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job hello_world = {

  runtime = { cell = 'ic' }              // Cell (cluster) to run in

  binary = '.../hello_world_webserver'   // Program to run

  args = { port = '%port%' }             // Command line parameters

  requirements = {     // Resource requirements (optional)

    ram = 100M

    disk = 100M

    cpu = 0.1

  }

  replicas = 5         // Number of tasks

}
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task-eviction rates 
and causes
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A 2000-machine service will 
have >10 task exits per day
This is not a problem: it's normal

  Failures



 

Advanced bin-
packing 
algorithms

Experimental placement 
of production VM 
workload, July 2014

  Efficiency
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tasks per machine

Multiple 
applications 
per machine
CPI^2 paper, 
EuroSys 2013

  Efficiency



 15

Sharing clusters 
between 
prod/batch helps

Segregating them would need 
more machines
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WasteSharing clusters 
between 
prod/batch helps

Segregating them would need 
more machines

15 production cells from a 
larger pool, omitting small 
ones (<5000 machines)
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  Efficiency

Smaller cells 
would need more 
machines



 

Bucketing to next-
largest power of 2 
would need more 
machines

prod only, 
starting from 0.5 cores, 0.5GiB

19

  Efficiency



 

There are no 
obvious resource 
bucket sizes

cf. cloud VMs
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nice round 
numbers

gaming 
the 
system
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potentially reusable 
resources

Resource reclamation
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  Efficiency

time

limit: amount of resource 
requested

usage: actual resource 
consumption

reservation: estimate of 
future usage



 

Resource reclamation could be more aggressive

Nov/Dec 2013
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Resource reclamation could be more aggressive

Nov/Dec 2013
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Turning off 
resource 
reclamation
would need 
more 
machines

  Efficiency Resource reclamation
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κυβερνήτης:  pilot 
or helmsman of a ship

http://kubernetes.io 

   Kubernetes



 

   Kubernetes

Direct Borg analogues:

● Borg containers => Docker containers
● alloc (task group) => pod (container group)
● Borglet => Kubelet
● persistent, declarative specs
● reconciliation loops



 

New / improved:

● labels + label queries
● service abstraction
● composable microservices
● IP per pod

   Kubernetes



 

johnwilkes@google.com

http://kubernetes.io
http://goo.gl/1C4nuo (Borg paper)
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Observations:

1. Resiliency is achieved only by 
ruthless attention to detail
a. ubiquitous software fault tolerance
b. persistent, declarative specs

2. We get efficiency by:
a. sharing resources
b. reclaiming unused allocations

3. Containers make users more 
productive


