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• Real-time
• Monitor app telemetry (e.g., ad clicks) &

raise alerts when problems are detected

• Real-time with historical
• Correlate live data stream with historical

activity (e.g., from 1 week back)

• Offline
• Develop initial monitoring query using logs

• Back-test monitoring query over historical logs

• Progressive
• Non-temporal analysis (e.g., BI) over large dataset,

stream data, get quick approximate results

Diverse Scenarios for Analytics

Engine
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Interactive Query Authoring

Real-Time 
Dashboard
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What a mess!

• Different tools made by different folks:
• No agreement on what data is

• No agreement on what logic/queries are

• Real application developers pay the price

It doesn’t need to be this way



Pieces of the Data Analytics Problem

•Data Movement
• Lots of interesting issues but I won’t say much more

•Computation

These problems aren’t as different as they seem!



•What makes Trill special?
• Time as a first class citizen

•Adaptability to a variety of settings

•Performance, Performance, Performance
• 2-4 orders of magnitude faster than traditional SPEs
• Comparable to commercial column stores for offline

Enter Trill (A Trillion Events Per Day Per Node)



Trill’s Use Cases



Time as a First Class Citizen

• Low latency analytics: 
• Computation that is periodically repeated over a recent subset of data

• Business Reports, Dashboards, Model Training

• Windows capture a critical aspect of semantics
• Window – All data used for one reporting period

• A timestamp in the data is needed to decide window membership

• Very helpful for windowing to be part of the query language

• Faking windows with groupby isn’t enough
• Hopping Windows, Session Windows

• Nice algorithms for windowed computation when data arrives with 
bounded disorder
• Incremental

• Bounded state



Time as a First Class Citizen

• For instance, consider the CEDR algebra:
• Rows are tagged with a contribution time interval

• This time interval can be manipulated using new operators (e.g. 
HoppingWindow)
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Time as a First Class Citizen

• So windows are about supporting low latency, right?
• What about offline log analytics?

• Pattern matching: The order of events is critical

• Developing and debugging streaming queries

• Be careful to log and use app time for everything, including real-time

• What about conventional analytics with really large datasets?
• Early answers can be useful, but what do intermediate results mean?

• Couldn’t we use something like the windowing trick and timestamps to define 
exactly which answers should be produced when, and based on which data?
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Variety of Settings

• Customers want to use a query processor with varying 
infrastructure:
• For real time (e.g. with Orleans)
• For scaled out offline (e.g. with Map-Reduce & in-mem progeny)
• For interactive data analysis applications (in Tempe)

• Customers find limiting data types (e.g. SQL) extremely, well, 
limiting
• They want to store collections
• Sometimes they even want to store classes with references in them!



Variety of Settings

• Solution: Trill is a passive library in a modern language (Trill 
uses .NET)
• Easy to embed in any part of any .NET application
• Payloads can contain any .NET type
• LinQ is our query language (more later)
• Data ingress and egress using IEnumerable and IObservable
• Must be able to checkpoint and restore its own state



Performance, Performance, Performance

•One size fits all analytics QP requires competitive 
performance across a wide spectrum of analytics

•Column stores are fast! 

•Really fast!
• Orders of magnitude faster than traditional stream 

processors at relational queries!

•What are we going to do?



Performance, Performance, Performance

• Column stores have the answer: 

Teach a streaming system how to do column store tricks!



stream of batches
• Purely physical (no impact on query results)

• Batch up to 10 secs of data

• Small batches  low latency

• Large batches  high throughput

• More load  larger batches  better throughput

Performance, Performance, Performance

…
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• Timestamps as arrays

• Bitvector to indicate row absence
class DataBatch {

long[] SyncTime;
...
Bitvector BV;

}

• One array per payload field
class UserData_Gen : DataBatch {

long[] c_ClickTime;
long[] c_User;
long[] c_AdId;

}

• Enables efficient QP & serialization

+ Columnar

…

𝑜𝑝2

…

…

𝑜𝑝1

timestamp payload columns

bitvector



• Dynamically generate and compile code for 
operators and batches

• LinQ gives users static type checking at query 
composition time and intellisense

str.Where(e => e.User % 100 < 5)

• Tight loops over batches

• Avoid method calls within loops

• Columns accessed only if needed

+Made Invisible and Fast By Code Generation

str.Where(e => e.User % 100<5);

Send(events)

...

Application

Receive(results)

On(Batch b) {
for i = 0 to b.Size {

if !(b.c_User[i]%100 < 5)
set b.bitvector[i]

}
next-operator.On(b)
}

Trill



Evaluation (sample)
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Conclusions

• Low latency analytics isn’t just niche streaming products

• Rather, it’s an opportunity to expand the scope of analytics

• Current cloud applications are in desperate need of this unification

• Trill is a widely deployed engine used across the whole analytics 
spectrum.
• Handles Time Powerfully: Covers SQL, Real-Time, Log analysis, Early 

answers, etc…

• Easily deployed in any .NET app: Trill is a passive .NET library

• Fast: Best of breed performance or better across the analytics spectrum



Where Do We Go From Here?

• How about the data movement part? 
• There’s actually been a lot of work in this area (Event Hub, Kinesis, Storm, 

Kafka, etc…)

• Lots of work to do, but very actionable 

• How about OLTP? Can OLTP be effectively fused with modern 
analytics?
• What would it mean?

• Can it be done while matching Trill’s performance and expressiveness?



Publications Describing the Presented Ideas

• The original CEDR paper (skip the 1st half):

Consistent Streaming Through Time: A Vision for Event Stream Processing. CIDR 2007

• CEDR and map-reduce system for expressing both offline and online queries:

Temporal Analytics on Big Data for Web Advertising. ICDE 2012

• CEDR and scaled out system for early answers:

Scalable Progressive Analytics on Big Data in the Cloud. PVLDB 6(14)

• Trill:

Trill: A High-Performance Incremental Query Processor for Diverse Analytics. PVLDB 8(4)
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