
SCALE | SIMPLIFY | OPTIMIZE | EVOLVE

9/29/15 HPTS 2015 1

Ike Nassi
Ike.nassi@tidalscale.com

Advances in Virtualization In Support of
In-Memory Big Data Applications

9/29/15 HPTS 2015 2

What is the Problem We Solve?
Fast access to “big data”

• Faster access if data is “in memory”
• But often there’s too much data – can’t always fit it in memory
• Can’t always buy a bigger computer (with more memory)

So, the only alternative has been to “scale out”
• Generally requires new software or a software re-write ($$)
• Scale-out is not always easy

Solution is to create a single larger virtual machine
• Allows users to scale-up without $$ supercomputer HW costs
• No software changes required
• And, we’ll show you how well this works!

Status
Up and running for 11 months
Compatible with all software tested
Automated 24x7 test system
3 customer trials completed in the last 6 weeks (Analytics, Big Data, EDA)
Supporting Centos 6.5, 6.6, 6.7, RHEL, FreeBSD
Passing full suite of Linux Test Project tests (for servers)
Preparing RC-2
25 node cluster for dev, 3(+1) x 5 node clusters for customers & test
Not a research project any longer

9/29/15 HPTS 2015 3

Virtual Machines sharing a server

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual
Machine

Virtual
Machine

9/29/15 HPTS 2015 4

Physical
Machine

Traditional View of Virtualization

A Single Large Virtual Machine
running on multiple servers

(Inverse Virtualization)

9/29/15 HPTS 2015 5

Virtual Machine

Physical
Machine

Physical
Machine

Physical
Machine

Physical
Machine

Physical
Machine

Physical
Machine

Alternative: Provide Hardware Aggregation

Guest OS

Today’s Model
“Scale-out” TidalScale Model

Application

HW HW HW …

Hyper
Kernel

Hyper
Kernel

Hyper
Kernel

Database

Operating System

9/29/15 HPTS 2015 6

OS

HW

OS

HW

OS

HW

Application

DB DB

Query1 Query2 Query3

…

…
DB

Scale out vs. Scale “up and out”? Completely,
100%, bit-for-bit

unmodified

Scale up and Scale out
(The Best of Both)

9/29/15 HPTS 2015 7

Software Simplicity HW Cost

✔ ✔

9/29/15 HPTS 2015 8

Everything Just Works
Just a few examples of many…

9/29/15 HPTS 2015 9

Price/Performance at Scale (late 2014, list price)

No disks

Includes license

9/29/15 HPTS 2015 10

Performance Scales Up

Advantages:
1.  Highly scalable
2.  More memory & PCI bandwidth
3.  3.33 x cores
4.  40% cost

60 cores

200 cores

Recent Hardware Example

POC-2 HW
120 processors @ 3.4GHz
3.84 TB
20x500GB SSD
< $ 80K (with tax)

9/29/15 HPTS 2015 11

As currently booted:
POC-2 current guest vm
3.2 TB
64 processors @ 3.4GHz
2x500GB SSD (>2 in test)

Screenshots

9/29/15 HPTS 2015 12

3.2 TB DRAM

64 processors

9/29/15 HPTS 2015 13

45 years ago we figured out how to
virtualize memory using the WS locality.
Today, locality is applied ubiquitously
across our computing infrastructure.
TidalScale applies mobility & locality to
all primary resource types (processors,
memory, Ethernets, storage)
automatically & dynamically across
physical machines.

Working Sets*

* P.J. Denning

Nodes, Memory and Processors
•  The hyperkernels aggregate all the processors, all the memory, all the storage, all the

Ethernets (except for the private interconnect that we treat more as a system bus
than a network).

•  We treat these as virtual and mobile. The hyperkernels bind the virtual resources to
physical resources, on demand. We move pages, vcpu’s, interrupts, clocks, etc.

•  There is no master node and no shared state among instances of the hyperkernel.
Scheduling is purely distributed and peer-to-peer.

•  The hyperkernel uses hardware virtualization extensions; the guest OS uses the first
level page tables, the hyperkernels control the second level page tables.

•  Memory is strongly coherent. We keep multiple read only copies of pages across the
cluster, and do the normal invalidation when writes change page ownership.

•  The hyperkernel sits beneath the OS and above the hardware. The VM looks like
hardware to the OS and the hyperkernel does not need to know which OS or
applications are running.

9/29/15 HPTS 2015 14

When Does the HK Get Involved?
9/29/15 HPTS 2015 15

Exit

Application

Database
Operating System

HW HW HW …
Hyper
Kernel

Hyper
Kernel

Hyper
Kernel

HW

Hyper
Kernel

HW

Hyper
Kernel

Exits = Stalls
No exits = no overhead [in which case we run at machine speed]
The hyperkernel binds virtual processors to physical processors

Each exit is caused by an event that cannot be handled by the guest
e.g. remote interrupts, access to a remote I/O device, remote memory access, etc.

It’s trapped and analyzed; strategies are evaluated
For each exit type, there is a unique set of strategies with costs:

costs1 = w1•f1i1 + w2•f2i2 + … + wn•fnin

costs2 = w1•f1i1 + w2•f2i2 + … + wn•fnin

costselected = min(costs*) [migrate a vcpu, or move/copy page]

The hyperkernel keeps track of the updated state as we go along

9/29/15 HPTS 2015 16

9/29/15 HPTS 2015 17

•  3 query types across 100 Million rows
•  Test performed with 4 cores at 2200 MHz
•  TidalScale system was 2x96G

7,928	

494,560	

7,925	

373,413	

7,941	

382,117	

1,000	

10,000	

100,000	

1,000,000	

Bare	 metal	 128G	 TidalScale	 192G	

Ro
w
s	 p

er
	 se

co
nd

	

Simple	 equality	 ConjuncBon	 of	 simple	 predicates	 ConjuncBon	 of	 simple	 predicates	 and	 one	 disjuncBon	

TidalScale delivered
47x to 62x speedup

over HDD
Performance (late 2014)

Performance (always a work in progress)

Our goal is to test in-memory performance on the machine described
earlier: 5 nodes, 3.2TB, 64 processors, 2x 500GB SSD
TPC-H data by itself does not sufficiently exercise TS
So, we load up mysqld simultaneously with both TPC-H data and
customer data
Our test varies memory configuration and compares performance with
and without vCPU migration and/or page spillover

9/29/15 HPTS 2015 18

Experiment: Memory setup
Experiments

mysqld
memory
config

1 2 3

Memory SSD 400GB, no
migration

1 TB, with
migration

innodb cache 1 TB 0 400 GB 400 GB

mysqld temp
memory

1 TB/table
1.5 TB heap 0 0 600 GB

9/29/15 HPTS 2015 19

The experiment

i=tpch

echo `time sh -c "echo 'select count(C_CUSTKEY) from customer' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(P_PARTKEY) from part' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(N_NATIONKEY) from nation' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(R_REGIONKEY) from region' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(S_SUPPKEY) from supplier' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(PS_PARTKEY) from partsupp' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(O_ORDERKEY) from orders' | mysql -u tpch -ptpch $i"` &
echo `time sh -c "echo 'select count(L_ORDERKEY) from lineitem' | mysql -u tpch -ptpch $i"` &
wait

9/29/15 HPTS 2015 20

Customer + TPC-H (speedup)

9/29/15 HPTS 2015 21

0

2

4

6

8

10

12

run from SSD (~80GB)

run from 400GB allocated and
instantiated memory no vcpu
migration

1 TB allocated and instantiated with
vcpu migration

Analysis of the experiment
1.  Using larger memories gives us 3x – 9X performance speedup over already

fast SSDs
2.  Use your favorite factor to extrapolate to HDDs
3.  While we processed 400GB of data into cache, we, in fact, allocated an

additional 600GB (1TB - .4TB), so we had a lot of memory cache headroom
on the existing hardware for processing larger data sets

4.  The difference between experiment 2 and 3 is that you can now have
600GB of temporary tables in memory that can be used for subsequent
work without having to write the temporary results to disk.

5.  Migration did not appreciably slow down the elapsed time between
experiment 2 and experiment 3.

9/29/15 HPTS 2015 22

Difficulty: How to evaluate performance

Try before you buy: currently we try to test real apps on real data on
systems we host
If it doesn’t crash, and it works with all tested software, then what?
Scalability based on data size?

•  Linearity? Who knows? It’s algorithm dependent

Fix the data size, scale the diameter?
•  Better

Best might be to have constant data size, select deterministic tests,
vary cluster diameter.
I’m open to other suggestions!

9/29/15 HPTS 2015 23

Lessons Learned - I
Keeping more data in memory reduces paging overhead

•  Duh… but not so easy
•  Gentle waves are better than “tidalwaves”
•  Traditional HW has one memory wall - we have “multiple walls”

Hyperkernel minimizes or eliminates shared state
•  Each node looks out for itself – increased recovery for mental breakdowns

Adhere to the prime directive:
•  Look like hardware
•  Never change the guest OS
•  Never change the app

Intuition about the necessary speed of the interconnect is generally wrong. We
don’t saturate the interconnect.

9/29/15 HPTS 2015 24

Lessons Learned - II
When things go wrong, system recovers

•  Not always what you want when in development phase!
Train the system, rather than tune the system
Synchronizing distributed time is hard
Because we don’t change the guest or the apps, our users don’t risk breaking
them
It’s hard to introduce hyperkernel bugs when we’re not modifying code
Scale the computer to the problem, not the converse
Don’t necessarily believe people who say

• “It can’t be done!” –or-
• “It’s been tried before, and it doesn’t work”

9/29/15 HPTS 2015 25

Summary
Scale:

•  Aggregates compute resources for large scale in-memory analysis and decision support
•  Scales like a cluster using commodity hardware, at linear cost
•  Allows customers to grow gradually as their needs develop

Simplify:
•  Dramatically simplifies application development: no changes!
•  No need to distribute data or work across servers
•  Existing applications run as a single instance, without modification, as if on a highly flexible

mainframe
Optimize:

•  Automatic dynamic hierarchical resource optimization
Evolve:

•  Applicable to modern and emerging microprocessors, memories, interconnects, persistent
storage & networks

9/29/15 HPTS 2015 26

SCALE | SIMPLIFY | OPTIMIZE | EVOLVE

9/29/15 HPTS 2015 27

Contact: Ike Nassi
ike.nassi@tidalscale.com

