
©2015 Apigee Corp. All Rights Reserved. 

Web APIs and How They Work
Greg Brail, Apigee



©2015 Apigee Corp. All Rights Reserved. 

Why APIs?



©2015 Apigee Corp. All Rights Reserved. 

Web APIs are Everywhere (at HPTS)

Netflix Zuul: https://github.com/Netflix/zuul/wiki/How-We-Use-Zuul-At-Netflix
Kyle Kingsbury: https://github.com/aphyr/jepsen-talks/tree/master/2015/goto

Facebook Graph API: https://developers.facebook.com/docs/graph-api

Docker API: https://docs.docker.com/reference/api/
docker_remote_api_v1.19/ 



©2015 Apigee Corp. All Rights Reserved. 

Use Cases for APIs
•  Public APIs: 5% of the world’s APIs*
–  For any developer to discover and sign up
–  Often free
–  Facebook, Twitter, Twilio, etc.

•  Partner or Customer APIs: 25% of the world’s APIs
–  For a company’s customer or partner to use
–  Often paid or via negotiated business relationship
–  Third-party apps for Walgreens’ photo printing service

•  Private APIs: 75% of the world’s APIs
–  Used within a single company
–  Documentation and SLAs are still important
–  Netflix

4

* My guess



©2015 Apigee Corp. All Rights Reserved. 

Web APIs are a Reaction
•  What the industry came up with
–  SOAP
–  WS-Security
–  WS-Secure Conversation
–  WS-Trust
–  XML
–  XML Schema
–  UDDI
–  CORBA
–  DCE

•  Collective reaction from developers:
–  Yuck!

5



©2015 Apigee Corp. All Rights Reserved. 

The Power of WDWJ
•  Why Don’t We Just
•  Use HTTP
•  Use JSON

•  No industry consortium
•  No standards body

6



©2015 Apigee Corp. All Rights Reserved. 

API Gateways and Apigee

7



©2015 Apigee Corp. All Rights Reserved. 

API Gateways are Everywhere
•  Google
•  Facebook
•  Salesforce
•  Amazon
•  Netflix
•  Twitter
•  Many more…

8

Business Services (legacy or new)

Data

Smartphones Browsers Cars, Planes, etc.

Security
Traffic controls
Analytics
Caching

Monitoring
Transformation
Orchestration
Threat detection

API 
Gateway



©2015 Apigee Corp. All Rights Reserved. 

What do you Do?

9

Design"
Design first. Document Smart. 
Full support for Swagger 2.0

Develop
Configuration: Over 30 ready-to-use & configurable ` 

policies
Code: Built-in support for Node, JavaScript and 

Java extensibility
BaaS

Secure
End-to-end security
Threat protection
Access control
Simple OAuth implementation for your APIs 
PCI and HIPAA compliance

Publish
Turnkey developer portal

Monitor 
Centralized control, decentralized development

Multi-tenant architecture
Billions of API calls, including large spikes

Analyze
Complete visibility– from app end to backend

Automatically and continuously collect "
all API-traffic data out of the box

Monetize
Flexible rate plans

Internationalization support
Usage tracking

Limits and notifications

Scale
Self-service

State @ scale
Flexible deployment



©2015 Apigee Corp. All Rights Reserved. 

What Does it Look Like?

10

Clients (Apps, etc) Customers’ APIs

Routing

Message Processing

Runtime Data

Analytics Data

Management



©2015 Apigee Corp. All Rights Reserved. 

What Does it Look Like?

11

Clients (Apps, etc) Customers’ APIs

Routing

Message Processing

Runtime Data

Analytics Data

Management



©2015 Apigee Corp. All Rights Reserved. 

Technical Challenges

12



©2015 Apigee Corp. All Rights Reserved. 

Our Challenge
•  What our customers expect:
–  >99.99% availability as defined by the number of transactions that complete successfully
–  Geographically distributed across data centers
–  In the Apigee Cloud or their own data centers
–  No maintenance windows
–  No regressions
–  Acceptable latency
–  All the features we have plus just one more ;-)

13



©2015 Apigee Corp. All Rights Reserved. 

Our Basic Approach

14



©2015 Apigee Corp. All Rights Reserved. 

Types of Data At Apigee
Type How Many 

Records?
How Often do we Write? Technology

System configuration 1000s 10s / minute Zookeeper
Customer Proxy Deployments 100,000s 10s / minute Zookeeper / C*
API Publishing Data (developers, apps, 
keys)

Millions 10s / second C*

OAuth Tokens & metadata Tens of millions 10,000s / second C*
Counters / Quotas Millions 10,000s / second C*
Distributed Cache Tens of millions 10,000s / second C*
API Analytics Data Billions 10,000s / second Postgres / RedShift / 

S3

15



©2015 Apigee Corp. All Rights Reserved. 

Challenge #1: Availability
•  Goal: deliver 99.99% of API calls without introducing errors
•  Measurement:
–  We need to measure every API call
–  Apply logic that looks at error from target as well as result that we delivered
–  Look at the numbers every week and drive the error rate down

•  Result:
–  Steady improvement as long as we keep measuring.

16



©2015 Apigee Corp. All Rights Reserved. 

Challenge #1: Counting*
•  What we need:
•  Application X is allowed to make 10,000 API calls per hour for free
–  Across geographies
–  Less than a 0.01% error rate
–  Minimal latency

•  Application Y is allowed to make 1,000,000 API calls per hour because they paid
–  Warn them before they reach a million
–  Cut them off if they exceed it
–  Charge them accurately for each API call

•  Control the tradeoff between accuracy and latency
–  We’d love to be able to talk rationally about this with customers

17

* That was a joke



©2015 Apigee Corp. All Rights Reserved. 

Counting in Distributed Systems
•  What we can do:
•  Central system that holds all counters
–  Would be perfectly accurate, but obviously no

•  Distributed consensus protocol across all servers
–  Too slow especially across geographies

•  Eventually consistent counters
–  Yes! But how?

•  Cassandra counters
–  Write availability in the presence of network partitions
–  But no guarantees about accuracy (see Jepsen)
–  Still too slow

•  Cassandra counters plus local caching
–  Give us the best compromise today

18



©2015 Apigee Corp. All Rights Reserved. 

Challenge #3: Detecting Abuse
•  APIs are nice and open and easy to program
•  That makes them easy to exploit
–  Travel APIs
–  Retail APIs
–  Other open APIs

•  80% of traffic on one retailer’s API was from “bots”
–  Scraping prices, availability, etc.

•  56% of all web site traffic purportedly comes from bots

19



©2015 Apigee Corp. All Rights Reserved. 

Detecting Bad Traffic
•  Long-term batch analytics processing
–  Machine learning + data + heuristics

•  For instance
–  U.S. Retailers don’t have many customers in Romania
–  iPads tend not to reside inside Amazon Web Services data centers
–  Real people tend not to query product SKUs starting at “000000” and proceeding to “999999”
–  Real people don’t check on100 rooms at the same hotel and never book

•  Solution includes:
–  Batch processing to update bot scoring
–  Bloom filters at router layer
–  Lookup table and other processing for other traffic

20



©2015 Apigee Corp. All Rights Reserved. 

Challenge #4: Management
•  We are largely a management system
–  1000s of new API proxies deployed per day to our cloud
–  Each one includes customer-specific processing rules, policies and code
–  API calls coming in for analytics queries, to change rate limits, set up developers, etc.

•  Systems architects tend to give management short shrift
–  “It’s OK if the management system fails as long as the API calls keep working”

•  We try to architect management for the same SLA as everything else
–  So we use Cassandra and Zookeeper here too

21



©2015 Apigee Corp. All Rights Reserved. 

Finally: Lessons from the Cloud
•  Hardware fails. So what? 
•  Network fails. Bad but expected. 
•  Management layer fails. Big problem.
–  See history of AWS outages



22



©2015 Apigee Corp. All Rights Reserved. 

Thanks
Apigee Edge is the work of many Apigeeks past and present. A few deserve special 
thanks:

Girish Karthik
Ravi Chandra
Ramesh Nethi
Scott Metzger (r.i.p.)
Shankar Ramaswamy
Anant Jhingran
Rajesh Jahdav
Sridhar Rajagopalan


23



Thank you


