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Diverse Scenarios for Analytics

e Real-time
* Monitor app telemetry (e.g., ad clicks) &
raise alerts when problems are detected i
e Real-time with historical Real-Timg

Dashboard
* Correlate live data stream with historical
activity (e.g., from 1 week back)

Engine
e Offline + Fabgric

e Develop initial monitoring query using logs
* Back-test monitoring query over historical logs

* Progressive

* Non-temporal analysis (e.g., Bl) over large dataset, .
stream data, get quick approximate results e

Interactive Query Authoring
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What a mess!

* Different tools made by different folks:
* No agreement on what data is
* No agreement on what logic/queries are
* Real application developers pay the price

It doesn’t need to be this way



Pieces of the Data Analytics Problem

* Data Movement
* Lots of interesting issues but | won’t say much more

* Computation

These problems aren’t as different as they seem!



Enter Trill (A Trillion Events Per Day Per Node)

* What makes Trill special?
* Time as a first class citizen
* Adaptability to a variety of settings

* Performance, Performance, Performance

 2-4 orders of magnitude faster than traditional SPEs
e Comparable to commercial column stores for offline
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ime as a First Class Citizen

* Low latency analytics:

 Computation that is periodically repeated over a recent subset of data
* Business Reports, Dashboards, Model Training

* Windows capture a critical aspect of semantics
* Window — All data used for one reporting period
e Atimestamp in the data is needed to decide window membership
* Very helpful for windowing to be part of the query language
* Faking windows with groupby isn’t enough
* Hopping Windows, Session Windows
* Nice algorithms for windowed computation when data arrives with
bounded disorder
* Incremental
* Bounded state



Time as a First Class Citizen

* For instance, consider the CEDR algebra:
* Rows are tagged with a contribution time interval

 This time interval can be manipulated using new operators (e.g.
HoppingWindow)

S
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S.HoppingWindow(Hop, WindowsSize).Count()
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Time as a First Class Citizen

* So windows are about supporting low latency, right?

* What about offline log analytics?
e Pattern matching: The order of events is critical
e Developing and debugging streaming queries
* Be careful to log and use app time for everything, including real-time

* What about conventional analytics with really large datasets?
* Early answers can be useful, but what do intermediate results mean?
e Couldn’t we use something like the windowing trick and timestamps to define

exactly which answers should be produced when, and based on which data?
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Variety of Settings

* Customers want to use a query processor with varying
infrastructure:

* For real time (e.g. with Orleans)

* For scaled out offline (e.g. with Map-Reduce & in-mem progeny)

* For interactive data analysis applications (in Tempe)

e Customers find limiting data types (e.g. SQL) extremely, well,
limiting
* They want to store collections
* Sometimes they even want to store classes with references in them!




Variety of Settings

* Solution: Trill is a passive library in a modern language (Trill
uses .NET)
e Easy to embed in any part of any .NET application
* Payloads can contain any .NET type
 LinQ is our query language (more later)
e Data ingress and egress using IEnumerable and |IObservable
* Must be able to checkpoint and restore its own state



Performance, Performance, Performance

* One size fits all analytics QP requires competitive
performance across a wide spectrum of analytics

* Column stores are fast!

 Really fast!

* Orders of magnitude faster than traditional stream
processors at relational queries!

* What are we going to do?



Performance, Performance, Performance

 Column stores have the answer:

Teach a streaming system how to do column store tricks!



Performance, Performance, Performance

e Data organized as stream of batches
* Purely physical (no impact on query results)

e Users specify latency constraint
(10 secs)
e Batch up to 10 secs of data
* Small batches = low latency
 Large batches = high throughput
* More load = larger batches = better throughput

0p1
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+ Columnar

e Columnar format within each batch
* Timestamps as arrays

e Bitvector to indicate row absence

class DataBatch {
long[] SyncTime;

Bitvector BV;
}

* One array per payload field
class UserData Gen : DataBatch {
long[] c _ClickTime;
long[] c_User;
long[] c_AdId;

}
 Enables efficient QP & serialization
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timestamp payload columns

bitvector



+Made Invisible and Fast By Code Generation

Application

e User view is row-oriented

* Dynamically generate and compile code for
operators and batches

* LinQ gives users static type checking at query
composition time and intellisense

Receive(results)

=N

On(Batch b) {

 E.g. Filter (where) for i = @ to b.Size {
if !'(b.c_User[i]%100 < 5)
str.Where(e => e.User % 100 < 5) set b.bitvector[i]

}

next-operator.On(b)

* Codegen goals: }

* Tight loops over batches
* Avoid method calls within loops DD“
* Columns accessed only if needed

Send(events)

'str.where(e => e.User % 100<5);




Evaluation (sample)

* Pre-loaded datasets in main memory
* 16-core machine
* Temporal queries

Select (none) w
Select (all) z-m
Project ;zzzzzzzzzzzzzzzzzzztz]
AlterLifetime S
Count (window) m

Grouped Sum (window) -mm ;-Srll‘:i)lllz(-i(ég?‘gl)ti-core)

@ Trill (multi-core)

Temporal Join
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Evaluation (sample)

* Pre-loaded datasets in main memory
* 16-core machine

* Relational queries 10000
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Throughput (M row/sec)
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T ri||: Filter2 (C2)

s TF||: Sum (C1)
Trill: Select (C2)
Trill: G-Agg (C1)

=== Trill. Equi-Join (C1)

3
Degree of parallelism (#threads)

- DB-X: Filter2 (C2)

= o= DB-X: Sum (C1)
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Conclusions

* Low latency analytics isn’t just niche streaming products
* Rather, it’s an opportunity to expand the scope of analytics
* Current cloud applications are in desperate need of this unification

* Trill is a widely deployed engine used across the whole analytics
spectrum.

* Handles Time Powerfully: Covers SQL, Real-Time, Log analysis, Early
answers, etc...

* Easily deployed in any .NET app: Trill is a passive .NET library
* Fast: Best of breed performance or better across the analytics spectrum



Where Do We Go From Here?

* How about the data movement part?

* There’s actually been a lot of work in this area (Event Hub, Kinesis, Storm,
Kafka, etc...)

* Lots of work to do, but very actionable

* How about OLTP? Can OLTP be effectively fused with modern
analytics?
* What would it mean?
* Can it be done while matching Trill's performance and expressiveness?



Publications Describing the Presented |Ideas

e The original CEDR paper (skip the 1% half):
Consistent Streaming Through Time: A Vision for Event Stream Processing. CIDR 2007

 CEDR and map-reduce system for expressing both offline and online queries:
Temporal Analytics on Big Data for Web Advertising. ICDE 2012

* CEDR and scaled out system for early answers:
Scalable Progressive Analytics on Big Data in the Cloud. PVLDB 6(14)

e Trill:
Trill: A High-Performance Incremental Query Processor for Diverse Analytics. PVLDB 8(4)
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