

Cluster management
at Google with Borg -
coping with scale
2015-09 HPTS

john wilkes / johnwilkes@google.com
Principal Software Engineer

Derived from EuroSys'15 paper (http://goo.gl/1C4nuo)

http://goo.gl/1C4nuo

Cluster management

at Google with Borg -
coping with scale
2015-09 HPTS

john wilkes / johnwilkes@google.com
Principal Software Engineer

Derived from EuroSys'15 paper (http://goo.gl/1C4nuo)

the system we
internally call

http://goo.gl/1C4nuo

Borg contributors
Core: Abhishek Rai, Abhishek Verma, Andy Zheng, Ashwin Kumar, Ben Smith, Beng-Hong Lim, Bin Zhang, Bolu Szewczyk, Brad
Strand, Brian Budge, Brian Grant, Brian Wickman, Chengdu Huang, Chris Colohan, Cliff Stein, Cynthia Wong, Daniel Smith, Dave
Bort, David Oppenheimer, David Wall, Divyesh Shah, Dawn Chen, Eric Haugen, Eric Tune, Eric Wilcox, Ethan Solomita, Gaurav
Dhiman, Geeta Chaudhry, Greg Roelofs, Grzegorz Czajkowski, James Eady, Jarek Kusmierek, Jaroslaw Przybylowicz, Jason Hickey,
Javier Kohen, Jeff Dean, Jeremy Dion, Jeremy Lau, Jerzy Szczepkowski, Joe Hellerstein, John Wilkes, Jonathan Wilson, Joso Eterovic,
Jutta Degener, Kai Backman, Kamil Yurtsever, Ken Ashcraft, Kenji Kaneda, Kevan Miller, Kurt Steinkraus, Leo Landa, Liza Fireman,
Madhukar Korupolu, Maricia Scott, Mark Logan, Mark Vandevoorde, Markus Gutschke, Matt Sparks, Maya Haridasan, Michael Abd-
El-Malek, Michael Kenniston, Ming-Yee Iu, Monika Henzinger, Mukesh Kumar, Nate Calvin, Onufry Wojtaszczyk, Olcan Sercinoglu,
Paul Menage, Patrick Johnson, Pavanish Nirula, Pedro Valenzuela, Percy Liang, Piotr Witusowski, Praveen Kallakuri, Rafal
Sokolowski, Rajmohan Rajaraman, Richard Gooch, Rishi Gosalia, Rob Radez, Robert Hagmann, Robert Jardine, Robert Kennedy,
Rohit Jnagal, Roy Bryant, Rune Dahl, Scott Garriss, Scott Johnson, Sean Howarth, Sheena Madan, Smeeta Jalan, Stan Chesnutt,
Temo Arobelidze, Tim Hockin, Todd Wang, Tomasz Blaszczyk, Tomasz Wozniak, Tomek Zielonka, Victor Marmol, Vish Kannan, Vrigo
Gokhale, Walfredo Cirne, Walt Drummond, Weiran Liu, Xiaopan Zhang, Xiao Zhang, Ye Zhao, and Zohaib Maya.
SRE: Adam Rogoyski, Alex Milivojevic, Anil Das, Cody Smith, Cooper Bethea, Folke Behrens, Matt Liggett, James Sanford, John
Millikin, Matt Brown, Miki Habryn, Peter Dahl, Robert van Gent, Seppi Wilhelmi, Seth Hettich, Torsten Marek, and Viraj Alankar.
BCL and borgcfg: Marcel van Lohuizen and Robert Griesemer.
Reviewers: Christos Kozyrakis, Eric Brewer, Malte Schwarzkopf, and Tom Rodeheffer.

http://googleasiapacific.blogspot.se/2015/06/growing-our-data-center-in-singapore.html

http://googleasiapacific.blogspot.se/2015/06/growing-our-data-center-in-singapore.html
http://googleasiapacific.blogspot.se/2015/06/growing-our-data-center-in-singapore.html

 Image by Connie Zhou

job hello_world = {

 runtime = { cell = 'ic' } // Cell (cluster) to run in

 binary = '.../hello_world_webserver' // Program to run

 args = { port = '%port%' } // Command line parameters

 requirements = { // Resource requirements (optional)

 ram = 100M

 disk = 100M

 cpu = 0.1

 }

 replicas = 5 // Number of tasks

}

10000

 User view

 User view

What just
happened?

web browsers

BorgMaster

link shard

UI shardBorgMaster

link shard

UI shardBorgMaster

link shard

UI shardBorgMaster

link shard

UI shard

Cell

Scheduler

borgcfg web browsers

scheduler

Borglet Borglet Borglet Borglet

BorgMaster

link shard

read/UI
shard

Config
file

persistent store
(Paxos)

Binary

 User view

Hello
world!

Hello
world!

Hello
world!

Hello
world!Hello

world! Hello
world! Hello

world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world! Hello

world!

Hello
world!

Hello
world!

Hello
world!

Image by Connie Zhou

 User view

Hello
world!

Hello
world!

Hello
world! Hello

world!

Hello
world! Hello

world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world! Hello

world!

Hello
world! Hello

world!

Hello
world!

Hello
world!

Hello
world!

Hello
world!

Hello
world! Hello

world!

Hello
world! Hello

world!

Hello
world!

Hello
world!

 User view

task-eviction rates
and causes

11

 Failures

 Images by Connie Zhou

A 2000-machine service will
have >10 task exits per day
This is not a problem: it's normal

 Failures

Advanced bin-
packing
algorithms

Experimental placement
of production VM
workload, July 2014

 Efficiency

stranded resourcesavailable resources
one

machine

tasks per machine

Multiple
applications
per machine
CPI^2 paper,
EuroSys 2013

 Efficiency

 15

Sharing clusters
between
prod/batch helps

Segregating them would need
more machines

 Efficiency
shared cell

(original)

shared cell
(compacted)

non-prod load
(compacted)

prod-only load
(compacted)

machines

machines

16

Sharing clusters
between
prod/batch helps

Segregating them would need
more machines

 Efficiency
shared cell

(original)

shared cell
(compacted)

non-prod load
(compacted)

prod-only load
(compacted)

overhead

WasteSharing clusters
between
prod/batch helps

Segregating them would need
more machines

15 production cells from a
larger pool, omitting small
ones (<5000 machines)

17

 Efficiency

 18

 Efficiency

Smaller cells
would need more
machines

Bucketing to next-
largest power of 2
would need more
machines

prod only,
starting from 0.5 cores, 0.5GiB

19

 Efficiency

There are no
obvious resource
bucket sizes

cf. cloud VMs

20

nice round
numbers

gaming
the
system

 Efficiency

potentially reusable
resources

Resource reclamation

21

 Efficiency

time

limit: amount of resource
requested

usage: actual resource
consumption

reservation: estimate of
future usage

Resource reclamation could be more aggressive

Nov/Dec 2013

22

 Efficiency

Resource reclamation could be more aggressive

Nov/Dec 2013

23

 Efficiency

Turning off
resource
reclamation
would need
more
machines

 Efficiency Resource reclamation

web browsers

BorgMaster

link shard

UI
shardBorgMaster

link shard

UI
shardBorgMaster

link shard

UI
shardBorgMaster

link shard

UI
shard

Cell

Scheduler

borgcfg web browsers

scheduler

Borglet Borglet Borglet Borglet

BorgMaster

link shard

read/UI
shard

Config
file

persistent
store (Paxos)

A few other moving parts

app

agent

master
job
config

A few other moving parts

app

agent

master

system config

monitoring

security accounting/planning

binaries + data
distribution

job
config

storage

Diagram from an original by Cody Smith.

A few other moving parts

app

agent

master

system config

monitoring

security accounting/billing

binaries + data
distribution

job
config

storage

A few other moving parts

Diagram from an original by Cody Smith.

κυβερνήτης: pilot
or helmsman of a ship

http://kubernetes.io

 Kubernetes

 Kubernetes

Direct Borg analogues:

● Borg containers => Docker containers
● alloc (task group) => pod (container group)
● Borglet => Kubelet
● persistent, declarative specs
● reconciliation loops

New / improved:

● labels + label queries
● service abstraction
● composable microservices
● IP per pod

 Kubernetes

johnwilkes@google.com

http://kubernetes.io
http://goo.gl/1C4nuo (Borg paper)

Images by Connie Zhou

Observations:

1. Resiliency is achieved only by
ruthless attention to detail
a. ubiquitous software fault tolerance
b. persistent, declarative specs

2. We get efficiency by:
a. sharing resources
b. reclaiming unused allocations

3. Containers make users more
productive

