
The BigDAWG Polystore

by

Michael Stonebraker

Purpose of BigDAWG
(Intel ISTC on Big Data)

•  Flatten BDAS (Badass)

Outline

•  Why do we need a polystore
•  What exactly is a Polystore
•  The BigDAWG stack
•  The big kahuna

Why Polystores?

•  “One size fits all” is over
•  Legacy RBMSs are now good for nothing

•  And should be sent to the “home for tired software”
•  In every vertical market I can think of, there is

something that is 1 – 2 orders of magnitude faster

•  And other data types are now important
•  Not just structured data

One Size Does Not Fit All

• Recorded Futures runs
•  MongoDB for semi-structured data
•  Postgres for structured data
•  Lucene (elastic search) for text

One Size Does Not Fit All

• Tamr runs
•  Postgres for OLTP
•  Impala/Spark for analytics
•  Lucene (elastic search) for materialized views

One Size Does Not Fit All

• Mimic II data (40K ICU patients from Beth
Israel Hospital)

•  Real time waveform data (from bedside monitors)
•  Historical time series data (waveform archive)
•  Patient metadata (standard structured data)
•  Nurse’s and doctor’s notes (text)
•  Prescriptions (semi-structured data)

Our BigDAWG Prototype

• Real time waveform data
•  S-Store

• Historical time series data
•  SciDB

• Patient metadata
•  Postgres

• Nurse’s and doctor’s notes
•  Accumulo

• Prescriptions
•  Accumulo

BigDAWG Requirements

• Real time support
•  “Code blue”
•  Alert doctor if real time differs from history

• Cross-system queries
•  Find me everybody who is taking drug XXX
•  Find me the average age of patients listed as “very

sick” by a nurse or doctor

• Analytics
•  Correlate heart-rate to age for patients over 45

• Novel user-level functionality
•  “tell me something interesting”

Without Help, This is a
Programming Nightmare

• Programmer must learn K DBMS interfaces
• And copy data between systems

•  To do a cross system join

• And recode his application if any data
moves

•  As requirements evolve

BigDAWG Needs a Federated DBMS
(reminiscent of the 1980’s)

• K independent data bases
•  Usually on different storage software!!!

• With different schemas and query
languages

• With a federation query language
•  Perhaps relational
•  “Shims” to mediate between federation language and

local languages

Think of This as an
“Island of Information”

• One query language
• N local DBMSs, with shims
• Preserve location transparency

•  Can move stuff for optimization

• Programmer codes against this “island
interface”

•  Learns one interface!
•  His programs are insulated from data movement!

Extension: Multiple Islands of
Information

• No esperanto query language
•  SQL, array-talk, text talk…

• Impossible to achieve location transparency
for all DBMS functionality

•  Occasionally need to talk directly to underlying systems

BigDAWG Research Program

• “Thin Middle” multi-island interface
•  Effort to make islands as semantically inclusive as

possible

• Intra-Island middleware
•  Monitoring framework (MIT)
•  Machine-learning optimizer (Northwestern/MIT)
•  Data mover (Chicago, UW)
•  Query rewriter (Northwestern, UW)
•  Myria island (UW)
•  Spark island (MIT)

BigDAWG Research Program

• Novel Storage Managers (for islands to
integrate)

•  S-Store (MIT)
•  TileDB (MIT)
•  Tupleware (Brown)

• Novel User-interface systems (which call
the thin middle)

•  ScalaR/ForeCache (MIT)
•  SeeDB (MIT/UIUC)
•  VizDom (Brown)
•  Searchlight (Brown)

BigDAWG Stack

• All of this stuff
• Plus Postgres, Accumulo, SciDB
• Open Source
• Available on Github in a few months (as

soon as we make it reliable and usable)
•  In staged releases (Bulldog, Rotweiller,

Pit Bull)

So Why Not Just Use Hadoop?

• Map-Reduce is good for nothing
•  Is being effectively jettisoned from the Hadoop stack

• Systems built on top of HDFS (e.g. Impala)
can be be integrated into BigDAWG
islands

So Why Not Just Use Spark?

• Spark is not currently location
transparent

•  Matei is looking at this
•  I.e. making Spark an island

• Spark has limited scope (analytics)
•  No OLTP
•  No text

So Why Not Just Use Spark?

• Spark has serious architecture issues
•  Always a good idea to send the query to the data (push

all possible functionality into storage managers)
•  Not bring the data to the query (do queries in

middleware)
•  Spark does the latter – loses to SciDB by X20 on joins

• Spark supports only column
representation and row representation

•  Killed on analytics by an array store

The Big Kahuna

• BigDawg currently assumes:
•  The data “integration-ready” – i.e. is not a legacy

structure which needs curation

• I.e. appropriate for new applications not
Alastair’s RBS problem

Data Curation

• Ingest
• Clean (-99 means null)
• Transform (Euros to dollars)
• Schema integrate (bottom up or top

down)
• Entity consolidation (M.Stonebraker and

Mike Stonebraker are the same entity)

Typical Curation (e.g. Tamr)

• Does curation with a human assist when
necessary

• Using a push-based architecture
•  Data sources shoved through a workflow

The Big Kahuna

• Integrate BigDawg (pull-based
architecture) with curation

• Plus discovery and privacy
• Future focus of our ISTC

