
Mind Your State for
Your State of Mind
The Evolutions of Computation and Storage
Lead to Interesting Challenges…

Pat
Helland

HPTS Workshop
October 9th, 2017

These Are My
Personal Observations

about Trends in the
Industry

Examples and suggestions are not
necessarily related to Salesforce.

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

2

Trends in Storage and Computing
• Storage has evolved

– Used to be direct attached only
– Shared appliances (e.g. SAN)
– Storage clusters contained in a network
– REST APIs over microservices

• Computing has evolved
– Single process (Mainframe Region)
– Multiple processes in same server
– RPC across a tiny cluster
– Services & SOA

 (Service Oriented Architecture)
– Microservices with little or no state

•  Computing’s use of storage has
evolved
– Direct File I/O

• Use careful replacement for
recoverability

–  Transactions
• Implemented careful replacement for the
app

• Later, SANs implemented careful
replacement

• Stateful 2-tier and N-tier transactions
– Key-Value

• Typically, atomic per-key updates
– REST PUTs

• Invokes the App code of the resource…
• Who knows what THAT does to affect
state?

3

Careful Replacement Variations:
1)  A write may trash the previous value… Write elsewhere

first
2)  A client crash may interrupt a sequence of writes… plan

carefully!

Challenges in Modern Microservice-based
Apps

•  Nowadays, microservices power many scalable apps
–  Pools of equivalent services
–  Incoming requests are load-balanced across the pool

• Microservices must support many operational needs:
–  Health mediated deploy (canaries)
–  Rolling upgrades (sensitive to fault zones)
–  Fault tolerance

•  Durable state is usually not kept in microservices
–  Can’t effectively update the state across all the services

•  Especially when they are coming and going willy-nilly
–  Typically latest state is kept elsewhere and versions are cached
–  Sometimes, read-through requests to durable state

access information that is NOT in microservices

4

Page
Rendering
Componen

ts

Aggregato
r

Services

Servic
es

Dynamo
Instances

Amaz
on
S3

Other Datastores

Request
Routing

Request
Routing

…

Client
Requests

Service-oriented architecture of Amazon’s
platform

From Dynamo: Amazon’s Highly Available Key-value
Store

--- SOSP 2007

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

5

•  Durable State: Stuff that gets remembered across requests and persists across
failures
–  What is it?

•  Database data, filesystem files, key-values, caches
–  How is it updated?

•  Single updates, transactions, and/or distributed transactions
•  Careful replacement
•  Messaging semantics

–  Can you read your writes consistently?
•  Weakly consistent stores and caching each make “read your writes” a challenge

•  Session State: Stuff that gets remembered across requests in a session but not across
failures
–  Session state exists within the endpoints associated with the session

•  Multi-operation transactions are a form of session state
–  Session state is hard to do when the session smears across services

•  Different Microservices in the pool may service later requests
•  Typically session state is kept in a service instance making it hard to move

Durable State and Session State

6

A X

Write X in
A

App-B App-A

Session State Lives
on Each Side of the

Session

Files

Data on the Inside vs Data on the Outside
Redux

• Data on the Inside
–  Classic transactional relational data
–  Tables, rows, columns ! values within cells!
–  Lives at one place (the DB) and at one time (the TX)

• Data on the Outside
–  Messages, files, events, key-value-pairs
–  Unlocked data not stored in a classic database
–  Identity and (optional) versioning for each item

• Outside Data is immutable (but may be versioned)
–  Each file/event/message/key has a unique identifier
–  The ID may be a URI, a key, or something else

•  It may be implicit on a session
•  It may be implicit within the environment

7

… … … …

SQ
L

Message
s Events

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

8

V
2

File
1

File
1

Careful Replacement
•  Used to be: disks might trash a block during a write

–  WRITE: Old-Value ! Unreadable-Trash ! New-Value
–  Power failures or other interruptions may destroy the old contents

•  Careful Replacement for Single Disk Block Writes
–  Write the new value into some other place (e.g., another parallel file)
–  Only after the new value is safe, overwrite the old place

•  Write the tail of the log carefully onto mirrored disks…

•  Careful Replacement for Record Writes
–  Update to records in pre-SQL databases needed careful ordering
–  In many cases, an update to one record (say Record-X) before

updating Record-Y allows the application to recover after failure

9

V
1
V
1

File
1

File
2

V
2
V
2

V
1

File
1

V
1 Record-
X

V
1 Record-
Y

V
2 Record-
X

V
1 Record-
Y

Can
Recover

After
Crash

V
1 Record-
X

V
2 Record-
Y

Cannot
Recover

After
Crash

Example: Application Queue

Using a record as an entry in a work queue combined
with idempotent work will yield a successful restart.

Transactions and Careful Replacement
• Transactions bundle and solve careful record replacement

–  Multiple application records may be updated in a single transaction
–  The database system ensured the record updates were atomic

• Databases handle challenges with careful storage replacement
–  As the database implemented transactions, it was aware of the needs of storage
–  Writes to storage (implementing the database) used careful replacement
–  Distributed transactions handled work across a small number of intimate database

servers

• Work across time (i.e. workflow) needs careful transactional replacement
–  While a set of records was atomic, work across time requires careful replacement
–  Failures, restarts, and new work can advance the state of the application TX by TX

• Work across space (i.e. cross-boundary) needs careful transactional
replacement
–  Work across space necessitates work across time, TX by TX
–  This leads us to Messaging Semantics…

10

"It's Déjà Vu
All Over
Again"

-- Yogi Berra

•  Transactional messaging is pretty cool
–  A transaction may include the desire to send a message

•  Transactional updates happen atomically with desire to send
–  A transaction may atomically consume an incoming message

•  Message consumption is atomic with the work of the message

•  Exactly once semantics can be supported
–  A committed desire to send, causing one or more sends

(retry until acknowledged)
–  The message must be processed at the receiver at-most-once

(idempotent processing)

Messaging Semantics

11

DCBA

Writes to
Data

Transaction T2

At
Least
Once

Deliver
y

At Most
Once

Processing

Challenges with At-Most-
Once

Remember the Messages
You’ve Processed

Don’t Process the Message
Twice

How Do You Remember
Messages?

Gotta Detect Duplicates

How Long Do You
Remember?

Does the Destination Split?
Move?

W X Y Z

Writes to
Data

Transaction T1

Used to Be, Back in the
Day…

If You Wrote Something,
You Could Read It…

Read Your Writes? Yes? No?
•  Linearizable stores offer ”Read your writes”

–  Even as the store scales, as soon as you’ve written to the store, you can read the latest
value

–  Linearizable ! Occasionally delay for a LONG time when a server is sick or dead
•  Non-Linearizable stores do NOT offer “Read your writes”

–  Non-Linearizable ! No guarantee that a write will update all the replicas ! Might read an
old value

–  Reading and writing have a very consistent SLA… Skip over sick / dead servers

•  Cached data offers scalable read throughput with great SLAs
–  Key-value pairs live in many computers and are updated with versions
–  Reads hit one of the computers and return one of the versions

12

Fast
Predictable

Reads?

Fast
Predictable

Writes?

Read Your
Writes?

Linearizable Store NO NO YES

Non-Linearizable
Store YES YES NO

Scalable Cache YES w/Scale NO NO

Different Stores
for Different

Uses

OK to Stall on
Write?

OK to Return
a Stale Version??

Can’t Have
Everything!!!

OK to Stall on
Read?

See “Linearizability versus
Serializability” by Peter

Bailis

Immutability: A Solid Rock to Stand On
• Sometimes, we can store immutable things

–  If you look for it, many application patterns can create immutable items
–  128-bit UUID is an example of an identity that won’t collide with other stuff…

• Storing immutable things can change the behavior of a store
–  You never get an old version of the thing because each old version has its own unique

ID

13

Fast
Predictable

Reads?

Fast
Predictable

Writes?

Read Your
Writes?

Linearizable Store NO NO YES

Non-Linearizable
Store YES YES NO

Scalable Cache YES w/Scale NO NO

Read the
Correct (Only)

Version of
Immutable

Data? YES

YES

YES

Non-Linearizable gives fast & predictable WRITEs and
READs

Scalable Cache gives LOTs of fast & predictable
READs

Immutability
Changes

Everything!!!
!

Interesting Options
for Applications
with Immutable

Data

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

14

Same Process ! Different Process
•  Applications and databases used to run in the same process

–  A library call from the app to the database was easy
–  Sometimes, multiple applications were loaded together

•  Later, the DB and Apps were split apart connected by a session
–  The session had session state

•  User
•  Transaction in flight
•  Application being run
•  Cursor state and return values

–  Each process in the session had information about
the session (i.e. session state)

•  Later still, the app and database moved
to different servers
–  Sessions and session state made that work…

15

Multiple
Applications

Coexisted in the
Same Process

Space.

App
-A

App
-B

App
-C

DB

DB

App-A

App-B

App-C Session State Lives
on Each Side of the

Session

Distribute
d

TXs
DB-

1

DB-
2

Stateful Sessions and Transactions
• Stateful sessions were the natural outcome of shared processes

–  You knew who you were talking to… You used to be in the same process!
–  You knew who you were talking to… You can remember stuff about the other guy

• Stateful sessions worked well for classic SOA (Service Oriented
Architecture)
–  When talking to a service, you expected a long session with state on each side
–  Stateful sessions meant the application could do multiple interactions within a

transaction
–  In many circumstances, rich and complex transactions could occur over N-tier

environments
•  Even across multiple backend databases with distributed transactions

16

App-B App-A Client-1

App-E

App-D Client-2
App-C

Transactions, Sessions, and
Microservices

• Microservices stink when it comes to session state
–  Requests flow to request routing
–  Usually, they go back to the same microservice instance
–  If the individual instance fails then another is used!

•  No more session state!

• Session state is needed to create cross-request TXs
–  The transaction identity and who needs to be in 2 Phase Commit

• Microservice transactions are typically 1 store request
–  The lack of session state makes multiple updates hard
–  The challenges of 2 Phase Commit make multiple updates hard

17

Page
Rendering
Componen

ts

Aggregato
r

Services

Servic
es

Dynamo
Instances

Amaz
on
S3

Other Datastores

Request
Routing

Request
Routing

…

Client
Requests

Service-oriented architecture of Amazon’s
platform

From Dynamo: Amazon’s Highly Available Key-value
Store --- SOSP 2007

Microservices Are Worth the Restrictions!

Fail-fast, Load Balanced, Health Mediated Deploy
(Canaries), Rolling Upgrades, Fault Tolerance,

and More

It’s Not Your Grandmother’s Transaction
Anymore!

18

Transactions Only Work on a Single Call to the
Store! Scalable Microservices:

As the Application Microservices Scale, More Instances Are Made

As Microservices Compose, They Call One Another

 Scalable Stores:
TX Across Multiple Identities ! Distributed TX Across Store

Instances

 Scalable Non-
Linearizability: Per-Identity

“Read One or More Old
Versions”

 Scalable Linearizability:
Per-Identity

“Read Your Writes”

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

19

What’s Identity ?
•  Each identity is represented by some number, string, key, or URI

–  The identity can reference something that’s immutable
•  New York Times, October 9th, 2017, San Francisco Bay Area edition

–  The identity can reference something that changes over time
•  Today’s New York Times

•  Each version of the identity is immutable
–  A change makes a new version… Hence, each version is immutable
–  Creating an identity for the immutable version is REALLY useful
–  Now, caching, copying, and referencing are not subject to ambiguity

•  Version history may be linear
–  That’s called linearizability (per identity)
–  Requires strongly consistent and ordered per key (identity) updates

•  Version history may be a DAG (directed acyclic graph)
–  This is called non-linearizabililty (per identity)
–  Independent updates happen separately
–  Concurrent versions come back together representing a fork in history

20

Linea
r

Versi
on

Histo
ry

Directed Acyclic
Graph

Version History

Id-A
Replic

a-2

Id-A
Replic

a-1

Id-B
Replic

a-1

Id-B
Replic

a-2

V
w

V
w Vy Vy

Id-
A

Id-
B

V
w Vy

Cross Identity Relationships
•  Using careful replacement across identities

is a tried-and-true technique
–  First update item with Identity-A so Vw ! Vx
–  Then update item with Identity-B so Vy ! Vz

•  Careful replacement is predictable over
linearizable stores
–  Never read B(Vz) unless you can read A(Vx)

•  Careful replacement over a non-linearizable
store will behave unpredictably
–  You may write a new version of some Id’s item and

then read the Id and get an older version
–  Cached stores will also behave unpredictably if you

are allowed to read stale versions from the cache

•  Careful replacement will be buggy over
non-linearizable stores!

21

Vx

Vz

A(Vw) &
B(Vy)

A(Vx) &
B(Vy)

A(Vx) &
B(Vz)

Each Window
of Time Where

B is Vz
also shows

A as Vx

V
w

V
w Vz

Vz

A(Vw) &
B(Vy)

A(Vw) &
B(Vz)

A(Vw) &
B(Vz)

` `

How “Append” Blurs Identity
•  HDFS and other “big data” file systems accept WRITEs to append to a big file

–  It is essential that the appended writes preserve the order
–  It is essential that each append appear exactly once

•  Predictable and repeatable replica data takes careful design
–  GFS (Google File System) allowed multiple writers to a file and had fixed sized blocks

•  Failures & race conditions sometimes allowed different data per replica ! unpredictable
read values

–  HDFS restricts clients to single writer and avoids this problem (still with fixed sized blocks)
–  Bing’s COSMOS allows multiple writers but has variable length blocks that are shortened for

failures

•  APPEND to file-XYZ does not have adequate identity
–  APPEND has the File’s identity but not the location of the APPEND within the file
–  Big Data system assign the order at the primary block server… this does offer correct

semantics
–  Assigning APPEND location means WRITES (appends) may stall when servers fail or

stutter

•  Stalls on “Big Data” APPENDS are just fine as it’s usually used for batch
–  Stalls are less important than throughput unless humans are stuck waiting for the answer

22

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

23

Just a Few Patterns
as Examples…

There Are Many More!

Careful Replacement over Key-Value
• Objects (values) are uniquely identified by their key

–  Work arrives from outside via messages or human interaction
–  Workflow can be captured in the values
–  New values are written to replace the old
–  Messages are contained as data within the objects

•  Scalable applications can be built over key-value stores
–  Single-item linearizabillity (“read your writes”)
–  Correct behavior is more important than occasional stutters

24

Low
Latency

Predictable
Reads?

Low
Latency

Predictable
Writes?

Read Your
Writes?

NO NO YES
Id-
A

Id-
B

V
w Vy

Vx

Vz

A(Vw) &
B(Vy)

A(Vx) &
B(Vy)

A(Vx) &
B(Vz)

Each Window
of Time Where

B is Vz
also shows

A as Vx

•  Imagine a large relational system storing many large Blobs
–  The blobs are correlated with relational data
–  Blobs are documents, photos, and other stuff
–  Updates to blobs are rare and implemented with new versions

•  Immutable blobs are placed into the store controlled by the DB
–  Transaction T1: Allocate BLOB-ID-X and remember in database
 Copy the blob into the blob-store with BLOB-ID-X
 Transaction T2: Remember BLOB-ID-X refers to an intact blob

•  The blob store is implemented with many commodity servers
–  Don’t want a delay when a server gets sick or dies
–  Humans are waiting for blob writes and blob reads

•  Non-linearizable stores have excellent SLAs
–  Writes put replicas in healthy servers (bypassing sick ones)
–  Reads fetch blobs from any healthy server that answers

Non-Linearizable Store

Transactional Blobs-by-Ref

25

TX:
T1
TX:
T2

Transactio
nal

Database
App

Low
Latency

Predictabl
e Reads?

YES

Low
Latency

Predictabl
e Writes?

YES

Read Your
Writes?

Immutabl
e

ECommerce – Shopping Cart
•  Each shopping cart is for a separate customer

–  No problems with cross-customer consistency of reads and writes

•  Customers are very unhappy if the shopping cart stalls
–  Attrition rate from delays is easily measured and a big impact!
–  Product catalog, reviews, and more must be responsive (more below)
–  Shopping cart additions or reads must be responsive

•  Shopping carts should be Right Now even if they’re not Right
–  It is measurably better for the business to show the wrong results than to stall and take too

long
–  Users are always asked to verify the cart before completing the purchase

•  In non-linearizable stores, sometimes multiple old versions of the cart exist within
the Version History DAG
–  Items are added and deleted from shopping carts
–  Relatively simple cart semantics facilitates combining

different versions of a single user’s shopping cart

26

Low
Latency

Predictabl
e Reads?

Low
Latency

Predictabl
e Writes?

Read Your
Writes?

YES NO YES

ECommerce – Product Catalog
•  Feeds & Crawls processed by Backend

–  Data from the web & from partners
–  Produces distilled product descriptions

•  Each product has a unique identifier
–  Identifier ! partition !

replica ! product description

•  Backend processing and pub-sub
distribution are throughput sensitive
–  Latency is not important
–  Different replicas may

be updated asynch

•  User catalog lookups
are latency sensitive
–  Scale is important
–  OK to get a stale

version of the product

27

A-E

A-E

A-E

A-E

F-J

F-J

F-J

F-J

K-O

K-O

K-O

K-O

P-T

P-T

P-T

P-T

U-Z

U-Z

U-Z

U-Z

Incoming
Request

s

Automatic
Pub-Sub
Distributi

on

Backend
Processi

ng
(Feed &
Crawl)

Feeds
from

Partners
Crawl

the
Web Low

Latency
Predictabl
e Reads?

Low
Latency

Predictabl
e Writes?

Read Your
Writes?

YES NO NO

Lotsa Scale
Is

Needed, Too

Search
• Web crawlers feed search indexers

–  Search terms are identified for each document
–  Search shards are by index terms

•  Updates to the index are not super latency sensitive
–  Most changes from crawling need not be immediately visible
–  OK to update and not have changes

immediately seen

•  Very important that search requests
get low latency responses
–  Retries to other servers in shard are OK so that latency is bounded
–  See “Tail at Scale by Jeff Dean and Luiz Andre Barosso” Communications of ACM – Feb

2013
–  OK to get mixed staleness of answers

28

Low
Latency

Predictabl
e Reads?

Low
Latency

Predictabl
e Writes?

Read Your
Writes?

YES NO NO

Lotsa Scale
Is

Needed, Too

Search
Requests

Index
Updat

e

Searc
h

Indexi
ng

Crawl
the Web

Big Data: Appending to Big Files
•  HDFS and Hadoop generate data with APPENDs to big files

–  APPENDS are identified with the file name but not the target byte offset

•  The byte offset is assigned by the primary replica of the storage
–  The primary must be the one to assign the offset

•  If the primary dies, another server is assigned the role of primary
–  This is a form of linearizability of the APPENDS

•  APPENDs will usually be very fast but may be delayed if a server is sick or dead
–  Dead servers are removed and a protocol is followed to select a new server for the role

•  APPENDs can be delayed while the system copes with a sickness or death
–  This is OK when the Big Data solution is running a batch job
–  The overall throughput is what matters, not an occasional stutter

•  READs of a Big Data file can bound the SLA
–  Three servers have the data and it’s immutable
–  Read from any of the three and it’s great!!

29
Immutabl

e NO

Low
Latency

Predictabl
e Reads?

Low
Latency

Predictabl
e Writes?

Read Your
Writes?

YES

Files

Outline
•  Introduction
• What’s This State Stuff?
• The Evolution of Durable State Semantics
• Session State Semantics and Transactions
•  Identity, Immutability, and Scale
• Some Example Application Patterns
• Conclusion

30

It’s About the Application Pattern!

31

Low
Latency

Predictabl
e Reads?

Low
Latency

Predictabl
e Writes?

Read Your
Writes?

TX’l “Blobs-by-Ref” YES YES Immutabl
e

Non-Linearizable plus
Immutable

Careful Replacement
(K/V) NO NO YES Work across Multiple Key/

Values

EComm – Shopping
Cart YES YES NO Sometimes Gives Stale

Result
EComm – Product

Catalog YES NO NO Scalable Cache ! Stale OK

Search YES NO NO Scalable Cache plus Search

Immutabl
e Append to Big Files YES NO File Append Semantics

Require Linearizability of
Appends

Throughput, not Latency
Matters

Linearizability and “Read Your Writes” Are Not
Always Required in Modern Scalable

Applications
How You Use State Depends on Your Application

Requirements!

Takeaways
•  “State” means different things:

–  Session state: Stateful sessions remembers stuff; Stateless doesn’t remember on the
session

–  Durable state: Stuff is remembered when you come back to the later

• Most scalable computing comprises microservices with stateless interfaces
–  Microservices need partitioning, failures, and rolling upgrades ! stateful sessions are

problematic
–  Microservices may call other microservices to read data or to get stuff done

•  Transactions across stateless calls usually aren’t supported in microservice
solutions
–  Microservices ! no server-side session state ! no txs across calls ! no txs across objects

•  Coordinated changes use the careful replacement technique (from computing’s early
days)
–  Each update provides a new version of the stuff with a single identity
–  Complex content within the new version may include many things including outgoing/

incoming messages
•  Different applications demand different behaviors from durable state

–  Do you want it right (“read your writes”) or do you want it right now (bounded and fast
SLA)?
•  Humans usually prefer right now to right !

–  Many app solutions based on object identity may be tolerant of stale versions
–  Immutable objects can provide the best of both by being right and right now

32

