
Optimizer Challenges in a Multi-Tenant World

pselinger@salesforce.come

• Pat Selinger

Classic Query Optimizer Concepts & Assumptions

Relational Model

Cost = X * CPU + Y * I/O

Cardinality

Selectivity

Clustering and other storage
methods

Table access methods
• Indexes (clustering and non)
• Full scan

Join order

Join methods
•Hash
•Merge
•Nested loop
•…

Statistics kept per table and per
index

Classic Example for Single Tenant

Index and data pages with unclustered index st_ix on orders.st
SELECT sales_total st, …
FROM orders
WHERE st > 100000

Choose Min(cost(table_scan(orders)),
((max(st)-100000) / (max(st)-min(st))) * cost(index_scan(st_ix))

Selinger et al., Access path selection in a relational database system, SIGMOD 1979

What is Multi-Tenancy According to Pat?

Different enterprises sharing some or all of a cloud-based software stack

Enterprises
MAXI

MIDI

MINI

Shared HW, SW code, SW stack, SW stack + schema…

Application

DB Engine

Provider Perspective

Multi-Tenancy Assumptions

Shared schema: Tables shared between (lots of)
enterprises

Orders Table
MAXI

MIDI

MINI

Perspective of a cloud-based solution provider

Challenges of Multi-Tenancy

Table and index statistics are shared between enterprises, useless

Same DB request needs different plans, depending on enterprise

Are the same join methods useful?

Can materialized views (and queries and statistics on them) help?

Can “hints” or plan constraints help?

What does clustering mean in this context?

Opportunities for tuning DB requests depend on what the
solution provider can change

Application DB Engine Result
NO NO Out of luck
YES NO Case APP-only
YES YES Case APP-DB

APP-only Challenges…

DB statistics are table level, not enterprise within table
Example:
SELECT …
FROM orders
WHERE eid = _____
AND sales_total > 100000

Issues:
•N values for Enterprise ID does not imply eid selectivity is 1/N, n-
tile, etc.
•Disparity in # orders for MAXI vs MINI
•Correlation between sales_total and eid

APP-only Challenges, cont’d

Static SQL (most efficient) doesn’t vary between MAXI and MINI

Dynamic SQL still doesn’t have better DB statistics for a given eid
value

“Learning optimizer” window inaccurate at predicting next eid value
and best plan for that eid value, especially when millions of eids

Possible solutions:
• Materialized Views for each enterprise, but there may be millions –

modify the schema each time you add an enterprise??
• Materialized Views for just the MAXIs, but app semantics

may not permit it

APP-only possible solutions, cont’d

RunRunR

Check
user
visibilityCheck
filter
selectivity

Run Pre-Queries

Write query
based on results

of pre-queries

Execute
immediate

From: Weissman, C. D. and Bobrowski, S. (2009). The design of the force.com multi-tenant
internet application development platform. In Proceedings of the 35th SIGMOD 2009

Application executes 3 stages for a request

Possible pre-queries and generated query

How many rows in each table for
this eid? (already cached?)

What % of those rows can the
current user view?

What’s the selectivity of each
predicate within this eid?

What join methods are best for
this query?

Run limit queries to determine
correlations, etc.

Select … from … where …
using HINTs or stored EXPLAIN
plan to exploit
• index on specific predicate

on T1,
• Merge join (T1 merge join

T2) as the outer
with (T3 merge join sort(T4))
as the inner

Invention required…

We can use all the techniques from APP-only case plus more

How specific to a given application(s) should/could a DB engine be?

Case APP-DB
“If I had an optimizer…
I’d optimize in the morning,
I’d optimize in the evening,
all over this land …”

Challenges and Possible Solutions for APP-DB

Challenges for APP-DB case Possible APP-DB Solutions

DB Statistics are Table Level 1. Build in DB knowledge
of Enterprise_Key,
similar to Primary Key;
track in optimizer and
use 2. below

2. Per Enterprise statistics
per table

Challenges and Possible Solutions for APP-DB

Challenges for APP-DB case Possible APP-DB Solutions

Full Table scans NEVER useful 1. Access method support
(e.g. index) for access by
specific Enterprise_Key,
similar to Primary Key;
leverage in optimizer, and

2. Use per Enterprise statistics
per table

Challenges and Possible Solutions for APP-DB
Challenges for APP-DB
case

Possible APP-DB Solutions

Static SQL (most efficient)
doesn’t vary between
MAXI and MINI

1. Adopt pre-queries in APP and
construct different
queries/hints depending on
enterprise statistics, reverting
to dynamic SQL

2. Extend optimizer to create
choice of different query
plans, selected at runtime.
E.g. MINI plan, MIDI plan,
MAXI plan.

Challenges and Possible Solutions for APP-DB

Challenges for APP-DB
case

Possible APP-DB Solutions

“Learning optimizer”
window is enterprise-
agnostic

1. Create enterprise-aware
learning optimizer,
determining best plans per
enterprise per query, and
possibly per user/role

2. Store and leverage these,
depending on enterprise
and user/role

Summary and further thoughts

Multi-tenant query optimization is a vision in progress

Are there new table access methods or join methods whose cost is
independent of enterprise size?

Many possible solutions easier or only possible if APP is static and known to
DB engine developer

Lots of classic ideas can be adapted to multi-tenancy

Many possible solutions work well for some queries but not others, e.g. works
for single table request but not 11-way joins

