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Trends in Storage and Computing 
• Storage has evolved 

– Used to be direct attached only 
– Shared appliances (e.g. SAN) 
– Storage clusters contained in a network 
– REST APIs over microservices 

• Computing has evolved 
– Single process (Mainframe Region) 
– Multiple processes in same server 
– RPC across a tiny cluster 
– Services & SOA  

             (Service Oriented Architecture) 
– Microservices with little or no state 

•  Computing’s use of storage has 
evolved 
– Direct File I/O 

• Use careful replacement for 
recoverability 

–  Transactions 
• Implemented careful replacement for the 
app 

• Later, SANs implemented careful 
replacement 

• Stateful 2-tier and N-tier transactions 
– Key-Value 

• Typically, atomic per-key updates 
– REST PUTs 

• Invokes the App code of the resource… 
• Who knows what THAT does to affect 
state? 
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Careful Replacement Variations: 
1)  A write may trash the previous value… Write elsewhere 

first 
2)  A client crash may interrupt a sequence of writes… plan 

carefully! 



Challenges in Modern Microservice-based 
Apps 

•  Nowadays, microservices power many scalable apps 
–  Pools of equivalent services 
–  Incoming requests are load-balanced across the pool 

• Microservices must support many operational needs: 
–  Health mediated deploy (canaries) 
–  Rolling upgrades (sensitive to fault zones) 
–  Fault tolerance 

•  Durable state is usually not kept in microservices 
–  Can’t effectively update the state across all the services 

•  Especially when they are coming and going willy-nilly 
–  Typically latest state is kept elsewhere and versions are cached 
–  Sometimes, read-through requests to durable state 

access information that is NOT in microservices 
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•  Durable State:   Stuff that gets remembered across requests and persists across 
failures 
–  What is it? 

•  Database data, filesystem files, key-values, caches 
–  How is it updated? 

•  Single updates, transactions, and/or distributed transactions 
•  Careful replacement 
•  Messaging semantics 

–  Can you read your writes consistently? 
•  Weakly consistent stores and caching each make “read your writes” a challenge 

 

•  Session State: Stuff that gets remembered across requests in a session but not across 
failures 
–  Session state exists within the endpoints associated with the session 

•  Multi-operation transactions are a form of session state 
–  Session state is hard to do when the session smears across services 

•  Different Microservices in the pool may service later requests 
•  Typically session state is kept in a service instance making it hard to move 

Durable State and Session State 
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Files 

Data on the Inside vs Data on the Outside 
Redux 

• Data on the Inside 
–  Classic transactional relational data 
–  Tables, rows, columns ! values within cells! 
–  Lives at one place (the DB) and at one time (the TX) 

• Data on the Outside 
–  Messages, files, events, key-value-pairs 
–  Unlocked data not stored in a classic database 
–  Identity and (optional) versioning for each item 

• Outside Data is immutable (but may be versioned) 
–  Each file/event/message/key has a unique identifier 
–  The ID may be a URI, a key, or something else 

•  It may be implicit on a session 
•  It may be implicit within the environment 
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V
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File 
1 

File 
1 

Careful Replacement 
•  Used to be:  disks might trash a block during a write 

–  WRITE:  Old-Value !  Unreadable-Trash ! New-Value 
–  Power failures or other interruptions may destroy the old contents 

 

•  Careful Replacement for Single Disk Block Writes 
–  Write the new value into some other place (e.g., another parallel file) 
–  Only after the new value is safe, overwrite the old place 

•  Write the tail of the log carefully onto mirrored disks… 
 

•  Careful Replacement for Record Writes 
–  Update to records in pre-SQL databases needed careful ordering 
–  In many cases, an update to one record (say Record-X) before  

updating Record-Y allows the application to recover after failure 
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Transactions and Careful Replacement 
• Transactions bundle and solve careful record replacement 

–  Multiple application records may be updated in a single transaction 
–  The database system ensured the record updates were atomic 

• Databases handle challenges with careful storage replacement 
–  As the database implemented transactions, it was aware of the needs of storage 
–  Writes to storage (implementing the database) used careful replacement 
–  Distributed transactions handled work across a small number of intimate database 

servers 

• Work across time (i.e. workflow) needs careful transactional replacement 
–  While a set of records was atomic, work across time requires careful replacement 
–  Failures, restarts, and new work can advance the state of the application TX by TX 

• Work across space (i.e. cross-boundary) needs careful transactional 
replacement 
–  Work across space necessitates work across time, TX by TX 
–  This leads us to Messaging Semantics… 
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•  Transactional messaging is pretty cool 
–  A transaction may include the desire to send a message 

•  Transactional updates happen atomically with desire to send 
–  A transaction may atomically consume an incoming message 

•  Message consumption is atomic with the work of the message 
 

•  Exactly once semantics can be supported 
–  A committed desire to send, causing one or more sends  

(retry until acknowledged) 
–  The message must be processed at the receiver at-most-once  

(idempotent processing) 

Messaging Semantics 
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Used to Be, Back in the 
Day…   

If You Wrote Something,  
You Could Read It… 

Read Your Writes?  Yes?  No? 
•  Linearizable stores offer ”Read your writes” 

–  Even as the store scales, as soon as you’ve written to the store, you can read the latest 
value 

–  Linearizable ! Occasionally delay for a LONG time when a server is sick or dead 
•  Non-Linearizable stores do NOT offer “Read your writes” 

–  Non-Linearizable ! No guarantee that a write will update all the replicas ! Might read an 
old value 

–  Reading and writing have a very consistent SLA… Skip over sick / dead servers 

•  Cached data offers scalable read throughput with great SLAs 
–  Key-value pairs live in many computers and are updated with versions 
–  Reads hit one of the computers and return one of the versions 
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Immutability: A Solid Rock to Stand On 
• Sometimes, we can store immutable things 

–  If you look for it, many application patterns can create immutable items 
–  128-bit UUID is an example of an identity that won’t collide with other stuff… 

• Storing immutable things can change the behavior of a store 
–  You never get an old version of the thing because each old version has its own unique 

ID 
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Same Process ! Different Process 
•  Applications and databases used to run in the same process 

–  A library call from the app to the database was easy 
–  Sometimes, multiple applications were loaded together 

•  Later, the DB and Apps were split apart connected by a session 
–  The session had session state 

•  User 
•  Transaction in flight 
•  Application being run 
•  Cursor state and return values 

–  Each process in the session had information about  
the session (i.e. session state) 
 

•  Later still, the app and database moved  
to different servers 
–  Sessions and session state made that work… 
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Stateful Sessions and Transactions 
• Stateful sessions were the natural outcome of shared processes 

–  You knew who you were talking to… You used to be in the same process! 
–  You knew who you were talking to… You can remember stuff about the other guy 

• Stateful sessions worked well for classic SOA (Service Oriented 
Architecture) 
–  When talking to a service, you expected a long session with state on each side 
–  Stateful sessions meant the application could do multiple interactions within a 

transaction 
–  In many circumstances, rich and complex transactions could occur over N-tier 

environments 
•  Even across multiple backend databases with distributed transactions 
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Transactions, Sessions, and 
Microservices 

• Microservices stink when it comes to session state 
–  Requests flow to request routing 
–  Usually, they go back to the same microservice instance  
–  If the individual instance fails then another is used! 

•  No more session state!  

• Session state is needed to create cross-request TXs 
–  The transaction identity and who needs to be in 2 Phase Commit 

• Microservice transactions are typically 1 store request  
–  The lack of session state makes multiple updates hard 
–  The challenges of 2 Phase Commit make multiple updates hard 
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It’s Not Your Grandmother’s Transaction 
Anymore! 
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What’s Identity ? 
•  Each identity is represented by some number, string, key, or URI 

–  The identity can reference something that’s immutable 
•  New York Times, October 9th, 2017, San Francisco Bay Area edition 

–  The identity can reference something that changes over time 
•  Today’s New York Times 

•  Each version of the identity is immutable 
–  A change makes a new version… Hence, each version is immutable 
–  Creating an identity for the immutable version is REALLY useful 
–  Now, caching, copying, and referencing are not subject to ambiguity 

•  Version history may be linear 
–  That’s called linearizability (per identity) 
–  Requires strongly consistent and ordered per key (identity) updates 

•  Version history may be a DAG (directed acyclic graph) 
–  This is called non-linearizabililty (per identity) 
–  Independent updates happen separately 
–  Concurrent versions come back together representing a fork in history 
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Cross Identity Relationships 
•  Using careful replacement across identities  

is a tried-and-true technique 
–  First update item with Identity-A so Vw ! Vx 
–  Then update item with Identity-B so Vy ! Vz 

•  Careful replacement is predictable over 
linearizable stores 
–  Never read B(Vz) unless you can read A(Vx) 

•  Careful replacement over a non-linearizable  
store will behave unpredictably 
–  You may write a new version of some Id’s item and 

then read the Id and get an older version 
–  Cached stores will also behave unpredictably if you  

are allowed to read stale versions from the cache 

•  Careful replacement will be buggy over 
non-linearizable stores! 
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How “Append” Blurs Identity 
•  HDFS and other “big data” file systems accept WRITEs to append to a big file 

–  It is essential that the appended writes preserve the order 
–  It is essential that each append appear exactly once 

•  Predictable and repeatable replica data takes careful design 
–  GFS (Google File System) allowed multiple writers to a file and had fixed sized blocks 

•  Failures & race conditions sometimes allowed different data per replica ! unpredictable 
read values 

–  HDFS restricts clients to single writer and avoids this problem (still with fixed sized blocks) 
–  Bing’s COSMOS allows multiple writers but has variable length blocks that are shortened for 

failures 

•  APPEND to file-XYZ does not have adequate identity 
–  APPEND has the File’s identity but not the location of the APPEND within the file 
–  Big Data system assign the order at the primary block server… this does offer correct 

semantics 
–  Assigning APPEND location means WRITES (appends) may stall when servers fail or 

stutter 

•  Stalls on “Big Data” APPENDS are just fine as it’s usually used for batch 
–  Stalls are less important than throughput unless humans are stuck waiting for the answer 
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Careful Replacement over Key-Value  
• Objects (values) are uniquely identified by their key 

–  Work arrives from outside via messages or human interaction 
–  Workflow can be captured in the values 
–  New values are written to replace the old 
–  Messages are contained as data within the objects 

•  Scalable applications can be built over key-value stores 
–  Single-item linearizabillity (“read your writes”)  
–  Correct behavior is more important than occasional stutters 
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•  Imagine a large relational system storing many large Blobs 
–  The blobs are correlated with relational data 
–  Blobs are documents, photos, and other stuff 
–  Updates to blobs are rare and implemented with new versions 

•  Immutable blobs are placed into the store controlled by the DB 
–  Transaction T1:  Allocate BLOB-ID-X and remember in database 
              Copy the blob into the blob-store with BLOB-ID-X 
    Transaction T2: Remember BLOB-ID-X refers to an intact blob 

•  The blob store is implemented with many commodity servers 
–  Don’t want a delay when a server gets sick or dies 
–  Humans are waiting for blob writes and blob reads 

•  Non-linearizable stores have excellent SLAs 
–  Writes put replicas in healthy servers (bypassing sick ones) 
–  Reads fetch blobs from any healthy server that answers 

Non-Linearizable Store 

Transactional Blobs-by-Ref 
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ECommerce – Shopping Cart 
•  Each shopping cart is for a separate customer 

–  No problems with cross-customer consistency of reads and writes 

•  Customers are very unhappy if the shopping cart stalls 
–  Attrition rate from delays is easily measured and a big impact! 
–  Product catalog, reviews, and more must be responsive (more below) 
–  Shopping cart additions or reads must be responsive 

•  Shopping carts should be Right Now even if they’re not Right 
–  It is measurably better for the business to show the wrong results than to stall and take too 

long 
–  Users are always asked to verify the cart before completing the purchase 

•  In non-linearizable stores, sometimes multiple old versions of the cart exist within 
the Version History DAG 
–  Items are added and deleted from shopping carts 
–  Relatively simple cart semantics facilitates combining 

different versions of a single user’s shopping cart 
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ECommerce – Product Catalog 
•  Feeds & Crawls processed by Backend 

–  Data from the web & from partners 
–  Produces distilled product descriptions 

•  Each product has a unique identifier 
–  Identifier ! partition !  

replica ! product description 

•  Backend processing and pub-sub 
distribution are throughput sensitive 
–  Latency is not important 
–  Different replicas may 

be updated asynch 

•  User catalog lookups 
are latency sensitive 
–  Scale is important 
–  OK to get a stale 

version of the product 
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Search 
• Web crawlers feed search indexers 

–  Search terms are identified for each document 
–  Search shards are by index terms 

•  Updates to the index are not super latency sensitive 
–  Most changes from crawling need not be immediately visible 
–  OK to update and not have changes 

immediately seen 

•  Very important that search requests 
get low latency responses 
–  Retries to other servers in shard are OK so that latency is bounded 
–  See “Tail at Scale by Jeff Dean and Luiz Andre Barosso”  Communications of ACM – Feb 

2013 
–  OK to get mixed staleness of answers 
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Big Data: Appending to Big Files 
•  HDFS and Hadoop generate data with APPENDs to big files 

–  APPENDS are identified with the file name but not the target byte offset 

•  The byte offset is assigned by the primary replica of the storage 
–  The primary must be the one to assign the offset 

•  If the primary dies, another server is assigned the role of primary 
–  This is a form of linearizability of the APPENDS 

•  APPENDs will usually be very fast but may be delayed if a server is sick or dead 
–  Dead servers are removed and a protocol is followed to select a new server for the role 

•  APPENDs can be delayed while the system copes with a sickness or death 
–  This is OK when the Big Data solution is running a batch job 
–  The overall throughput is what matters, not an occasional stutter 

•  READs of a Big Data file can bound the SLA 
–  Three servers have the data and it’s immutable 
–  Read from any of the three and it’s great!! 
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It’s About the Application Pattern! 
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Takeaways 
•  “State” means different things: 

–  Session state:  Stateful sessions remembers stuff;  Stateless doesn’t remember on the 
session 

–  Durable state:  Stuff is remembered when you come back to the later 

• Most scalable computing comprises microservices with stateless interfaces 
–  Microservices need partitioning, failures, and rolling upgrades ! stateful sessions are 

problematic 
–  Microservices may call other microservices to read data or to get stuff done 

•  Transactions across stateless calls usually aren’t supported in microservice 
solutions 
–  Microservices ! no server-side session state ! no txs across calls ! no txs across objects 

•  Coordinated changes use the careful replacement technique (from computing’s early 
days) 
–  Each update provides a new version of the stuff with a single identity 
–  Complex content within the new version may include many things including outgoing/

incoming messages 
•  Different applications demand different behaviors from durable state 

–  Do you want it right (“read your writes”) or do you want it right now (bounded and fast 
SLA)? 
•  Humans usually prefer right now to right ! 

–  Many app solutions based on object identity may be tolerant of stale versions 
–  Immutable objects can provide the best of both by being right and right now 
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