
Container-less 
Development or 

Immutable Containers?

Mark Little, VP, Red Hat



HPTS September 2015



Distributed systems 
archeology

1970’s-1990’s client-server rules



Typically single-threaded



Multi-threading in languages rare



setjmp/longjump anyone?



Core services/capabilities begin to emerge



Transactions, messaging, storage, …





CORBA (other architectures 
are available)



And then …

Late 90’s/2000’s



New generation of chips, e.g., M68030, 
SPARC, Xeon, Itanium 



Multi-core, hyper-threads



RAM sizes “explode”; access times too



64 Meg in Sun 3/80, 512 Meg Pentium 3



Network speeds improve more slowly







The application container

Encourages co-location of capabilities/
services



Improve performance & memory footprint



Application containers encapsulate and 
abstract



Thread pooling, transaction management, 
security, connection pooling, …





Java EE components



Application container 
backlash

Not as simple to develop the “easy stuff”



Application containers begin to be viewed as 
bloated



Not everyone wants all enterprise services



All-or-nothing approach to capabilities



OSGi or MSC evolve to address dynamic 
updates



Java EE stripped down

Many developers are happy with Java EE



Robust and mature components; well understood



Scalable, standards compliant, integrates well



Not everyone wants to use all of Java EE



Stripping down is common



Ditch the container to use components “raw”



WildFly-Swarm



Microservices



Along come Linux 
Containers!

VIRTUALIZATION CONTAINERS



Such as Docker

Solve the problem of moving applications between 
infrastructures



Docker is disruptive:



Technology Advantages – componentised applications 
packaged and separated in their own containers



Business Benefits – “standard” container means faster 
delivery as only one mechanism for packaging



Ecosystem – Docker, Google, OpenStack, Red Hat, 
RackSpace, IBM, VMWare, Microsoft and Amazon



Kubernetes

Open source project from Google



The de facto standard for cluster 
management for Docker containers



Packages Orchestration, service discovery, 
load balancing – all behind a simple rest API



Backing from Google, IBM, Red Hat, 
Microsoft, Rackspace, Cloudbees etc.



Kubernetes and 
Containers

Kubernetes requires immutability of images



Any changes to a running image are lost



Can still be made but volatile



State must be stored off image



Shared (persistent) volumes, non-Container 
services etc.



Immutability simplifies 
architectures

Dynamic reconfiguration in Containers?



New images can be created quickly



Memory footprint still small



Rip out some application container code



Update? Create new image and redeploy!



Keep connection pools, thread pools, 
dependency injection, …



Enterprise capabilities

However, the need for transactions, reliable 
messaging etc. doesn’t go away



Applications still need them



Application containers breaking into pieces



Independently deployable (Container) 
services



Available to different language clients using 
REST/HTTP and other protocols



Balls of mud made of 
services

“If you're building a monolithic system and it's 
turning into a big ball of mud, perhaps you 
should consider whether you're taking 
enough care of your software architecture. Do 
you really understand what the core structural 
abstractions are in your software? Are their 
interfaces and responsibilities clear too? If not, 
why do you think moving to a microservices 
architecture will help? Sure, the physical 
separation of services will force you to not take 
some shortcuts, but you can achieve the same 
separation between components in a monolith.” 
http://www.infoq.com/news/2014/08/
microservices_ballmud


