
©	2015,	Amazon	Web	Services,	Inc.	or	its	Affiliates.	All	rights	reserved.

Anurag	Gupta,	Sailesh	Krishnamurthy,	Ippokratis Pandis

Amazon	Web	Services
HPTS	2017

Amazon	Aurora	&	Redshift	Spectrum	
Design	Considerations	for	

Cloud-Native	Database	Management



Traditional	Database	Architecture

Databases	are	all	about	I/O

Design	principles	for	40+	years
Increase	I/O	bandwidth
Decrease	number	of	I/Os

Attached
Storage

SQL

Transactions

Caching

Logging

Compute



Databases	in	the	Cloud
Compute	&	Storage	have	different	lifetimes
Instances	fail	and	may	be	replaced
Instances	are	shut	down
Instances	are	scaled	up/down
Instances	are	added	to	a	cluster	to	scale	out

Compute	and	Storage	are	best	decoupled
For	scalability,	availability,	durability

Local
Storage

SQL

Transactions

Caching

Logging

Compute

Network
Storage



Databases	are	data-intensive	computing

Compute	cycles	per	byte	of	data	(C:D)	is	low

I/O	operations	per	byte	of	data	(I:D)	is	low

But,	with	scale-out	compute,	scale-out	storage,	
data	explosion,	edge	DCs,	
network	operations	per	byte	of	data	(N:D)	is	growing.



The	I/O	bottleneck	has	
moved	to	the	network



Let’s	examine	how	we	
approach	this	for	a	

modern	transactional	database



Amazon	Aurora:	A	Cloud-Native	Database

Logging	+	Storage

SQL

Transactions

Caching

Amazon S3

Move	redo	to	multi-tenant	storage	service

Address	the	network	bottleneck

Improves	durability,	availability,	and	jitter
...	which	are	really	the	same	
...	over	different	time	scales

Verbitski et	al,	Amazon	Aurora:	Design	Considerations	for	High	Throughput	Cloud	Native	Relational	Databases,		SIGMOD	2017



Durability	at	Scale



Uncorrelated	and	Independent	Failures
At	scale,	continuous	independent	failures

Constant	background	radiation
Nodes,	disks,	switches	all	fail	

Replicate	storage	for	resilience

One	common	strawman:	
Replicate	3-ways	with	1	copy	per	AZ
Use	write	and	read	quorums	of	2/3

Availability	
Zone	1

Shared	storage	volume

Availability	
Zone	2

Availability	
Zone	3

Storage	nodes	with	SSDs

X
X

X



What	if	an	AZ	is	lost	?

Boils	down	to	losing	1	node

Þ Still	have	2/3	nodes

Þ Can	establish	quorum

Þ No	data	loss	J

Availability	
Zone	1

Shared	storage	volume

Availability	
Zone	2

Availability	
Zone	3

Storage	nodes	with	SSDs
X



What	if	another	node	is	also lost	?	

AZ+1	model:	correlated	failures!

Þ Lose	2/3	nodes

Þ Lose	quorum

Þ Lose	data	L

Availability	
Zone	1

Shared	storage	volume

Availability	
Zone	2

Availability	
Zone	3

Storage	nodes	with	SSDs
XX



Aurora	tolerates	AZ+1	failures
Replicate	6-ways	with	2	copies	per	AZ

Write	quorum	of	4/6	
Read	quorum	of	3/6	(only	for	repair)

What	if	there	is	an	AZ	failure	?
Þ Still	have	4/6	nodes
Þ Maintain	write	availability

What	if	there	is	an	AZ+1	failure	?	
Þ Still	have	3	nodes	(read/repair	quorum)	
Þ No	data	loss	J
Þ Rebuild	failed	node	by	copying	from	one	of	other	3	
Þ Recover	write	availability	JJ

Availability	
Zone	1

Shared	storage	volume

Availability	
Zone	2

Availability	
Zone	3

Storage	nodes	with	SSDs

X X



Is	a	4/6	quorum	sufficient	for	AZ+1	?

Depends	on	repairing	a	failed	node	before	
AZ+1	becomes	AZ+2	(double-fault)

P(AZ+2)	in	repair	interval	is	function	of	MTTF	
Can	only	reduce	MTTF	&	P(AZ+2)	so	much

Instead	try	to	reduce	repair	interval	(MTTR)

Availability	
Zone	1

Shared	storage	volume

Availability	
Zone	2

Availability	
Zone	3

Storage	nodes	with	SSDs

X X X



Segmented	Storage
Partition	volume	into	𝑛 fixed	size	segments

Replicate	each	segment	6-ways	into	a	Protection	Group	(PG)

A	single	PG	failing	is	enough	to	fail	the	entire	volume

Probability	is	additive	since	failures	are	independent

𝑃 𝑉𝑜𝑙𝑢𝑚𝑒	𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 	/𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒	𝑖𝑛	𝑃𝐺	𝑖)
4

567



What	is	the	“Goldilocks”	segment	size	?
Trade-off	between	likelihood	of	faults	and	time	to	repair

If	segments	are	too	small	then	failures	are	more	likely
If	segments	are	too	big	then	repairs	take	too	long

Choose	the	biggest	size	that	lets	us	repair	“fast”	enough
We	currently	picked	a	segment	size	of	10GB	
Can	repair	a	10GB	segment	in	~10	seconds	on	a	10Gbps	link

10GB	segments	are	the	unit	of	independent	failure	&	repair



Can	we	really	afford	6	copies	??
(aka	Burden	of	Amplified	Writes)



The	Log	is	the	Database

SQL

Transactions

AZ	1 AZ	2 AZ	3

Caching

Amazon	S3

Offload	redo	processing	to	storage
Only	write	redo	log	records	on	network
Push	log	applicator	to	storage	tier
Generate	database	pages	on	demand
Materialize	database	pages	in	background
Continuous	backup	to	S3

Redo	and	backups	are	now	parallelized

No	more	full	page	writes
Checkpointing,	cache	eviction,	bg writer



How	does	Aurora	handle	the	network	bottleneck

Decorrelating storage	and	instance	failures	requires	network	storage.	This	
creates	high	Network:Data (N:D).	

Latency,	availability,	durability	concerns	benefit	from	quorums.	Amplifies	
already	high	N:D

Correlation	of	failures	require	tolerating	loss	of	AZ+1.	Further	amplifies	N:D

Pushing	most	work	down	to	storage	tier	greatly	reduces	N:D

Even	so,	Aurora	is	rate-limited	by	available	network	PPS.	



Lets	look	at	I/O	for	
data	warehouses	



The	network	is	a	
shared	resource



On	a	fleet-wide	basis,
Amazon	Redshift	might	be	doing	

1	EB	of	physical	I/O	operations	daily

(excludes	cache	hits)



2^60	bytes,	or
2^40	1MB	block	I/Os



If	you	go	over	the	network,
2^50	1K	packets

That’s	a	lot	



Data	in	S3	is	encoded
to	achieve	11	9’s	durability

inexpensively



2^55	network	packets
before	hops,	retransmits



Redshift	is	designed	to	minimize	network

• Like	Aurora,	most	work	is	pushed	
down	to	compute	nodes

• Compute	nodes	have	local	disks	to	
reduce	I/O	traffic

• Data	is	distributed	to	minimize	
communication	across	nodes

10	GigE
(HPC)

Ingestion
Backup
Restore

JDBC/ODBC



Our	customers	increasingly	
are	moving	to	Data	Lake	

architectures



Data	in	open	formats	in	a	
highly	durable,	

low	cost	data	store	(e.g.	S3)



Accessible	from	their	data	
processing	engine	of	choice
(Hadoop,	data	warehouse,	

serverless	SQL,	etc)



You	need	a	lot	of	network	pipes	to	
pull	data

You	can’t	afford	to	keep	them	when	
not	in	use

You	need	to	avoid	East-West	traffic



Amazon 
Redshift

JDBC/ODBC

...
1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

• Full	query	optimizer	and	
SQL	semantics,	

• Scale-out	resource	pool	
with	pay-per-query	
allocation	of	nodes	to	pull	
data	from	S3

• Push	down	scan,	filter,	
aggregate,	group…

Redshift	
Spectrum



Query
SELECT	COUNT(*)
FROM S3.EXT_TABLE
GROUP	BY…

Amazon 
Redshift

JDBC/ODBC

...
1 2 3 4 N

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore

Multi	Cluster



Global	
Merge	Agg

Local	AggEach	Slice
Each	ComputeNode

Local	Agg Local	Agg

Large-scale	SCAN-and-AGG



Global	
Merge	Agg

Local	AggEach	Slice
Each	ComputeNode

Local	Agg Local	Agg

Each	S3	Object S3	Agg
S3	AggS3	Agg

S3	Agg
S3	AggS3	Agg

S3	Agg
S3	AggS3	Agg

S3	Agg
S3	AggS3	Agg

10x

Large-scale	SCAN-and-AGG



Before:

“Dirty”
Logs

Clean
Logs CSV

Amazon	Redshift

COPY

After:

“Dirty”
Logs

Amazon	Redshift

CREATE TABLE AS 
SELECT C.. FROM S3.xxx WHERE …

Amazon	Redshift

Staging	Table Final	Table

Simplified	Ingestion	Pipelines



Future	work

• How	do	we	push	query	processing	down	into	the	data	lake	itself?

• What	does	it	mean	for	encoding	schemes	traditionally	optimized	for	high	
durability	at	low	cost?

• How	do	we	manage	transactionality across	data	processing	engines?

• How	do	we	manage	access	control	across	data	processing	engines?


