration: autoscale, code push
Chaos monkey for microservice, zone, region failures
D3 websocket dynamic browser interface
github.com/adrianco/spigo

http://github.com/adrianco/spigo

Teraservices

Terabyte Memory Directions

Engulf dataset in memory for analytics

Balanced config for memory intensive workloads

Replace high end systems at commodity cost point

Explore non-volatile memory implications

A Terabyte Memory Option

Diablo - a Battery Ventures portfolio company

DDR4 DIMM containing flash 64/128/256GB

Migrates pages to/from companion DRAM DIMM

Shipping now as volatile memory, future non-volatile

Memory1: 1st All-Flash System

NO CHANGES to CPU or Server

NO CHANGES to Operating System

NO CHANGES to Applications

✓ UP TO 256GB DDR4 MEMORY PER MODULE

✓ UP TO 4TB MEMORY IN 2 SOCKET SYSTEM

TM

In-Memory Database: Minimize Infrastructure Cost

CPU
$

CPU
$

CPU
$$$

CPU
$$$

CPU
$$$

CPU
$$$

DRAM capacity limitations necessitate additional
DIMM slots

With more memory per socket, IMDBs can
be supported by less expensive servers

Quad-Processor Configuration
(With DRAM Only) Dual-Processor Configuration

(System Memory Expanded By Memory1)

Problem: IMDB memory requirements force purchase of additional unneeded CPUs

Solution: Increased memory-per-socket eliminates need for additional costly CPUs

Takeaway

Teraservices
moving to
mainstream

Q&A
Adrian Cockcroft @adrianco

http://slideshare.com/adriancockcroft
Technology Fellow - Battery Ventures

July 2015

See www.battery.com for a list of portfolio investments

http://slideshare.com/adriancockcroft
http://slideshare.com/adriancockcroft
http://slideshare.com/adriancockcroft

Security

Visit http://www.battery.com/our-companies/ for a full list of all portfolio companies in which all Battery Funds have invested.

Palo Alto Networks

Enterprise IT

Operations &
Management

Big DataCompute

Networking

Storage

http://www.battery.com/our-companies/

