apigee

Web APIls and How They Work

Greg Brail, Apigee

©2015 Apigee Corp. All Rights Reserved.

Web APls are Everywhere (a

Support Training Docs Blog
*dOCer Products Customers Community Partners

Install

Docker Fundamentals

Use Docker

Manage image repositories

Extend Docker

Command and API references

Command line reference
Docker run reference
Dockerfile reference

Remote API client libraries

okt

25EysAEE

Docker Remote API v1.19
1. Brief introduction

The Remote API has replaced rcli .

The daemon listens on unix:///var/run/docker.sock but you can Bind Docker

to another host/port or a Unix socket.

The API tends to be REST. However, for some complex commands, like attach or
pull , the HTTP connection is hijacked to transport stdout , stdin and

stderr .

When the client API version is newer than the daemon'’s, these calls return an HTTP

400 Bad Request error message.

2. Endpoints

" [AWS Elastic Load Balancer | [AWS Elastic Load Balancer | [AWS Elastic Load Balancer

Netflix Zuul: https://github.com/N

apigee

etflix/zqu/Wi ki/How-We-Use-Zuul-At-Netflix

Docker Hub ‘

Company Open Source

On this page:
Docker Remote API v1.19

1. Brief introduction

2. Endpoints

2.1 Containers
List containers
Create a container
Inspect a container
List processes running inside a
container
Get container logs
Inspect changes on a container’s
filesystem
Export a container
Get container stats based on
resource usage
Resize a container TTY
Start a container
Stop a container
Restart a container
Kill a container
Rename a container
Pause a container
Unpause a container
Attach to a container
Attach to a container (websocket)

\Wait a ~antainar

Docker API: https://docs.docker.com/reference/api/
docker_remote_api_v1.19/

PTS

n Developers

Facebook Graph API: https://developers.facebook.com/docs/graph-api

My Apps Products Docs Tools & Support News L

Sharing

The Graph API

Social Plugins

The primary way for apps to read and write to the Facebook social graph. The Graph API has multiple

ThreatExchange
9 versions available, read about what has changed and how to upgrade from older versions.

App Development Overview
Learn how the Graph API is structured, how
versioning works and what access tokens are.

API Reference

Get the full details of all the nodes, edges, and
fields in the latest version of the Graph API.
APIs and SDKs

Graph API

°
Using the Graph / P“ b l' ‘
Reference
Common Scenari a PI

Advanced

Other APIs

iOS SDK
Android SDK

JavaScript SDK

a‘o_\, il ’ S

Kyle Kingsbury: https://github.com/aphyr/jepsen-talks/tree/master/2015/goto

Use Cases for APIs

 Public APIs: 5% of the world’s APIs*

— For any developer to discover and sign up
— Often free

— Facebook, Twitter, Twilio, etc.

* Partner or Customer APIs: 25% of the world’s APls
— For a company’s customer or partner to use
— Often paid or via negotiated business relationship

— Third-party apps for Walgreens’ photo printing service
* Private APls: 75% of the world’s APIs

— Used within a single company

— Documentation and SLAs are still important
— Netflix

apigee

P O e | <P
lq-l....- ‘ '. = “In_ _F ~ ’ B

* My guess

Web APIs are a Reaction

« What the industry came up with
— SOAP
— WS-Security
— WS-Secure Conversation
— WS-Trust
— XML
— XML Schema
— UDDI
— CORBA
— DCE

 Collective reaction from developers:
— Yuck!

apigee

The Power of WDWJ

Why Don’t We Just
Use HTTP
Use JSON

No industry consortium
No standards body

apigee

©2015 Apigee Corp. All Rights Reserved.

AP| Gateways are Everywhere

« Google
« Salesforce
 Amazon
API Security Monitoring e Netflix
Traffic controls Transformation .
Gateway Analytics Orchestration o Twitter

Caching Threat detection

« Many more...

apigee ©2015 Apigee Corp. All Rights Reserved.

What do you Do?

Design
Design first. Document Smart.
Full support for Swagger 2.0

Monetize Develop
Flexible rate plans Configuration: Over 30 ready-to-use & configurable
Internationalization support policies

Usage tracking
Limits and notifications

Code: Built-in support for Node, JavaScript and
Java extensibility
BaaS

Secure
End-to-end security
Threat protection
Access control

Simple OAuth implementation for your APIs
PCI and HIPAA compliance

Analyze

Complete visibility— from app end to backend
Automatically and continuously collect

all API-traffic data out of the box

Publish

Turnkey developer portal

Monitor

Centralized control, decentralized development
Multi-tenant architecture

Billions of API calls, including large spikes

Scale
Self-service
State @ scale
apigee Flexible deployment

What Does it Look Like?

apigee ©2015 Apigee Corp. All Rights Reserved. 10

What Does it Look Like?

apigee ©2015 Apigee Corp. All Rights Reserved. 11

©2015 Apigee Corp. All Rights Reserved.

Our Challenge

« What our customers expect:
— >99.99% availability as defined by the number of transactions that complete successfully
— Geographically distributed across data centers
— In the Apigee Cloud or their own data centers
— No maintenance windows
— No regressions
— Acceptable latency
— All the features we have plus just one more ;-)

apigee

Our Basic Approach

Building on Quicksand

Pat Helland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

PHelland@Microsoft.com

ABSTRACT

Reliable systems have always been built out of unreliable
components [1]. Early on, the reliable components were small
such as mirrored disks or ECC (Error Correcting Codes) in core
memory. These systems were designed such that failures of these
small components were transparent to the application. Later, the
size of the unreliable components grew larger and semantic
challenges crept into the application when failures occurred.

Fault tolerant algorithms comprise a set of idempotent sub-
algorithms. Between these idempotent sub-algorithms, state is
sent across the failure boundaries of the unreliable components.
The failure of an unreliable component can then be tolerated as a
takeover by a backup, which uses the last known state and drives
forward with a retry of the idempotent sub-algorithm. Classically,
this has been done in a linear fashion (i.e. one step at a time).

As the granularity of the unreliable component grows (from a
mirrored disk to a system to a data center), the latency to
communicate with a backup becomes unpalatable. This leads to a
more relaxed model for fault tolerance. The primary system will
acknowledge the work request and its actions without waiting to
ensure that the backup is notified of the work. This improves the

apigee

All Things Distributed

Werner Vogels' weblog on building scalable and robust distributed systems.

Eventually Consistent

By Werner Vogels on 19 December 2007 02:03 PM | Permalink | Comments (20

| wrote a first version of this posting on consistency models in December 2007, but | was never happy
with it as it was written in haste and the topic is important enough to receive a more thorough treatment.
AN Neinein nnlend 45 rayise it for use in their magazine and | took the opportunity to improve the

; article in December 2008 under the tile Eventually Consistent - Revisted. -
stead of this one. | am leaving this one here for transparency/historical reasons
nts helped me improve the article. For which | am grateful

Dave Campbell
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052 USA
DavidC@Muicrosoft.com
Keywords a lot of discussion about the concept of eventual consistency in the context of
Fault Tolerance, Eventual Consistency, Reconciliation, '

Loose Coupling, Transactions | Life beyond Distributed Transactions:

an Apostate’s Opinion
Position Paper

1. Introduction
There is an interesting connection between fault tolerance, .
offlineable systems, and the need for application-based eventual
consistency. As we attempt to run our large scale applications
spread across many systems, we cannot afford the latency to wait
for a backup system to remain in synch with the system actually
performing the work. This causes the server systems to look
increasingly like offlineable client applications in that they do not
know the authoritative truth. In turn, these server-based
applications are designed to record their intentions and allow the
work to interleave and flow across the replicas. In a properly

Pat Helland

Amazon.Com
705 Fifth Ave South
Seattle, WA 98104
USA
PHelland@Amazon.com

The positions expressed in this paper are

Instead, applications are built using different

designed application, this results in system behavior that is
acceptable to the business while being resilient to an increasing
number of system failures.

This paper starts by examining the concepts of fault tolerance and
posits an abstraction for thinking about fault tolerant systems.
Next, section 3 examines how fault tolerant systems have

personal opinions and do not in any way reflect
the positions of my employer Amazon.com.

ABSTRACT

Many decades of work have been invested in the
area of distributed transactions including
protocols such as 2PC, Paxos, and various

techniques which do not provide the same
transactional guarantees but still meet the needs
of their businesses.

This paper explores and names some of the
practical approaches used in the impl
of large-scale mission-critical applications in a
world which rejects distributed transactions. We
discuss the management of fine-grained pieces of

Contact Info

Werner Vogels
~TO - Amazon.com

erner@allthingsdistributed.com

ther places

sllow werner on twitter if you want to

Types of Data At Apigee

Type How Many How Often do we Write? | Technology
Records?

System configuration 1000s
Customer Proxy Deployments 100,000s

API Publishing Data (developers, apps, Millions
keys)

OAuth Tokens & metadata Tens of millions
Counters / Quotas Millions
Distributed Cache Tens of millions
API Analytics Data Billions

apigee

10s / minute
10s / minute
10s / second

10,000s / second
10,000s / second
10,000s / second
10,000s / second

Z00keeper
Zookeeper / C*
C*

C*
C*
C*
Postgres / RedShift /
S6

Challenge #1: Availability

» Goal: deliver 99.99% of API calls without introducing errors

* Measurement:
— We need to measure every API call
— Apply logic that looks at error from target as well as result that we delivered
— Look at the numbers every week and drive the error rate down
* Result:
— Steady improvement as long as we keep measuring.

apigee

Challenge #1: Counting”

What we need:
Application X is allowed to make 10,000 API calls per hour for free
— Across geographies
— Less than a 0.01% error rate
— Minimal latency
Application Y is allowed to make 1,000,000 API calls per hour because they paid
— Warn them before they reach a million
— Cut them off if they exceed it
— Charge them accurately for each API call
Control the tradeoff between accuracy and latency
— We'd love to be able to talk rationally about this with customers

* That was a joke

apigee

Counting in Distributed Systems

What we can do:
Central system that holds all counters
— Would be perfectly accurate, but obviously no
Distributed consensus protocol across all servers
— Too slow especially across geographies
Eventually consistent counters
— Yes! But how?
Cassandra counters
— Write availability in the presence of network partitions
— But no guarantees about accuracy (see Jepsen)
— Still too slow
Cassandra counters plus local caching
— Give us the best compromise today

apigee

Challenge #3: Detecting Abuse

APls are nice and open and easy to program

That makes them easy to exploit
— Travel APIs
— Retail APIs
— Other open APIs
80% of traffic on one retailer’'s API was from “bots”
— Scraping prices, availability, etc.
56% of all web site traffic purportedly comes from bots

apigee

Detecting Bad Traffic

* Long-term batch analytics processing
— Machine learning + data + heuristics
* For instance
— U.S. Retailers don’t have many customers in Romania
— iPads tend not to reside inside Amazon Web Services data centers
— Real people tend not to query product SKUs starting at “O00000” and proceeding to “999999”
— Real people don’t check on100 rooms at the same hotel and never book

« Solution includes:
— Batch processing to update bot scoring
— Bloom filters at router layer
— Lookup table and other processing for other traffic

apigee

Challenge #4: Management

* We are largely a management system

— 1000s of new API proxies deployed per day to our cloud

— Each one includes customer-specific processing rules, policies and code

— APl calls coming in for analytics queries, to change rate limits, set up developers, etc.
« Systems architects tend to give management short shrift

— “lt’s OK if the management system fails as long as the API calls keep working”
« We try to architect management for the same SLA as everything else

— So we use Cassandra and Zookeeper here too

apigee

Finally: Lessons from the Cloud

 Hardware fails. So what?
* Network fails. Bad but expected.

 Management layer fails. Big problem.
— See history of AWS outages

apigee

Thanks

Apigee Edge is the work of many Apigeeks past and present. A few deserve special
thanks:

Girish Karthik

Ravi Chandra
Ramesh Nethi

Scott Metzger (r.i.p.)
Shankar Ramaswamy
Anant Jhingran
Rajesh Jahdav
Sridhar Rajagopalan

apigee

