
Wildfire:			
Fast	HTAP	over	loosely	coupled	Nodes

R.	Barber,	C.	Garcia-Arellano,	R.	Grosman,	V.	Raman,	R.	Sidle,	M.	Spilchen,	A.	Storm,	Y.	Tian,	
P.	Tozun,	D.	Zilio,	M.	Huras,	C.	Mohan,	F.	Ozcan,	H.	Pirahesh

IBM	Research,			IBM	Analytics	

Apps	emit	tons	of	events

Today’s	DBMS	is	too	slow	for	this	firehose
And	too	costly	(storage)
• Events	happen	in	the	real-world
– not	tied	to	transaction	commit

• Events	always	have	asterisks
• Concurrent	events
• Event	ordering	done	later	

Place Order
Withdraw

Cash

wearablesMobile
commerceIOT

wearablesMobile
commerceIOT

Today’s	DBMS	is	too	slow	for	this	firehose
And	too	costly	(storage)
• Events	happen	in	the	real-world
– not	tied	to	transaction	commit

• Events	always	have	asterisks
• Concurrent	events
• Event	ordering	done	later

Place Order
Withdraw

Cash

Events	need	
Availability	and	Consistency

• Multi-master,	
disconnected	operation
• Today:	Consistency	achieved	via	
application	logic
• Compensation,	apologies,	
coupons,	…
• Weak	atomicity	and	durability

• Growing	pressure	for	DBMS	to	give
both	Availability	and	Consistency
• Due	to	globalization
• e.g.,	credit	cards

Apps	emit	tons	of	events

wearablesMobile
commerceIOT

Today’s	DBMS	is	too	slow	for	this	firehose
And	too	costly	(storage)
• Events	happen	in	the	real-world
– not	tied	to	transaction	commit

• Events	always	have	asterisks
• Concurrent	events
• Event	ordering	done	later

Place Order
Withdraw

Cash

• Multi-master,	
disconnected	operation
• Today:	Consistency	achieved	via	
application	logic
• Compensation,	apologies,	
coupons,	…
• Weak	atomicity	and	durability

• Growing	pressure	for	DBMS	to	give
both	Availability	and	Consistency
• Due	to	globalization
• e.g.,	credit	cards

Apps	emit	tons	of	events

• Mobile	commerce
• Retail:		inventory	analysis,	shipping	time	
analysis
• Securities	trading:	global	risk	analysis

• Margin	rules

• Complex	analysis	within	transaction
• Touching	lots	of	rows
• Handled	poorly	by	both	2PL	and	OCC

• Analysis	involves	far	more	than	SQL
• Graph,	machine	learning,	…

Events	need	
Avail.	and	Consistency

Events	need	HTAP

wearablesMobile
commerceIOT

Today’s	DBMS	is	too	slow	for	this	firehose
And	too	costly	(storage)
• Events	happen	in	the	real-world
– not	tied	to	transaction	commit

• Events	always	have	asterisks
• Concurrent	events
• Event	ordering	done	later

• Animation	– WF	targets	1M	
xsacs/s/node	(run	at	bandwidth	of	
durable	medium	/	network)

Place Order
Withdraw

Cash

• Multi-master,	
disconnected	operation
• Today:	Consistency	achieved	via	
application	logic
• Compensation,	apologies,	
coupons,	…
• Weak	atomicity	and	durability

• Growing	pressure	for	DBMS	to	give
both	Availability	and	Consistency
• Due	to	globalization
• e.g.,	credit	cards

Apps	emit	tons	of	events

• Mobile	commerce
• Retail:		inventory	analysis,	shipping	time	
analysis
• Securities	trading:	global	risk	analysis
• Complex	analysis	within	transaction
• Handled	poorly	by	both	2PL	and	OCC

Events	need	
Avail.	and	Consistency

Events	need	HTAP

WildFire	Goals
Peak	transaction	speed
• Inserts/updates:	keep	up	with	bandwidth	of	
durability	mechanism		(today:	1e6/s/node)
• Full	indexing:	keep	up	w.	random	access	speed	
(hash	tables	+	atomics	on	SSD	à NVRAM)
• Fully	versioned

Multi-Master		and	ACID
• Commit	is	local	(no	consensus)
• High-value	events	can	wait	for	
conflict	resolution	(after	commit)

HTAP
• In-transaction	analytics
• Analytics	over	snapshot
(1s	or	10mins)
• Higher	throughput	and	

more	economical	scaleout

Open	Format
• All	data	groomed	to	Parquet	format
on	shared	storage
• Directly	accessible	by	analytics	platforms
(e.g.,	Spark)

spark	
executor	

analytics	
can	tolerate	slightly	stale	data
requires	most	recent	data

high-volume
transactions

Applications

shared	file	system

spark	
executor	

spark	
executor	

spark	
executor	

spark	
executor	

spark	
executor	

spark	
executor	

spark	
executor	

spark	
executor	

wildfire	engine wildfire	enginewildfire	engine wildfire	engine
SSD/NVM SSD/NVM

Wildfire architecture

OLTP
nodes

HTAP	(see	latest:	snapshot	isolation)
1-sec	old	snapshot
Optimized	snapshot	(10	mins	stale)

Analytics	nodes

Sn
ap
sh
ot
	

Lo
ok
up

s

BI

M
L,
	e
tc

(S
pa
rk
)

groompostgroom

LIVE	zone
(~1sec)

GROOMED	zone
(~10	mins)

ORGANIZED	zone
(PBs	of	data)

Data	lifecycle

TIME

Live	Zone:			Thin	Commit
per	xsac	logs
(uncommitted)

log	(committed)

……

What	happens	at	Commit
1.	append	xsac	deltas	(Ins/Del/Upd)	to	common	log;	replicated	in	background

-- everything	is	an	upsert:		key,	(values)*
-- no	synchronous	conflict	resolution

2.	flush	to	local	SSD
3.	high-value	xsacs	wait	for	grooming	(to	timestamp	the	xsac	and	resolve	conflicts)

-- can	time-out

Driven	by	speed
• No	tracking	down	prior	versions
• No	indexing
• No	waiting	for	consensus	with	other	nodes

replicate
xsacs

xsacs

multiple	versions	
for	same	key	can	coexist
-- queries	pick	right	version	based
on	their	xsac	snapshot

Grooming	(Live	à Groomed	zone)
per	xsac	logs
(uncommitted)

log	(committed)

……

• Runs	distributed	consensus	to	timestamp	the	xsacs	(pick	serialization	order)
• take	quorum-visible	deltas,	form	data	blocks,	and	publish	to	shared	file	system
• Add	beginTS field	to	each	row:		(groomTS |	localTime |	nodeID)		

• Conflicts	and	constraints	resolved	lazily	(including	logical	rollback)
• No	assumption	about

• Clock	synchronization
• Partitioning	/	failures	(multiple	groomers	possible)

• Details	offline

replicate
xsacs

xsacs

groom

Partitions

Postgrooming
Organize	data	so	that	Queries	can	run	fast
(and	deal	with	immutable	storage!)
• Resolve	conflicts	(and	stamp	xsacs	with	resolution/rollback	status)
• Compute	endTime and	prevRID
• Partition	data	(along	multiple	dimensions)
• Maintain	primary	indexes,	secondary	indexes,	and	synopses
Continual	refinement	– done	in	background
- big	challenge	is	supporting	concurrent	groom	and	queries

ORGANIZED	Zone GROOMED	Zone

CURRENT

HISTORY

Partitions

Partitions

LIVE	Zone

Groomed
Block Log

Postgrooming:	index	maintenance

11

• Primary:			maps	key	hash	à RID	[+	include	columns]
• Secondary:	maps	key	hash	à pkey [+	TSN	hint]

• Works	in	background	to	add	groomed	records	to	indexes
• Index	is	variant	of	LSM	tree

• Merging	in	background
• Lives	in	multiple	tiers:	memory,	SSD,	shared	storage,	and	purged

• Multiple	versions	of	each	key	live	in	index

Postgrooming:	computing	endTS
• At	groom,	each	row	has	a	beginTS - but	no	endTS
• Without	postgrooming,	every	table	scan	must	group-by	on	primary	key
• to	pick	appropriate	version

• Postgroom picks	groomed	rows	and	assigns	endTS
1. Massive	set	intersection:				

PrimaryKeyIndex (keyàlatestRID) with	RecentlyGroomed
prior	versions	can	be	arbitrarily	far	back!

2. Squeeze	in	endTS into	data	blocks	(with	concurrent	readers!)

Postgrooming:	resolving	transaction	status	(single-shard)
• ReadSet tracking	is		pessimistic,	especially	with	complex	queries

• Eg:	currentInventoryß select	sum(..)	from	ledger	where	productId=_		
if	(currentInventory >	2)					insert	into	ledger	values	(-1,	productId,	…);	#	buy	one	item						

• Constraint-based	resolution
• Transaction	Type1:	{	read*	;	fullySpecifiedWrite*;	If	(trigger)	{	rollback	or	other	action	}}

• ATM	withdrawal,	Securities	trading		(higher-granularity	checks)
• Transaction	Type2:	{	read*		;	if	(trigger)	{	fullySpecifiedWrite*	}	}

• Submit	order
• Trigger	Condition	is	checked	as	a	continuous	query	(incrementally	feed	new	deltas)

• ReadSet-based	resolution
• {Read*;	write*;	if	(trigger)	{rollback	or	other	action}}
• (trigger||	readset changed	since	query	snapshot)	is	checked	as	a	continuous	query
• More	general	transactions	(eg RWRW)	hard	to	check	incrementally

• fall	back	to	traditional	readset tracking

Postgrooming:	resolving	transaction	status	(multi-shard)
• Each	transaction	can	produce	multiple	deltas,	spread	across	groom	cycles
• No	2PC
• Each	transaction	stamped	with	its	delta	count
• Resolve	only	considers	a	delta	if	all	deltas	of	that	transaction	are	available

Concluding	Remarks

• OLTP/OLAP	separation	is	going	away

• DBMS	needs	to	be	much	faster,		and	
stop	controlling	the	data	format,	and	
stop	controlling	the	data	storage,	and
stop	controlling	the	kinds	of	analytics
• DBMS	can	be	the	manager	for	event	data	à VVLDB

Thank	you

BACKUP

